public class Int2DoubleLinkedOpenHashMap extends AbstractInt2DoubleSortedMap implements java.io.Serializable, java.lang.Cloneable, Hash
Instances of this class use a hash table to represent a map. The table is filled up to a specified load factor, and then doubled in size to accommodate new entries. If the table is emptied below one fourth of the load factor, it is halved in size; however, the table is never reduced to a size smaller than that at creation time: this approach makes it possible to create maps with a large capacity in which insertions and deletions do not cause immediately rehashing. Moreover, halving is not performed when deleting entries from an iterator, as it would interfere with the iteration process.
Note that clear()
does not modify the hash table size.
Rather, a family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
Entries returned by the type-specific Int2DoubleMap.entrySet()
method implement
the suitable type-specific Pair
interface;
only values are mutable.
Iterators generated by this map will enumerate pairs in the same order in which they have been added to the map (addition of pairs whose key is already present in the map does not change the iteration order). Note that this order has nothing in common with the natural order of the keys. The order is kept by means of a doubly linked list, represented via an array of longs parallel to the table.
This class implements the interface of a sorted map, so to allow easy
access of the iteration order: for instance, you can get the first key
in iteration order with firstKey()
without having to create an
iterator; however, this class partially violates the SortedMap
contract because all submap methods throw an exception and comparator()
returns always null
.
Additional methods, such as getAndMoveToFirst()
, make it easy
to use instances of this class as a cache (e.g., with LRU policy).
The iterators provided by the views of this class using are type-specific
list iterators, and can be started at any
element which is a key of the map, or
a NoSuchElementException
exception will be thrown.
If, however, the provided element is not the first or last key in the
map, the first access to the list index will require linear time, as in the worst case
the entire key set must be scanned in iteration order to retrieve the positional
index of the starting key. If you use just the methods of a type-specific BidirectionalIterator
,
however, all operations will be performed in constant time.
Hash
,
HashCommon
,
Serialized FormAbstractInt2DoubleMap.BasicEntry, AbstractInt2DoubleMap.BasicEntrySet
Hash.Strategy<K>
Int2DoubleSortedMap.FastSortedEntrySet
Int2DoubleMap.Entry, Int2DoubleMap.FastEntrySet
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR
Constructor and Description |
---|
Int2DoubleLinkedOpenHashMap()
Creates a new hash map with initial expected
Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
Int2DoubleLinkedOpenHashMap(int expected)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor. |
Int2DoubleLinkedOpenHashMap(int[] k,
double[] v)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
Int2DoubleLinkedOpenHashMap(int[] k,
double[] v,
float f)
Creates a new hash map using the elements of two parallel arrays.
|
Int2DoubleLinkedOpenHashMap(Int2DoubleMap m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
Int2DoubleLinkedOpenHashMap(Int2DoubleMap m,
float f)
Creates a new hash map copying a given type-specific one.
|
Int2DoubleLinkedOpenHashMap(int expected,
float f)
Creates a new hash map.
|
Int2DoubleLinkedOpenHashMap(java.util.Map<? extends java.lang.Integer,? extends java.lang.Double> m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
Int2DoubleLinkedOpenHashMap(java.util.Map<? extends java.lang.Integer,? extends java.lang.Double> m,
float f)
Creates a new hash map copying a given one.
|
Modifier and Type | Method and Description |
---|---|
double |
addTo(int k,
double incr)
Adds an increment to value currently associated with a key.
|
void |
clear()
Removes all of the mappings from this map (optional operation).
|
Int2DoubleLinkedOpenHashMap |
clone()
Returns a deep copy of this map.
|
IntComparator |
comparator()
Returns the comparator associated with this sorted set, or null if it uses its keys' natural ordering.
|
double |
compute(int k,
java.util.function.BiFunction<? super java.lang.Integer,? super java.lang.Double,? extends java.lang.Double> remappingFunction)
Attempts to compute a mapping for the specified key and its current mapped value (or
null if there is no current mapping). |
double |
computeIfAbsent(int key,
Int2DoubleFunction mappingFunction)
If the specified key is not already associated with a value, attempts to compute its value
using the given mapping function and enters it into this map, unless the key is not present
in the given mapping function.
|
double |
computeIfAbsent(int k,
java.util.function.IntToDoubleFunction mappingFunction)
If the specified key is not already associated with a value, attempts to compute its value
using the given mapping function and enters it into this map.
|
double |
computeIfAbsentNullable(int k,
java.util.function.IntFunction<? extends java.lang.Double> mappingFunction)
If the specified key is not already associated with a value, attempts to compute its value
using the given mapping function and enters it into this map unless it is
null . |
double |
computeIfPresent(int k,
java.util.function.BiFunction<? super java.lang.Integer,? super java.lang.Double,? extends java.lang.Double> remappingFunction)
If the value for the specified key is present, attempts to compute a new mapping given the key and its current mapped value.
|
boolean |
containsKey(int k)
Returns true if this function contains a mapping for the specified key.
|
boolean |
containsValue(double v)
Returns
true if this map maps one or more keys to the specified value. |
int |
firstIntKey()
Returns the first key of this map in iteration order.
|
double |
get(int k)
Returns the value to which the given key is mapped.
|
double |
getAndMoveToFirst(int k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order.
|
double |
getAndMoveToLast(int k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order.
|
double |
getOrDefault(int k,
double defaultValue)
Returns the value associated by this function to the specified key, or give the specified
value if not present.
|
int |
hashCode()
Returns a hash code for this map.
|
Int2DoubleSortedMap |
headMap(int to)
Returns a view of the portion of this sorted map whose keys are strictly less than
toKey . |
Int2DoubleSortedMap.FastSortedEntrySet |
int2DoubleEntrySet()
Returns a type-specific sorted-set view of the mappings contained in this map.
|
boolean |
isEmpty() |
IntSortedSet |
keySet()
Returns a type-specific-set view of the keys of this map.
|
int |
lastIntKey()
Returns the last key of this map in iteration order.
|
double |
merge(int k,
double v,
java.util.function.BiFunction<? super java.lang.Double,? super java.lang.Double,? extends java.lang.Double> remappingFunction)
If the specified key is not already associated with a value, associates it with the given
value . |
double |
put(int k,
double v)
Adds a pair to the map (optional operation).
|
void |
putAll(java.util.Map<? extends java.lang.Integer,? extends java.lang.Double> m) |
double |
putAndMoveToFirst(int k,
double v)
Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order.
|
double |
putAndMoveToLast(int k,
double v)
Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order.
|
double |
putIfAbsent(int k,
double v)
If the specified key is not already associated with a value, associates it with the given
value and returns the default return value, else returns
the current value.
|
double |
remove(int k)
Removes the mapping with the given key (optional operation).
|
boolean |
remove(int k,
double v)
Removes the entry for the specified key only if it is currently mapped to the specified value.
|
double |
removeFirstDouble()
Removes the mapping associated with the first key in iteration order.
|
double |
removeLastDouble()
Removes the mapping associated with the last key in iteration order.
|
double |
replace(int k,
double v)
Replaces the entry for the specified key only if it is currently mapped to some value.
|
boolean |
replace(int k,
double oldValue,
double v)
Replaces the entry for the specified key only if currently mapped to the specified value.
|
int |
size()
Returns the number of key/value mappings in this map.
|
Int2DoubleSortedMap |
subMap(int from,
int to)
Returns a view of the portion of this sorted map whose keys range from
fromKey , inclusive, to toKey , exclusive. |
Int2DoubleSortedMap |
tailMap(int from)
Returns a view of the portion of this sorted map whose keys are greater than or equal to
fromKey . |
boolean |
trim()
Rehashes the map, making the table as small as possible.
|
boolean |
trim(int n)
Rehashes this map if the table is too large.
|
DoubleCollection |
values()
Returns a type-specific-set view of the values of this map.
|
equals, mergeDouble, toString
defaultReturnValue, defaultReturnValue
entrySet, firstKey, headMap, lastKey, subMap, tailMap
compute, computeIfAbsent, computeIfAbsentPartial, computeIfPresent, containsKey, containsValue, defaultReturnValue, defaultReturnValue, forEach, get, getOrDefault, merge, mergeDouble, mergeDouble, put, putIfAbsent, remove, remove, replace, replace
andThen, andThenByte, andThenChar, andThenDouble, andThenFloat, andThenInt, andThenLong, andThenObject, andThenReference, andThenShort, applyAsDouble, compose, composeByte, composeChar, composeDouble, composeFloat, composeInt, composeLong, composeObject, composeReference, composeShort
public Int2DoubleLinkedOpenHashMap(int expected, float f)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash map.f
- the load factor.public Int2DoubleLinkedOpenHashMap(int expected)
Hash.DEFAULT_LOAD_FACTOR
as load factor.expected
- the expected number of elements in the hash map.public Int2DoubleLinkedOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.public Int2DoubleLinkedOpenHashMap(java.util.Map<? extends java.lang.Integer,? extends java.lang.Double> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Int2DoubleLinkedOpenHashMap(java.util.Map<? extends java.lang.Integer,? extends java.lang.Double> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.m
- a Map
to be copied into the new hash map.public Int2DoubleLinkedOpenHashMap(Int2DoubleMap m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Int2DoubleLinkedOpenHashMap(Int2DoubleMap m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.m
- a type-specific map to be copied into the new hash map.public Int2DoubleLinkedOpenHashMap(int[] k, double[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.java.lang.IllegalArgumentException
- if k
and v
have different lengths.public Int2DoubleLinkedOpenHashMap(int[] k, double[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.java.lang.IllegalArgumentException
- if k
and v
have different lengths.public void putAll(java.util.Map<? extends java.lang.Integer,? extends java.lang.Double> m)
AbstractInt2DoubleMap
putAll
in interface java.util.Map<java.lang.Integer,java.lang.Double>
putAll
in class AbstractInt2DoubleMap
public double put(int k, double v)
Int2DoubleFunction
put
in interface Int2DoubleFunction
k
- the key.v
- the value.Function.put(Object,Object)
public double addTo(int k, double incr)
Note that this method respects the default return value semantics: when called with a key that does not currently appears in the map, the key will be associated with the default return value plus the given increment.
k
- the key.incr
- the increment.public double remove(int k)
Int2DoubleFunction
remove
in interface Int2DoubleFunction
k
- the key.Function.remove(Object)
public double removeFirstDouble()
java.util.NoSuchElementException
- is this map is empty.public double removeLastDouble()
java.util.NoSuchElementException
- is this map is empty.public double getAndMoveToFirst(int k)
k
- the key.public double getAndMoveToLast(int k)
k
- the key.public double putAndMoveToFirst(int k, double v)
k
- the key.v
- the value.public double putAndMoveToLast(int k, double v)
k
- the key.v
- the value.public double get(int k)
Int2DoubleFunction
get
in interface Int2DoubleFunction
k
- the key.Function.get(Object)
public boolean containsKey(int k)
AbstractInt2DoubleMap
containsKey
in interface Int2DoubleFunction
containsKey
in interface Int2DoubleMap
containsKey
in class AbstractInt2DoubleMap
k
- the key.key
.Map.containsKey(Object)
public boolean containsValue(double v)
AbstractInt2DoubleMap
true
if this map maps one or more keys to the specified value.containsValue
in interface Int2DoubleMap
containsValue
in class AbstractInt2DoubleMap
Map.containsValue(Object)
public double getOrDefault(int k, double defaultValue)
getOrDefault
in interface Int2DoubleFunction
getOrDefault
in interface Int2DoubleMap
k
- the key.defaultValue
- the value to return if not present.defaultValue
if no value was present for the given key.Function.getOrDefault(Object, Object)
public double putIfAbsent(int k, double v)
putIfAbsent
in interface Int2DoubleMap
k
- key with which the specified value is to be associated.v
- value to be associated with the specified key.Map.putIfAbsent(Object, Object)
public boolean remove(int k, double v)
remove
in interface Int2DoubleMap
k
- key with which the specified value is associated.v
- value expected to be associated with the specified key.true
if the value was removed.Map.remove(Object, Object)
public boolean replace(int k, double oldValue, double v)
replace
in interface Int2DoubleMap
k
- key with which the specified value is associated.oldValue
- value expected to be associated with the specified key.v
- value to be associated with the specified key.true
if the value was replaced.Map.replace(Object, Object, Object)
public double replace(int k, double v)
replace
in interface Int2DoubleMap
k
- key with which the specified value is associated.v
- value to be associated with the specified key.Map.replace(Object, Object)
public double computeIfAbsent(int k, java.util.function.IntToDoubleFunction mappingFunction)
Note that contrarily to the default computeIfAbsent(),
it is not possible to not add a value for a given key, since the mappingFunction
cannot
return null
. If such a behavior is needed, please use the corresponding nullable version.
computeIfAbsent
in interface Int2DoubleMap
k
- key with which the specified value is to be associated.mappingFunction
- the function to compute a value.Map.computeIfAbsent(Object, java.util.function.Function)
public double computeIfAbsent(int key, Int2DoubleFunction mappingFunction)
This version of computeIfAbsent()
uses a type-specific version of fastutil
's Function
.
Since Function
has a containsKey()
method, it is possible to avoid adding a key by having containsKey()
return false
for that key.
computeIfAbsent
in interface Int2DoubleMap
key
- key with which the specified value is to be associated.mappingFunction
- the function to compute a value.Map.computeIfAbsent(Object, java.util.function.Function)
public double computeIfAbsentNullable(int k, java.util.function.IntFunction<? extends java.lang.Double> mappingFunction)
null
.
Note that this version of computeIfAbsent()
should be used only if you plan to return null
in the mapping function.
computeIfAbsentNullable
in interface Int2DoubleMap
k
- key with which the specified value is to be associated.mappingFunction
- the function to compute a value.null
.Map.computeIfAbsent(Object, java.util.function.Function)
public double computeIfPresent(int k, java.util.function.BiFunction<? super java.lang.Integer,? super java.lang.Double,? extends java.lang.Double> remappingFunction)
computeIfPresent
in interface Int2DoubleMap
k
- key with which the specified value is to be associated.remappingFunction
- the function to compute a value.Map.computeIfPresent(Object, java.util.function.BiFunction)
public double compute(int k, java.util.function.BiFunction<? super java.lang.Integer,? super java.lang.Double,? extends java.lang.Double> remappingFunction)
null
if there is no current mapping).
If the function returns null
, the mapping is removed (or remains absent if initially absent).
If the function itself throws an (unchecked) exception, the exception is rethrown, and the current mapping is left unchanged.
compute
in interface Int2DoubleMap
k
- key with which the specified value is to be associated.remappingFunction
- the function to compute a value.Map.compute(Object, java.util.function.BiFunction)
public double merge(int k, double v, java.util.function.BiFunction<? super java.lang.Double,? super java.lang.Double,? extends java.lang.Double> remappingFunction)
value
.
Otherwise, replaces the associated value with the results of the given remapping function, or removes if the result is null
.merge
in interface Int2DoubleMap
k
- key with which the resulting value is to be associated.v
- the value to be merged with the existing value associated with the key or, if no existing value is associated with the key, to be associated with the key.remappingFunction
- the function to recompute a value if present.Map.merge(Object, Object, java.util.function.BiFunction)
public void clear()
Int2DoubleMap
clear
in interface Int2DoubleMap
clear
in interface java.util.Map<java.lang.Integer,java.lang.Double>
Map.clear()
public int size()
Int2DoubleMap
Integer.MAX_VALUE
elements, returns Integer.MAX_VALUE
.size
in interface Int2DoubleMap
size
in interface java.util.Map<java.lang.Integer,java.lang.Double>
Size64
public boolean isEmpty()
isEmpty
in interface java.util.Map<java.lang.Integer,java.lang.Double>
isEmpty
in class AbstractInt2DoubleMap
public int firstIntKey()
firstIntKey
in interface Int2DoubleSortedMap
SortedMap.firstKey()
public int lastIntKey()
lastIntKey
in interface Int2DoubleSortedMap
SortedMap.lastKey()
public Int2DoubleSortedMap tailMap(int from)
fromKey
.tailMap
in interface Int2DoubleSortedMap
SortedMap.tailMap(Object)
UnsupportedOperationException
.public Int2DoubleSortedMap headMap(int to)
toKey
.headMap
in interface Int2DoubleSortedMap
SortedMap.headMap(Object)
UnsupportedOperationException
.public Int2DoubleSortedMap subMap(int from, int to)
fromKey
, inclusive, to toKey
, exclusive.subMap
in interface Int2DoubleSortedMap
SortedMap.subMap(Object,Object)
UnsupportedOperationException
.public IntComparator comparator()
comparator
in interface Int2DoubleSortedMap
comparator
in interface java.util.SortedMap<java.lang.Integer,java.lang.Double>
SortedMap.comparator()
null
.public Int2DoubleSortedMap.FastSortedEntrySet int2DoubleEntrySet()
Int2DoubleSortedMap
int2DoubleEntrySet
in interface Int2DoubleMap
int2DoubleEntrySet
in interface Int2DoubleSortedMap
Int2DoubleSortedMap.entrySet()
public IntSortedSet keySet()
AbstractInt2DoubleSortedMap
The view is backed by the set returned by Map.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
The view is backed by the sorted set returned by Map.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Int2DoubleMap
keySet
in interface Int2DoubleSortedMap
keySet
in interface java.util.Map<java.lang.Integer,java.lang.Double>
keySet
in interface java.util.SortedMap<java.lang.Integer,java.lang.Double>
keySet
in class AbstractInt2DoubleSortedMap
Map.keySet()
public DoubleCollection values()
AbstractInt2DoubleSortedMap
The view is backed by the set returned by Map.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
The view is backed by the sorted set returned by Map.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Int2DoubleMap
values
in interface Int2DoubleSortedMap
values
in interface java.util.Map<java.lang.Integer,java.lang.Double>
values
in interface java.util.SortedMap<java.lang.Integer,java.lang.Double>
values
in class AbstractInt2DoubleSortedMap
Map.values()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.trim()
public Int2DoubleLinkedOpenHashMap clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
clone
in class java.lang.Object
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.hashCode
in interface java.util.Map<java.lang.Integer,java.lang.Double>
hashCode
in class AbstractInt2DoubleMap