public class Long2ObjectLinkedOpenHashMap<V> extends AbstractLong2ObjectSortedMap<V> implements java.io.Serializable, java.lang.Cloneable, Hash
Instances of this class use a hash table to represent a map. The table is filled up to a specified load factor, and then doubled in size to accommodate new entries. If the table is emptied below one fourth of the load factor, it is halved in size; however, the table is never reduced to a size smaller than that at creation time: this approach makes it possible to create maps with a large capacity in which insertions and deletions do not cause immediately rehashing. Moreover, halving is not performed when deleting entries from an iterator, as it would interfere with the iteration process.
Note that clear()
does not modify the hash table size.
Rather, a family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
Entries returned by the type-specific Long2ObjectMap.entrySet()
method implement
the suitable type-specific Pair
interface;
only values are mutable.
Iterators generated by this map will enumerate pairs in the same order in which they have been added to the map (addition of pairs whose key is already present in the map does not change the iteration order). Note that this order has nothing in common with the natural order of the keys. The order is kept by means of a doubly linked list, represented via an array of longs parallel to the table.
This class implements the interface of a sorted map, so to allow easy
access of the iteration order: for instance, you can get the first key
in iteration order with firstKey()
without having to create an
iterator; however, this class partially violates the SortedMap
contract because all submap methods throw an exception and comparator()
returns always null
.
Additional methods, such as getAndMoveToFirst()
, make it easy
to use instances of this class as a cache (e.g., with LRU policy).
The iterators provided by the views of this class using are type-specific
list iterators, and can be started at any
element which is a key of the map, or
a NoSuchElementException
exception will be thrown.
If, however, the provided element is not the first or last key in the
map, the first access to the list index will require linear time, as in the worst case
the entire key set must be scanned in iteration order to retrieve the positional
index of the starting key. If you use just the methods of a type-specific BidirectionalIterator
,
however, all operations will be performed in constant time.
Hash
,
HashCommon
,
Serialized FormAbstractLong2ObjectMap.BasicEntry<V>, AbstractLong2ObjectMap.BasicEntrySet<V>
Hash.Strategy<K>
Long2ObjectSortedMap.FastSortedEntrySet<V>
Long2ObjectMap.Entry<V>, Long2ObjectMap.FastEntrySet<V>
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR
Constructor and Description |
---|
Long2ObjectLinkedOpenHashMap()
Creates a new hash map with initial expected
Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
Long2ObjectLinkedOpenHashMap(int expected)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor. |
Long2ObjectLinkedOpenHashMap(int expected,
float f)
Creates a new hash map.
|
Long2ObjectLinkedOpenHashMap(long[] k,
V[] v)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
Long2ObjectLinkedOpenHashMap(long[] k,
V[] v,
float f)
Creates a new hash map using the elements of two parallel arrays.
|
Long2ObjectLinkedOpenHashMap(Long2ObjectMap<V> m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
Long2ObjectLinkedOpenHashMap(Long2ObjectMap<V> m,
float f)
Creates a new hash map copying a given type-specific one.
|
Long2ObjectLinkedOpenHashMap(java.util.Map<? extends java.lang.Long,? extends V> m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
Long2ObjectLinkedOpenHashMap(java.util.Map<? extends java.lang.Long,? extends V> m,
float f)
Creates a new hash map copying a given one.
|
Modifier and Type | Method and Description |
---|---|
void |
clear()
Removes all of the mappings from this map (optional operation).
|
Long2ObjectLinkedOpenHashMap<V> |
clone()
Returns a deep copy of this map.
|
LongComparator |
comparator()
Returns the comparator associated with this sorted set, or null if it uses its keys' natural ordering.
|
V |
compute(long k,
java.util.function.BiFunction<? super java.lang.Long,? super V,? extends V> remappingFunction)
Attempts to compute a mapping for the specified key and its current mapped value (or
null if there is no current mapping). |
V |
computeIfAbsent(long key,
Long2ObjectFunction<? extends V> mappingFunction)
If the specified key is not already associated with a value, attempts to compute its value
using the given mapping function and enters it into this map, unless the key is not present
in the given mapping function.
|
V |
computeIfAbsent(long k,
java.util.function.LongFunction<? extends V> mappingFunction)
If the specified key is not already associated with a value, attempts to compute its value
using the given mapping function and enters it into this map.
|
V |
computeIfPresent(long k,
java.util.function.BiFunction<? super java.lang.Long,? super V,? extends V> remappingFunction)
If the value for the specified key is present, attempts to compute a new mapping given the key and its current mapped value.
|
boolean |
containsKey(long k)
Returns true if this function contains a mapping for the specified key.
|
boolean |
containsValue(java.lang.Object v) |
long |
firstLongKey()
Returns the first key of this map in iteration order.
|
V |
get(long k)
Returns the value to which the given key is mapped.
|
V |
getAndMoveToFirst(long k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order.
|
V |
getAndMoveToLast(long k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order.
|
V |
getOrDefault(long k,
V defaultValue)
Returns the value associated by this function to the specified key, or give the specified
value if not present.
|
int |
hashCode()
Returns a hash code for this map.
|
Long2ObjectSortedMap<V> |
headMap(long to)
Returns a view of the portion of this sorted map whose keys are strictly less than
toKey . |
boolean |
isEmpty() |
LongSortedSet |
keySet()
Returns a type-specific-set view of the keys of this map.
|
long |
lastLongKey()
Returns the last key of this map in iteration order.
|
Long2ObjectSortedMap.FastSortedEntrySet<V> |
long2ObjectEntrySet()
Returns a type-specific sorted-set view of the mappings contained in this map.
|
V |
merge(long k,
V v,
java.util.function.BiFunction<? super V,? super V,? extends V> remappingFunction)
If the specified key is not already associated with a value, associates it with the given
value . |
V |
put(long k,
V v)
Adds a pair to the map (optional operation).
|
void |
putAll(java.util.Map<? extends java.lang.Long,? extends V> m) |
V |
putAndMoveToFirst(long k,
V v)
Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order.
|
V |
putAndMoveToLast(long k,
V v)
Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order.
|
V |
putIfAbsent(long k,
V v)
If the specified key is not already associated with a value, associates it with the given
value and returns the default return value, else returns
the current value.
|
V |
remove(long k)
Removes the mapping with the given key (optional operation).
|
boolean |
remove(long k,
java.lang.Object v)
Removes the entry for the specified key only if it is currently mapped to the specified value.
|
V |
removeFirst()
Removes the mapping associated with the first key in iteration order.
|
V |
removeLast()
Removes the mapping associated with the last key in iteration order.
|
V |
replace(long k,
V v)
Replaces the entry for the specified key only if it is currently mapped to some value.
|
boolean |
replace(long k,
V oldValue,
V v)
Replaces the entry for the specified key only if currently mapped to the specified value.
|
int |
size()
Returns the number of key/value mappings in this map.
|
Long2ObjectSortedMap<V> |
subMap(long from,
long to)
Returns a view of the portion of this sorted map whose keys range from
fromKey , inclusive, to toKey , exclusive. |
Long2ObjectSortedMap<V> |
tailMap(long from)
Returns a view of the portion of this sorted map whose keys are greater than or equal to
fromKey . |
boolean |
trim()
Rehashes the map, making the table as small as possible.
|
boolean |
trim(int n)
Rehashes this map if the table is too large.
|
ObjectCollection<V> |
values()
Returns a type-specific-set view of the values of this map.
|
equals, toString
defaultReturnValue, defaultReturnValue
entrySet, firstKey, headMap, lastKey, subMap, tailMap
computeIfAbsentPartial, containsKey, defaultReturnValue, defaultReturnValue, forEach, get, getOrDefault, put, remove
andThenByte, andThenChar, andThenDouble, andThenFloat, andThenInt, andThenLong, andThenObject, andThenReference, andThenShort, apply, compose, composeByte, composeChar, composeDouble, composeFloat, composeInt, composeLong, composeObject, composeReference, composeShort
public Long2ObjectLinkedOpenHashMap(int expected, float f)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash map.f
- the load factor.public Long2ObjectLinkedOpenHashMap(int expected)
Hash.DEFAULT_LOAD_FACTOR
as load factor.expected
- the expected number of elements in the hash map.public Long2ObjectLinkedOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.public Long2ObjectLinkedOpenHashMap(java.util.Map<? extends java.lang.Long,? extends V> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Long2ObjectLinkedOpenHashMap(java.util.Map<? extends java.lang.Long,? extends V> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.m
- a Map
to be copied into the new hash map.public Long2ObjectLinkedOpenHashMap(Long2ObjectMap<V> m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Long2ObjectLinkedOpenHashMap(Long2ObjectMap<V> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.m
- a type-specific map to be copied into the new hash map.public Long2ObjectLinkedOpenHashMap(long[] k, V[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.java.lang.IllegalArgumentException
- if k
and v
have different lengths.public Long2ObjectLinkedOpenHashMap(long[] k, V[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.java.lang.IllegalArgumentException
- if k
and v
have different lengths.public void putAll(java.util.Map<? extends java.lang.Long,? extends V> m)
AbstractLong2ObjectMap
putAll
in interface java.util.Map<java.lang.Long,V>
putAll
in class AbstractLong2ObjectMap<V>
public V put(long k, V v)
Long2ObjectFunction
put
in interface Long2ObjectFunction<V>
k
- the key.v
- the value.Function.put(Object,Object)
public V remove(long k)
Long2ObjectFunction
remove
in interface Long2ObjectFunction<V>
k
- the key.Function.remove(Object)
public V removeFirst()
java.util.NoSuchElementException
- is this map is empty.public V removeLast()
java.util.NoSuchElementException
- is this map is empty.public V getAndMoveToFirst(long k)
k
- the key.public V getAndMoveToLast(long k)
k
- the key.public V putAndMoveToFirst(long k, V v)
k
- the key.v
- the value.public V putAndMoveToLast(long k, V v)
k
- the key.v
- the value.public V get(long k)
Long2ObjectFunction
get
in interface Long2ObjectFunction<V>
k
- the key.Function.get(Object)
public boolean containsKey(long k)
AbstractLong2ObjectMap
containsKey
in interface Long2ObjectFunction<V>
containsKey
in interface Long2ObjectMap<V>
containsKey
in class AbstractLong2ObjectMap<V>
k
- the key.key
.Map.containsKey(Object)
public boolean containsValue(java.lang.Object v)
AbstractLong2ObjectMap
containsValue
in interface java.util.Map<java.lang.Long,V>
containsValue
in class AbstractLong2ObjectMap<V>
public V getOrDefault(long k, V defaultValue)
getOrDefault
in interface Long2ObjectFunction<V>
getOrDefault
in interface Long2ObjectMap<V>
k
- the key.defaultValue
- the value to return if not present.defaultValue
if no value was present for the given key.Function.getOrDefault(Object, Object)
public V putIfAbsent(long k, V v)
putIfAbsent
in interface Long2ObjectMap<V>
k
- key with which the specified value is to be associated.v
- value to be associated with the specified key.Map.putIfAbsent(Object, Object)
public boolean remove(long k, java.lang.Object v)
remove
in interface Long2ObjectMap<V>
k
- key with which the specified value is associated.v
- value expected to be associated with the specified key.true
if the value was removed.Map.remove(Object, Object)
public boolean replace(long k, V oldValue, V v)
replace
in interface Long2ObjectMap<V>
k
- key with which the specified value is associated.oldValue
- value expected to be associated with the specified key.v
- value to be associated with the specified key.true
if the value was replaced.Map.replace(Object, Object, Object)
public V replace(long k, V v)
replace
in interface Long2ObjectMap<V>
k
- key with which the specified value is associated.v
- value to be associated with the specified key.Map.replace(Object, Object)
public V computeIfAbsent(long k, java.util.function.LongFunction<? extends V> mappingFunction)
Note that contrarily to the default computeIfAbsent(),
it is not possible to not add a value for a given key, since the mappingFunction
cannot
return null
. If such a behavior is needed, please use the corresponding nullable version.
computeIfAbsent
in interface Long2ObjectMap<V>
k
- key with which the specified value is to be associated.mappingFunction
- the function to compute a value.Map.computeIfAbsent(Object, java.util.function.Function)
public V computeIfAbsent(long key, Long2ObjectFunction<? extends V> mappingFunction)
This version of computeIfAbsent()
uses a type-specific version of fastutil
's Function
.
Since Function
has a containsKey()
method, it is possible to avoid adding a key by having containsKey()
return false
for that key.
computeIfAbsent
in interface Long2ObjectMap<V>
key
- key with which the specified value is to be associated.mappingFunction
- the function to compute a value.Map.computeIfAbsent(Object, java.util.function.Function)
public V computeIfPresent(long k, java.util.function.BiFunction<? super java.lang.Long,? super V,? extends V> remappingFunction)
computeIfPresent
in interface Long2ObjectMap<V>
k
- key with which the specified value is to be associated.remappingFunction
- the function to compute a value.Map.computeIfPresent(Object, java.util.function.BiFunction)
public V compute(long k, java.util.function.BiFunction<? super java.lang.Long,? super V,? extends V> remappingFunction)
null
if there is no current mapping).
If the function returns null
, the mapping is removed (or remains absent if initially absent).
If the function itself throws an (unchecked) exception, the exception is rethrown, and the current mapping is left unchanged.
compute
in interface Long2ObjectMap<V>
k
- key with which the specified value is to be associated.remappingFunction
- the function to compute a value.Map.compute(Object, java.util.function.BiFunction)
public V merge(long k, V v, java.util.function.BiFunction<? super V,? super V,? extends V> remappingFunction)
value
.
Otherwise, replaces the associated value with the results of the given remapping function, or removes if the result is null
.merge
in interface Long2ObjectMap<V>
k
- key with which the resulting value is to be associated.v
- the value to be merged with the existing value associated with the key or, if no existing value is associated with the key, to be associated with the key.remappingFunction
- the function to recompute a value if present.Map.merge(Object, Object, java.util.function.BiFunction)
public void clear()
Long2ObjectMap
clear
in interface Long2ObjectMap<V>
clear
in interface java.util.Map<java.lang.Long,V>
Map.clear()
public int size()
Long2ObjectMap
Integer.MAX_VALUE
elements, returns Integer.MAX_VALUE
.size
in interface Long2ObjectMap<V>
size
in interface java.util.Map<java.lang.Long,V>
Size64
public boolean isEmpty()
isEmpty
in interface java.util.Map<java.lang.Long,V>
isEmpty
in class AbstractLong2ObjectMap<V>
public long firstLongKey()
firstLongKey
in interface Long2ObjectSortedMap<V>
SortedMap.firstKey()
public long lastLongKey()
lastLongKey
in interface Long2ObjectSortedMap<V>
SortedMap.lastKey()
public Long2ObjectSortedMap<V> tailMap(long from)
fromKey
.tailMap
in interface Long2ObjectSortedMap<V>
SortedMap.tailMap(Object)
UnsupportedOperationException
.public Long2ObjectSortedMap<V> headMap(long to)
toKey
.headMap
in interface Long2ObjectSortedMap<V>
SortedMap.headMap(Object)
UnsupportedOperationException
.public Long2ObjectSortedMap<V> subMap(long from, long to)
fromKey
, inclusive, to toKey
, exclusive.subMap
in interface Long2ObjectSortedMap<V>
SortedMap.subMap(Object,Object)
UnsupportedOperationException
.public LongComparator comparator()
comparator
in interface Long2ObjectSortedMap<V>
comparator
in interface java.util.SortedMap<java.lang.Long,V>
SortedMap.comparator()
null
.public Long2ObjectSortedMap.FastSortedEntrySet<V> long2ObjectEntrySet()
Long2ObjectSortedMap
long2ObjectEntrySet
in interface Long2ObjectMap<V>
long2ObjectEntrySet
in interface Long2ObjectSortedMap<V>
Long2ObjectSortedMap.entrySet()
public LongSortedSet keySet()
AbstractLong2ObjectSortedMap
The view is backed by the set returned by Map.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
The view is backed by the sorted set returned by Map.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Long2ObjectMap<V>
keySet
in interface Long2ObjectSortedMap<V>
keySet
in interface java.util.Map<java.lang.Long,V>
keySet
in interface java.util.SortedMap<java.lang.Long,V>
keySet
in class AbstractLong2ObjectSortedMap<V>
Map.keySet()
public ObjectCollection<V> values()
AbstractLong2ObjectSortedMap
The view is backed by the set returned by Map.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
The view is backed by the sorted set returned by Map.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Long2ObjectMap<V>
values
in interface Long2ObjectSortedMap<V>
values
in interface java.util.Map<java.lang.Long,V>
values
in interface java.util.SortedMap<java.lang.Long,V>
values
in class AbstractLong2ObjectSortedMap<V>
Map.values()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.trim()
public Long2ObjectLinkedOpenHashMap<V> clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
clone
in class java.lang.Object
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.hashCode
in interface java.util.Map<java.lang.Long,V>
hashCode
in class AbstractLong2ObjectMap<V>