JPL D-48259

Interplanetary Overlay Network (ION)
Design and Operation

V3.4
28 March 2016

Acknowledgment

The very substantial contributions of the ION support staff at Ohio University — and
especially David Young — to the documentation of the ION system are gratefully
acknowledged.

Copyright © 2008-2016 Jet Propulsion Laboratory, California Institute of Technology

Document Owner:

Scott Burleigh Date
DINET Cognizant Engineer for Flight Software

Approved by:

André Girerd Date
DINET System Engineer

Prepared by:

Scott Burleigh Date
DINET Cognizant Engineer for Flight Software

Concurred by:

Son Ho Date
DINET Cognizant Engineer for Ground Data System

Approved by:

Ross Jones Date
DINET Project Manager

Approved by:

Margaret Lam Date
DINET Software Quality Assurance Engineer

Concurred by:

Leigh Torgerson Date
DINET Cognizant Engineer for Experiment
Operation Center

DOCUMENT CHANGE LOG

Change Change Pages Changes/ General
Number Date Affected Notes Comments

V3.4 3/28/2016 ION 3.4 release features.

V3.3 3/4/2015 ION 3.3 release features.

V3.2 12/17/2013 ION 3.2 release features.

V3.l 9/28/2012 Document ION 3.1 release
features.

V3.0 3/22/2012 Align with ION 3.0 release

V1.13 10/13/2011 Updates for SourceForge
release

V1.12 6/11/2010 Updates for second open
source release (2.2)

V111 12/11/2009 BRS updates, multi-node
config.

V1.10 10/23/2009 Final additions prior to
DINET 2 experiment

V19 6/29/2009 Add updates for DINET 2,
including CFDP and
ionsec.

V1.8 2/6/2009 Update discussion of
Contact Graph Routing;
document status msg
formats.

V1.7 12/1/2008 Add documentation for
one-way-light-time
simulators, BP extension
interface.

V1.6 10/03/2008 Add documentation of
sm_SemUnend.

V1.5 09/20/2008 Revisions requested by JPL
SQA.

V14 07/31/2008 Add a section on
optimizing an ION-based
network; tuning.

V1.3 07/08/2008 Revised some details of
Contact Graph Routing.

V1.2 05/24/2008 Revised man pages for
bptrace, Itprc, bprc.

V1.1 05/18/2008 Some additional diagrams.

V1.0 04/28/2008 Initial version of the ION

design and operations
manual.

1

Contents

D] o | o SRRSO PP 8
1.1 Structure and FUNCLIONcoooiiiiiiie e 9
1.2 Constraints 0N the DESIGNccecviiiiiiiiiiiice e 11

1.2.1 LINK CONSEIAINTS. ...eiviitiitiiiiriesieie ettt 11

1.2.2 ProCesSOr CONSLIAINTS.......ciuirierieieiieiisiisie sttt nne s 12
1.3 DeSIgN PrINCIPIES. ..c.viiuieiiiiiee ittt 12

1.3.1 Shared MEMOIYccveiiiiiiieie sttt 13

1.3.2 ZEro-COPY PrOCEAUIESocvveeeieerieiesieeseestesteeseestesseetessasseessessesseessesseaseesees 13

1.3.3 Highly distributed ProCeSSINGcceeveiierieriiieiisiee e see e 14

1.3.4 POrability ..cooeeicieicc 14
1.4 Organizational OVEIVIEWccccoierieieiiiniisie et 14
1.5 Resource Management in TONccooiiiiiiiieiiiie e 17

151 WOrKING MEMOIY.....ciiiiiiiiiiiiieieiee sttt 17

152 HEAD oo s 18
1.6 PaCKage OVEIVIEWSeouiiiiiieiieeieeiie sttt et sneenaesteenee e 19

1.6.1 Interplanetary Communication Infrastructure (ICI).......c.ccocevininiinvnnnnne. 19

1.6.2 Licklider Transmission ProtoCol (LTP)ccccoveiiiiiiiiiiieie e 21

1.6.3 Bundle ProtoCol (BP).......cccoiiiiiiiieieeie e 22

1.6.4 Asynchronous Message Service (AMS)coooiiiiiiiinene e 22

1.6.5 Datagram Retransmission (DGR)cccoeiirirniiiiiiiiseere e 23

1.6.6 CCSDS File Delivery Protocol (CFDP)cccccoiiiiiiiiiiieie e 23

1.6.7 Bundle Streaming Service (BSS).......cccooriiiiriiiiiieie e 23
O A i 0101/ 1 11T PP PR TSR 24
1.8 Network Operation CONCEPLS......ccviiieiieiieiie e et 24

1.8.1 Fragmentation and Reassemblyccccooeiiiiiiiiiii i 25

1.8.2 Bandwidth Managementccccooveiiieiiiiiieiie e 26

1.8.3 CONACL PIANS ... 27

1.8.4 RoUte COMPULALIONocviiiieiiiiecieie et 29

R TR ot R U o1 o=] PSPPI PPPPPPTN 30
1.8.4.2 IMUIICASE c..vueveiireietetis ettt ettt 31

1.8.5 DEIVEIY ASSUIANCEveiviivieieiieetieie ettt ste et ste et be st sbeeseestesraaneennes 32

1.8.6 RAte CONLIOL....c.ooiiiiiiiiiceeee e 33

1.8.7 FIOW CONIOL ...ttt 34

1.8.8 Storage Managementc.coiuieiiieiiiieiiie et 34

1.8.9 Optimizing an ION-based NEtWOrK.........cccccvvveieiiieriiiiiee e 37
1.9 BP/LTP detail — hOW It WOTKSccooiiiiiiiiiiceeee e 41

1.9.1 DaAtADASES ..ottt 42

1.9.2 Control and data FIOW..........cccoreieiiiiiiiii e 43
1.10 Contact Graph Routing (CGR)ooveiviiiiiiiieeeees e 46

1.10.1 Contact Plan MESSAQESecveiuieriieiieiieiiesiestesee e ete e sre e sreeneeens 46

1.10.2 ROULING TADIESceviiiiiiicee e 47

1.10.3 KEY CONCEPLSvviiiieieiii ettt ettt ettt nbe e e snbe e nneee e 47

1.10.4 Dynamic Route Selection Algorithm..........ccccceviiiiiiiiiiicic e, 50

1.10.5 Exception HandliNGcccoveiiiiiiiiiiiiicicce e 52

L.10.6 REMAIKS oottt e e et e e e e e e e 53

1.11 LTP Timeout INErValS.........cccoiiiiiiiiiiiiene e 55
1.12 CIDP bbb 57
1.13 Additional Figures for Manual Pages..........cccccuvuereiiniienesieeieseseesie s 58
1.13.1 list data structures (lyst, sdrlist, SMISt).........cccooiriiiiniiiieee 58
1.13.2 pSM PArTItION SIIUCTUIEoviiiieiciieies e 58
1.13.3 psm and Sdr BIOCK StIUCLUIES.........coueiiiieieciceie e 59
1.13.4 SAr NEap SITUCKUIE ..o e 59
(@] 0L =LA o] TSRS ST PR 60
2.1 Interplanetary Communication Infrastructure (IC1).......ccocooviiiiiiiiininniiiiennn 60
2.1.1 Compile-time OPLIONS.......coeiieiiiieie e 60
2.1.2 BUII. oo 64
2.1.3 CONTIQUIE ..ottt 64
2.1 4 RUN bbbttt 65
2,00 TSt 66
2.2 Licklider Transmission ProtoCol (LTP)cccueviiiiiiniiieieicree e 67
2.2. 1 BUII.coioicic s 67
2.2.2 CONTIGUIE .ot e et e e sreeaneas 67
2.2.3 RUN ettt ens 67
2.2.4 TSttt e ens 68
2.3 Bundle ProtoCol (BP)eoiiiiiiiie ettt 69
2.3.1 Compile-time OPLIONS.......cceeiiiiiiieie e 69
2.3.2 BUIIG.coiiiic s 70
2.3.3 CONTIQUIE 1oveiieiee e e 70
2.3.4 RUN ittt bttt ns 70
2.3, TSttt et 71
2.4 Datagram Retransmission (DGR)cccceviiiiiiiiiiiiiiiiseee e 72
241 BUIIG.coiiiic s 72
2.4.2 CONTIQUIR 1oveiiicee ettt re e e 72
243 RUN ottt bbbt 72
244 TSH it 72
2.5 Asynchronous Message Service (AMS) ... 73
2.5.1 Compile-time OPLIONS........coveieieiiisieries e 73
2.5.2 BUIu.cioiciccece e 73
2.5.3 CONTIQUIE 1ottt e e 73
254 RUN ..ot 74
2.5.0 TSttt 74
2.6 CCSDS File Delivery Protocol (CFDP).......cccooiiiiiiienieie e 75
2.6.1 Compile-time OPLIONS.......ccviiiiiiieie e 75
2.6.2 BUII..c.eoieieceeecee s 75
2.6.3 CONTIQUIE ...ttt bbb 75
2.6.4 RUN ..ottt 75
2.6.5 TSt 76
2.7 Bundle Streaming Service (BSS)ccoiiiiiiiiiiiiie e 77
2.7.1 Compile-time OPtIONS.......ccviiiiiieiie e 77
2.7.2 BUIG.coeoieicicc s 77

2.7.3 CONTIQUI 1oviiiecee ettt re e e 77

274 RUN it bbbttt ettt 77

2.7.5 TSttt 77
Figures
Figure 1 DTN ProtoCOI STACKccviiiiiiiiiiicie sttt 8
Figure 2 ION inter-task COmMmUNICAtIONccooveiiiiiiiiieie e 13
Figure 3 ION software functional dependencCiescccocviiveieiiiiiiie s 15
Figure 4 Main line of ION data fIOWccoeiiiiiiiiicc e 15
Figure 5 TON NEAP SPACE USEc.veivveriiiieiiieiesieeiesiesieeste ettt este et ssae e sse e e e 18
Figure 6 RFEX SEIVICES IN TON L...oiiiiiiiiiieie et 27
Figure 7 ION node functional OVEIVIEWcoiiiiiieiiiieie e 41
Figure 8 Bundle protocol databaseccccceiviiiiiiiiiieiiiiee e 42
Figure 9 Licklider transmission protocol databaseccccevviveiieiiiiisiieie e 42
FIgure 10 BP FONWAITEEocveiiiiieiieie et 43
Figure 11 BP convergence layer OULPUL..........ccocueieiieieie s 43
Figure 12 LTP transmisSion MEtEIING......c.coeiiriieririeniiesiesieesiesiesseesiesesee e sseeseessesneessens 44
Figure 13 LTP 1INk SErVICE OULPULc.eiviieiriiiiieieiesesie e 44
Figure 14 LTP 1INk SErVICE INPULc.oiiiiiiiiiieieieeeses e 45
Figure 15 A CFDP-TON NLILY.....cciiiiieiieiesesie et 57
Figure 16 TON liSt data STTUCTUIESocueiuieieiiiieie st 58
Figure 17 psm partition SLIUCTUIEooeiieieiisie e 58
Figure 18 psm and Sdr DIOCK STFUCLUIESccuviiiiiiiieieiiesieeie e 59
Figure 19 SAr NEAP SIIUCTUIE.......cui ittt 59

1 Design

The Interplanetary Overlay Network (ION) software distribution is an implementation of
Delay-Tolerant Networking (DTN) architecture as described in Internet RFC 4838. It is
designed to enable inexpensive insertion of DTN functionality into embedded systems
such as robotic spacecraft. The intent of ION deployment in space flight mission systems
is to reduce cost and risk in mission communications by simplifying the construction and
operation of automated digital data communication networks spanning space links,
planetary surface links, and terrestrial links.

A comprehensive overview of DTN is beyond the scope of this document. Very briefly,
though, DTN is a digital communication networking technology that enables data to be
conveyed between two communicating entities automatically and reliably even if one or
more of the network links in the end-to-end path between those entities is subject to very
long signal propagation latency and/or prolonged intervals of unavailability.

The DTN architecture is much like the architecture of the Internet, except that it is one
layer higher in the familiar ISO protocol “stack”. The DTN analog to the Internet
Protocol (IP), called “Bundle Protocol” (BP), is designed to function as an “overlay”
network protocol that interconnects “internets” — including both Internet-structured
networks and also data paths that utilize only space communication links as defined by
the Consultative Committee for Space Data Systems (CCSDS) — in much the same way
that IP interconnects “subnets” such as those built on Ethernet, SONET, etc. By
implementing the DTN architecture, ION provides communication software configured
as a protocol stack that looks like this:

User application, e.g., data manager

UT adapter
Convergence layer adapters

Figure 1 DTN protocol stack

Data traversing a DTN are conveyed in DTN bundles — which are functionally analogous
to IP packets — between BP endpoints which are functionally analogous to sockets.
Multiple BP endpoints may reside on the same computer — termed a node — just as
multiple sockets may reside on the same computer (host or router) in the Internet.

BP endpoints are identified by Universal Record Identifiers (URIs), which are ASCII text
strings of the general form:

scheme_name:scheme_specific_part
For example:
dtn://topquark.caltech.edu/mail

But for space flight communications this general textual representation might impose
more transmission overhead than missions can afford. For this reason, ION is optimized
for networks of endpoints whose IDs conform more narrowly to the following scheme:

ipn:node_number.service_number

This enables them to be abbreviated to pairs of unsigned binary integers via a technique
called Compressed Bundle Header Encoding (CBHE). CBHE-conformant BP endpoint
IDs (EIDs) are not only functionally similar to Internet socket addresses but also
structurally similar: node numbers are roughly analogous to Internet node numbers (IP
addresses), in that they typically identify the flight or ground data system computers on
which network software executes, and service numbers are roughly analogous to TCP
and UDP port numbers.

More generally, the node numbers in CBHE-conformant BP endpoint IDs are one
manifestation of the fundamental ION notion of network node number: in the ION
architecture there is a natural one-to-one mapping not only between node numbers and
BP endpoint node numbers but also between node numbers and:

= LTPengine IDs
= AMS continuum numbers
= CFDP entity numbers

Starting with version 3.1 of ION, this endpoint naming rule is experimentally extended to
accommodate bundle multicast, i.e., the delivery of copies of a single transmitted bundle
to multiple nodes at which interest in that bundle’s payload has been expressed.

Multicast in ION — “Interplanetary Multicast” (IMC) — is accomplished by simply issuing
a bundle whose destination endpoint ID conforms to the following scheme:

imc:group_number.service_number

A copy of the bundle will automatically be delivered at every node that has registered in
the destination endpoint.

(Note: for now, the operational significance of a given group number must be privately
negotiated among ION users. If this multicast mechanism proves useful, IANA may at
some point establish a registry for IMC group numbers.)

1.1 Structure and function

The ION distribution comprises the following software packages:

e ici (Interplanetary Communication Infrastructure), a set of general-purpose
libraries providing common functionality to the other packages. The ici package

includes a security policy component that supports the implementation of security
mechanisms at multiple layers of the protocol stack.

Itp (Licklider Transmission Protocol), a core DTN protocol that provides
transmission reliability based on delay-tolerant acknowledgments, timeouts, and
retransmissions. The LTP specification is defined in Internet RFC 5326.

bp (Bundle Protocol), a core DTN protocol that provides delay-tolerant
forwarding of data through a network in which continuous end-to-end
connectivity is never assured, including support for delay-tolerant dynamic
routing. The BP specification is defined in Internet RFC 5050.

dgr (Datagram Retransmission), an alternative implementation of LTP that is
designed for use in the Internet. Equipped with algorithms for TCP-like
congestion control, DGR enables data to be transmitted via UDP with reliability
comparable to that provided by TCP. The dgr system is provided primarily for
the conveyance of Meta-AMS (see below) protocol traffic in an Internet-like
environment.

ams (Asynchronous Message Service), an application-layer service that is not part
of the DTN architecture but utilizes underlying DTN protocols. AMS comprises
three protocols supporting the distribution of brief messages within a network:

o The core AAMS (Application AMS) protocol, which does message
distribution on both the publish/subscribe model and the client/server
model, as required by the application.

o The MAMS (Meta-AMS) protocol, which distributes control information
enabling the operation of the Application AMS protocol.

o The RAMS (Remote AMS) protocol, which performs aggregated message
distribution to end nodes that may be numerous and/or accessible only
over very expensive links, using an aggregation tree structure similar to
the distribution trees used by Internet multicast technologies.

cfdp (CCSDS File Delivery Protocol), another application-layer service that is not
part of the DTN architecture but utilizes underlying DTN protocols. CFDP
performs the segmentation, transmission, reception, reassembly, and delivery of
files in a delay-tolerant manner. ION’s implementation of CFDP conforms to the
“class 1” definition of the protocol in the CFDP standard, utilizing DTN (BP,
nominally over LTP) as its “unitdata transport” layer.

bss (Bundle Streaming Service), a system for efficient data streaming over a
delay-tolerant network. The bss package includes (a) a convergence-layer
protocol (bssp) that preserves in-order arrival of all data that were never lost en
route, yet ensures that all data arrive at the destination eventually, and (b) a library
for building delay-tolerant streaming applications, which enables low-latency
presentation of streamed data received in real time while offering
rewind/playback capability for the entire stream including late-arriving
retransmitted data.

10

Taken together, the packages included in the ION software distribution constitute a
communication capability characterized by the following operational features:

¢ Reliable conveyance of data over a delay-tolerant network (dtnet), i.e., a network
in which it might never be possible for any node to have reliable information
about the detailed current state of any other node.

e Built on this capability, reliable data streaming, reliable file delivery, and reliable
distribution of short messages to multiple recipients (subscribers) residing in such
a network.

e Management of traffic through such a network, taking into consideration:
o requirements for data security
o scheduled times and durations of communication opportunities
o fluctuating limits on data storage and transmission resources
o data rate asymmetry
o the sizes of application data units

o and user-specified final destination, priority, and useful lifetime for those
data units.

e Facilities for monitoring the performance of the network.
¢ Robustness against node failure.

e Portability across heterogeneous computing platforms.

e High speed with low overhead.

e Easy integration with heterogeneous underlying communication infrastructure,
ranging from Internet to dedicated spacecraft communication links.

1.2 Constraints on the Design

A DTN implementation intended to function in an interplanetary network environment —
specifically, aboard interplanetary research spacecraft separated from Earth and one
another by vast distances — must operate successfully within two general classes of
design constraints: link constraints and processor constraints.

1.2.1 Link constraints

All communications among interplanetary spacecraft are, obviously, wireless. Less
obviously, those wireless links are generally slow and are usually asymmetric.

The electrical power provided to on-board radios is limited and antennae are relatively
small, so signals are weak. This limits the speed at which data can be transmitted
intelligibly from an interplanetary spacecraft to Earth, usually to some rate on the order
of 256 Kbps to 6 Mbps.

The electrical power provided to transmitters on Earth is certainly much greater, but the
sensitivity of receivers on spacecraft is again constrained by limited power and antenna

11

mass allowances. Because historically the volume of command traffic that had to be sent
to spacecraft was far less than the volume of telemetry the spacecraft were expected to
return, spacecraft receivers have historically been engineered for even lower data rates
from Earth to the spacecraft, on the order of 1 to 2 Kbps.

As a result, the cost per octet of data transmission or reception is high and the links are
heavily subscribed. Economical use of transmission and reception opportunities is
therefore important, and transmission is designed to enable useful information to be
obtained from brief communication opportunities: units of transmission are typically
small, and the immediate delivery of even a small part (carefully delimited) of a large
data object may be preferable to deferring delivery of the entire object until all parts have
been acquired.

1.2.2 Processor constraints

The computing capability aboard a robotic interplanetary spacecraft is typically quite
different from that provided by an engineering workstation on Earth. In part this is due,
again, to the limited available electrical power and limited mass allowance within which
a flight computer must operate. But these factors are exacerbated by the often intense
radiation environment of deep space. In order to minimize errors in computation and
storage, flight processors must be radiation-hardened and both dynamic memory and non-
volatile storage (typically flash memory) must be radiation-tolerant. The additional
engineering required for these adaptations takes time and is not inexpensive, and the
market for radiation-hardened spacecraft computers is relatively small; for these reasons,
the latest advances in processing technology are typically not available for use on
interplanetary spacecraft, so flight computers are invariably slower than their Earth-
bound counterparts. As a result, the cost per processing cycle is high and processors are
heavily subscribed; economical use of processing resources is very important.

The nature of interplanetary spacecraft operations imposes a further constraint. These
spacecraft are wholly robotic and are far beyond the reach of mission technicians; hands-
on repairs are out of the question. Therefore the processing performed by the flight
computer must be highly reliable, which in turn generally means that it must be highly
predictable. Flight software is typically required to meet “hard” real-time processing
deadlines, for which purpose it must be run within a hard real-time operating system
(RTOS).

One other implication of the requirement for high reliability in flight software is that the
dynamic allocation of system memory may be prohibited except in certain well-
understood states, such as at system start-up. Unrestrained dynamic allocation of system
memory introduces a degree of unpredictability into the overall flight system that can
threaten the reliability of the computing environment and jeopardize the health of the
vehicle.

1.3 Design Principles

The design of the ION software distribution reflects several core principles that are
intended to address these constraints.

12

—————————————————

1. lock Shared memory

—

receiver

3. unlock 2. lock |

A,

— sender

4. unlock |

3. dequeue

1. take

Figure 2 ION inter-task communication

1.3.1 Shared memory

Since ION must run on flight processors, it had to be designed to function successfully
within an RTOS. Many real-time operating systems improve processing determinism by
omitting the support for protected-memory models that is provided by Unix-like
operating systems: all tasks have direct access to all regions of system memory. (In
effect, all tasks operate in kernel mode rather than in user mode.) 10N therefore had to
be designed with no expectation of memory protection.

But universally shared access to all memory can be viewed not only as a hazard but also
as an opportunity. Placing a data object in shared memory is an extremely efficient
means of passing data from one software task to another.

ION is designed to exploit this opportunity as fully as possible. In particular, virtually all
inter-task data interchange in ION follows the model shown in Figure 2:

= The sending task takes a mutual exclusion semaphore (mutex) protecting a linked
list in shared memory (either DRAM or non-volatile memory), appends a data
item to the list, releases the mutex, and gives a “signal” semaphore associated
with the list to announce that the list is now non-empty.

= The receiving task, which is already pended on the linked list’s associated signal
semaphore, resumes execution when the semaphore is given. It takes the
associated mutex, extracts the next data item from the list, releases the mutex, and
proceeds to operate on the data item from the sending task.

Semaphore operations are typically extremely fast, as is the storage and retrieval of data
in memory, so this inter-task data interchange model is suitably efficient for flight
software.

1.3.2 Zero-copy procedures

Given ION’s orientation toward the shared memory model, a further strategy for
processing efficiency offers itself: if the data item appended to a linked list is merely a
pointer to a large data object, rather than a copy, then we can further reduce processing
overhead by eliminating the cost of byte-for-byte copying of large objects.

13

Moreover, in the event that multiple software elements need to access the same large
object at the same time, we can provide each such software element with a pointer to the
object rather than its own copy (maintaining a count of references to assure that the
object is not destroyed until all elements have relinquished their pointers). This serves to
reduce somewhat the amount of memory needed for ION operations.

1.3.3 Highly distributed processing

The efficiency of inter-task communications based on shared memory makes it practical
to distribute ION processing among multiple relatively simple pipelined tasks rather than
localize it in a single, somewhat more complex daemon. This strategy has a number of
advantages:

= The simplicity of each task reduces the sizes of the software modules, making
them easier to understand and maintain, and thus it can somewhat reduce the
incidence of errors.

= The scope of the ION operating stack can be adjusted incrementally at run time,
by spawning or terminating instances of configurable software elements, without
increasing the size or complexity of any single task and without requiring that the
stack as a whole be halted and restarted in a new configuration. In theory, a
module could even be upgraded with new functionality and integrated into the
stack without interrupting operations.

= The clear interfaces between tasks simplify the implementation of flow control
measures to prevent uncontrolled resource consumption.

1.3.4 Portability

Designs based on these kinds of principles are foreign to many software developers, who
may be far more comfortable in development environments supported by protected
memory. It is typically much easier, for example, to develop software in a Linux
environment than in VxWorks 5.4. However, the Linux environment is not the only one
in which ION software must ultimately run.

Consequently, ION has been designed for easy portability. POSIX™ API functions are
widely used, and differences in operating system support that are not concealed within
the POSIX abstractions are mostly encapsulated in two small modules of platform-
sensitive ION code. The bulk of the ION software runs, without any source code
modification whatsoever, equally well in Linux™ (Red Hat®, Fedora™, and Ubuntu™,
so far), FreeBSD®, Solaris® 9, Microsoft Windows (the MinGW environment), OS/X®,
VxWorks® 5.4, and RTEMS™, on both 32-bit and 64-bit processors. Developers may
compile and test ION modules in whatever environment they find most convenient.

1.4 Organizational Overview

Two broad overviews of the organization of ION may be helpful at this point. First, here
is a summary view of the main functional dependencies among ION software elements:

14

SmRbt

PSM

Platform |
Operating System

BP, LTP Bundle Protocol and Licklider Transmission Protocol libraries and daemons
ZCO Zero-copy objects capability: minimize data copying up and down the stack
SDR Spacecraft Data Recorder: persistent object database in shared

memory, using PSM and SmList
SmList linked lists in shared memory using PSM
SmRbt red-black trees in shared memory using PSM
PSM Personal Space Management: memory management within a

pre-allocated memory partition
Platform common access to O.S.: shared memory, system time, IPC mechanisms
Operating System POSIX thread spawn/destroy, file system, time

Figure 3 ION software functional dependencies

That is, BP and LTP invoke functions provided by the sdr, zco, psm, and platform
elements of the ici package, in addition to functions provided by the operating system
itself; the zco functions themselves also invoke sdr, psm, and platform functions; and so
on.

Second, here is a summary view of the main line of data flow in ION’s DTN protocol
implementations:

bp_receive() |:

i routing table O S

: :
: @ :
H i
: routes, 1
! |
H '

traffic database

Itpcli

<LSO> -l <LSI>

Figure 4 Main line of ION data flow

15

Note that data objects residing in shared memory, many of them in a nominally non-
volatile SDR data store, constitute the central organizing principle of the design. Here as
in other diagrams showing data flow in this document:

Ordered collections of data objects are shown as cylinders.

Darker greyscale data entities indicate data that are managed in the SDR data
store, while lighter greyscale data entities indicate data that are managed in
volatile DRAM to improve performance.

Rectangles indicate processing elements (tasks, processes, threads), sometimes
with library references specifically identified.

A few notes on this main line data flow:

For simplicity, the data flow depicted here is a “loopback” flow in which a single
BP “node” is shown sending data to itself (a useful configuration for test
purposes). To depict typical operations over a network we would need two
instances of this node diagram, such that the <LSO> task of one node is shown
sending data to the <LSI> task of the other and vice versa.

A BP application or application service (such as Remote AMS) that has access to
the local BP node — for our purposes, the “sender” — invokes the bp send
function to send a unit of application data to a remote counterpart. The
destination of the application data unit is expressed as a BP endpoint ID (EID).
The application data unit is encapsulated in a bundle and is queued for
forwarding.

The forwarder task identified by the “scheme” portion of the bundle’s destination
EID removes the bundle from the forwarding queue and computes a route to the
destination EID. The first node on the route, to which the local node is able to
transmit data directly via some underlying “convergence layer” (CL) protocol, is
termed the “proximate node” for the computed route. The forwarder appends the
bundle to one of the transmission queues for the CL-protocol-specific interface to
the proximate node, termed an outduct. Each outduct is serviced by some CL-
specific output task that communicates with the proximate node — in this case, the
LTP output task Itpclo. (Other CL protocols supported by ION include TCP and
UDP.)

The output task for LTP transmission to the selected proximate node removes the
bundle from the transmission queue and invokes the 1tp send function to
append it to a block that is being assembled for transmission to the proximate
node. (Because LTP acknowledgment traffic is issued on a per-block basis, we
can limit the amount of acknowledgment traffic on the network by aggregating
multiple bundles into a single block rather than transmitting each bundle in its
own block.)

The Itpmeter task for the selected proximate node divides the aggregated block
into multiple segments and enqueues them for transmission by underlying link-
layer transmission software, such as an implementation of the CCSDS AOS
protocol.

16

= Underlying link-layer software at the sending node transmits the segments to its
counterpart at the proximate node (the receiver), where they are used to
reassemble the transmission block.

= The receiving node’s input task for LTP reception extracts the bundles from the
reassembled block and dispatches them: each bundle whose final destination is
some other node is queued for forwarding, just like bundles created by local
applications, while each bundle whose final destination is the local node is queued
for delivery to whatever application “opens” the BP endpoint identified by the
bundle’s final destination endpoint ID. (Note that a multicast bundle may be both
queued for forwarding, possibly to multiple neighboring nodes, and also queued
for delivery.)

= The destination application or application service at the receiving node opens the
appropriate BP endpoint and invokes the bp receive function to remove the
bundle from the associated delivery queue and extract the original application
data unit, which it can then process.

Finally, note that the data flow shown here represents the sustained operational
configuration of a node that has been successfully instantiated on a suitable computer.
The sequence of operations performed to reach this configuration is not shown. That
startup sequence will necessarily vary depending on the nature of the computing platform
and the supporting link services. Broadly, the first step normally is to run the ionadmin
utility program to initialize the data management infrastructure required by all elements
of ION. Following this initialization, the next steps normally are (a) any necessary
initialization of link service protocols, (b) any necessary initialization of convergence-
layer protocols (e.g., LTP —the Itpadmin utility program), and finally (c) initialization of
the Bundle Protocol by means of the bpadmin utility program. BP applications should
not try to commence operation until BP has been initialized.

1.5 Resource Management in ION

Successful Delay-Tolerant Networking relies on retention of bundle protocol agent state
information — including protocol traffic that is awaiting a transmission opportunity — for
potentially lengthy intervals. The nature of that state information will fluctuate rapidly as
the protocol agent passes through different phases of operation, so efficient management
of the storage resources allocated to state information is a key consideration in the design
of ION.

Two general classes of storage resources are managed by ION: volatile “working
memory” and non-volatile “heap”.

1.5.1 Working Memory

ION’s “working memory” is a fixed-size pool of shared memory (dynamic RAM) that is
allocated from system RAM at the time the bundle protocol agent commences operation.
Working memory is used by ION tasks to store temporary data of all kinds: linked lists,
red-black trees, transient buffers, volatile databases, etc. All intermediate data products
and temporary data structures that ought not to be retained in the event of a system power
cycle are written to working memory.

17

Data structures residing in working memory may be shared among ION tasks or may be
created and managed privately by individual ION tasks. The dynamic allocation of
working memory to ION tasks is accomplished by the Personal Space Management
(PSM) service, described later. All of the working memory for any single ION bundle
protocol agent is managed as a single PSM “partition”. The size of the partition is
specified in the wmSize parameter of the ionconfig file supplied at the time ION is
initialized.

1.5.2 Heap

ION’s “heap” is a fixed-size pool of notionally non-volatile storage that is likewise
allocated at the time the bundle protocol agent commences operation. This notionally
non-volatile space may occupy a fixed-size pool of shared memory (dynamic RAM,
which might or might not be battery-backed), or it may occupy only a single fixed-size
file in the file system, or it may occupy both. In the latter case, all heap data are written
both to memory and to the file but are read only from memory; this configuration offers
the reliable non-volatility of file storage coupled with the high performance of retrieval
from dynamic RAM.

We characterize ION’s heap storage as “notionally” non-volatile because the heap may
be configured to reside only in memory (or, for that matter, in a file that resides in the file
system of a RAM disk). When the heap resides only in memory, its contents are truly
non-volatile only if that memory is battery-backed. Otherwise heap storage is in reality
as volatile as working memory: heap contents will be lost upon a system power cycle
(which may in fact be the preferred behavior for any given deployment of ION).
However, the heap should not be thought of as "memory" even when it in fact resides
only in DRAM, just as a disk device should not be thought of as "memory" even when it
is in fact a RAM disk.

SDR heap

Available for zero-copy objects

heapWords
*word size

Reserved for Infrastructure Operations

Margin

Figure 5 ION heap space use

The ION heap is used for storage of data that (in at least some deployments) would have
to be retained in the event of a system power cycle to ensure the correct continued
operation of the node. For example, all queues of bundles awaiting route computation,

18

transmission, or delivery reside in the node’s heap. So do the non-volatile databases for
all of the protocols implemented within ION, together with all of the node’s persistent
configuration parameters.

The dynamic allocation of heap space to ION tasks is accomplished by the Simple Data
Recorder (SDR) service, described later. The entire heap for any single ION bundle
protocol agent is managed as a single SDR “data store”.

Space within the ION heap is apportioned as shown in Figure 5. The total number of
bytes of storage space in the heap is computed as the product of the size of a “word” on
the deployment platform (normally the size of a pointer) multiplied by the value of the
heapWords parameter of the ionconfig file supplied at the time ION is initialized. Of
this total, 20% is normally reserved as margin and another 20% is normally reserved for
various infrastructure operations. (Both of these percentages are macros that may be
overridden at compile time.) The remainder is available for storage of protocol state data
in the form of “zero-copy objects”, described later. At any given moment, the data
encapsulated in a zero-copy object may “belong” to any one of the protocols in the ION
stack (AMS, CFDP, BP, LTP), depending on processing state; the available heap space is
a single common resource to which all of the protocols share concurrent access.

Because the heap is used to store queues of bundles awaiting processing, blocks of LTP
data awaiting transmission or reassembly, etc., the heap for any single ION node must be
large enough to contain the maximum volume of such data that the node will be required
to retain during operations. Demand for heap space is substantially mitigated if most of
the application data units passed to ION for transmission are file-resident, as the file
contents themselves need not be copied into the heap. In general, however, computing
the optimum ION heap size for a given deployment remains a research topic.

1.6 Package Overviews

1.6.1 Interplanetary Communication Infrastructure (ICI)

The ICI package in ION provides a number of core services that, from ION’s point of
view, implement what amounts to an extended POSIX-based operating system. ICI
services include the following:

1. Platform

The platform system contains operating-system-sensitive code that enables ICI to present
a single, consistent programming interface to those common operating system services
that multiple ION modules utilize. For example, the platform system implements a
standard semaphore abstraction that may invisibly be mapped to underlying POSIX
semaphores, SVR4 IPC semaphores, Windows Events, or VxWorks semaphores,
depending on which operating system the package is compiled for. The platform system
also implements a standard shared-memory abstraction, enabling software running on
operating systems both with and without memory protection to participate readily in
ION’s shared-memory-based computing environment.

2. Personal Space Management (PSM)

19

Although sound flight software design may prohibit the uncontrolled dynamic
management of system memory, private management of assigned, fixed blocks of system
memory is standard practice. Often that private management amounts to merely
controlling the reuse of fixed-size rows in static tables, but such techniques can be
awkward and may not make the most efficient use of available memory. The ICI
package provides an alternative, called PSM, which performs high-speed dynamic
allocation and recovery of variable-size memory objects within an assigned memory
block of fixed size. A given PSM-managed memory block may be either private or
shared memory.

3. Memmgr

The static allocation of privately-managed blocks of system memory for different
purposes implies the need for multiple memory management regimes, and in some cases
a program that interacts with multiple software elements may need to participate in the
private shared-memory management regimes of each. ICI’s memmgr system enables
multiple memory managers — for multiple privately-managed blocks of system memory —
to coexist within ION and be concurrently available to ION software elements.

4, Lyst

The lyst system is a comprehensive, powerful, and efficient system for managing doubly-
linked lists in private memory. It is the model for a number of other list management
systems supported by ICI; as noted earlier, linked lists are heavily used in ION inter-task
communication.

5. Llcv

The llcv (Linked-List Condition Variables) system is an inter-thread communication
abstraction that integrates POSIX thread condition variables (vice semaphores) with
doubly-linked lists in private memory.

6. Smlist

Smlist is another doubly-linked list management service. It differs from lyst in that the
lists it manages reside in shared (rather than private) DRAM, so operations on them must
be semaphore-protected to prevent race conditions.

7. SmRbt

The SmRbt service provides mechanisms for populating and navigating “red/black trees”
(RBTS) residing in shared DRAM. RBTs offer an alternative to linked lists: like linked
lists they can be navigated as queues, but locating a single element of an RBT by its
“key” value can be much quicker than the equivalent search through an ordered linked
list.

8. Simple Data Recorder (SDR)

SDR is a system for managing non-volatile storage, built on exactly the same model as
PSM. Put another way, SDR is a small and simple “persistent object” system or “object
database” management system. It enables straightforward management of linked lists
(and other data structures of arbitrary complexity) in non-volatile storage, notionally
within a single file whose size is pre-defined and fixed.

20

SDR includes a transaction mechanism that protects database integrity by ensuring that
the failure of any database operation will cause all other operations undertaken within the
same transaction to be backed out. The intent of the system is to assure retention of
coherent protocol engine state even in the event of an unplanned flight computer reboot
in the midst of communication activity.

9. Sptrace

The sptrace system is an embedded diagnostic facility that monitors the performance of
the PSM and SDR space management systems. It can be used, for example, to detect
memory “leaks” and other memory management errors.

10. Zco

ION’s zco (zero-copy objects) system leverages the SDR system’s storage flexibility to
enable user application data to be encapsulated in any number of layers of protocol
without copying the successively augmented protocol data unit from one layer to the
next. It also implements a reference counting system that enables protocol data to be
processed safely by multiple software elements concurrently — e.g., a bundle may be both
delivered to a local endpoint and, at the same time, queued for forwarding to another
node — without requiring that distinct copies of the data be provided to each element.

11. Rfx

The ION rfx (R/F Contacts) system manages lists of scheduled communication
opportunities in support of a number of LTP and BP functions.

12. lonsec

The IONSEC (ION security) system manages information that supports the
implementation of security mechanisms in the other packages: security policy rules and
computation keys.

1.6.2 Licklider Transmission Protocol (LTP)

The ION implementation of LTP conforms fully to RFC 5326, but it also provides two
additional features that enhance functionality without affecting interoperability with other
implementations:

e The service data units — nominally bundles — passed to LTP for transmission may
be aggregated into larger blocks before segmentation. By controlling block size
we can control the volume of acknowledgment traffic generated as blocks are
received, for improved accommodation of highly asynchronous data rates.

e The maximum number of transmission sessions that may be concurrently
managed by LTP (a protocol control parameter) constitutes a transmission
“window” — the basis for a delay-tolerant, non-conversational flow control service
over interplanetary links.

In the ION stack, LTP serves effectively the same role that is performed by an LLC
protocol (such as IEEE 802.2) in the Internet architecture, providing flow control and
retransmission-based reliability between topologically adjacent bundle protocol agents.

21

All LTP session state is safely retained in the ION heap for rapid recovery from a
spacecraft or software fault.

1.6.3 Bundle Protocol (BP)

The ION implementation of BP conforms fully to RFC 5050, including support for the
following standard capabilities:

« Prioritization of data flows

e Proactive bundle fragmentation

o Bundle reassembly from fragments
e Flexible status reporting

o Custody transfer, including re-forwarding of custodial bundles upon timeout
interval expiration or failure of nominally reliable convergence-layer transmission

The system also provides three additional features that enhance functionality without
affecting interoperability with other implementations:

« Rate control provides support for congestion forecasting and avoidance.

o Bundle headers are encoded into compressed form (CBHE, as noted earlier)
before issuance, to reduce protocol overhead and improve link utilization.

e Bundles may be “multicast” to all nodes that have registered within a given
multicast group endpoint.

In addition, ION BP includes a system for computing dynamic routes through time-
varying network topology assembled from scheduled, bounded communication
opportunities. This system, called “Contact Graph Routing,” is described later in this
Guide.

In short, BP serves effectively the same role that is performed by IP in the Internet
architecture, providing route computation, forwarding, congestion avoidance, and control
over quality of service.

All bundle transmission state is safely retained in the ION heap for rapid recovery from a
spacecraft or software fault.

1.6.4 Asynchronous Message Service (AMS)

The ION implementation of the CCSDS AMS standard conforms fully to CCSDS 735.0-
B-1. AMS is a data system communications architecture under which the modules of
mission systems may be designed as if they were to operate in isolation, each one
producing and consuming mission information without explicit awareness of which other
modules are currently operating. Communication relationships among such modules are
self-configuring; this tends to minimize complexity in the development and operations of
modular data systems.

A system built on this model is a “society” of generally autonomous inter-operating
modules that may fluctuate freely over time in response to changing mission objectives,
modules’ functional upgrades, and recovery from individual module failure. The purpose

22

of AMS, then, is to reduce mission cost and risk by providing standard, reusable
infrastructure for the exchange of information among data system modules in a manner
that is simple to use, highly automated, flexible, robust, scalable, and efficient.

A detailed discussion of AMS is beyond the scope of this Design Guide. For more
information, please see the AMS Programmer’s Guide.

1.6.5 Datagram Retransmission (DGR)

The DGR package in ION is an alternative implementation of LTP that is designed to
operate responsibly — i.e., with built-in congestion control — in the Internet or other IP-
based networks. It is provided as a candidate “primary transfer service” in support of
AMS operations in an Internet-like (non-delay-tolerant) environment. The DGR design
combines LTP’s concept of concurrent transmission transactions with congestion control
and timeout interval computation algorithms adapted from TCP.

1.6.6 CCSDS File Delivery Protocol (CFDP)

The ION implementation of CFDP conforms fully to Service Class 1 (Unreliable
Transfer) of CCSDS 727.0-B-4, including support for the following standard capabilities:

e Segmentation of files on user-specified record boundaries.

e Transmission of file segments in protocol data units that are conveyed by an
underlying Unitdata Transfer service, in this case the DTN protocol stack. File
data segments may optionally be protected by CRCs. When the DTN protocol
stack is configured for reliable data delivery (i.e., with BP custody transfer
running over a reliable convergence-layer protocol such as LTP), file delivery is
reliable; CFDP need not perform retransmission of lost data itself.

e Reassembly of files from received segments, possibly arriving over a variety of
routes through the delay-tolerant network. The integrity of the delivered files is
protected by checksums.

e User-specified fault handling procedures.

e Operations (e.g., directory creation, file renaming) on remote file systems.
All CFDP transaction state is safely retained in the ION heap for rapid recovery from a
spacecraft or software fault.
1.6.7 Bundle Streaming Service (BSS)

The BSS service provided in ION enables a stream of video, audio, or other continuously
generated application data units, transmitted over a delay-tolerant network, to be
presented to a destination application in two useful modes concurrently:

¢ In the order in which the data units were generated, with the least possible end-to-
end delivery latency, but possibly with some gaps due to transient data loss or
corruption.

23

¢ In the order in which the data units were generated, without gaps (i.e., including

lost or corrupt data units which were omitted from the real-time presentation but
were subsequently retransmitted), but in a non-real-time “playback” mode.

1.7 Acronyms

BP Bundle Protocol

BSP Bundle Security Protocol

BSS Bundle Streaming Service

CCSDS Consultative Committee for Space Data Systems
CFDP CCSDS File Delivery Protocol

CGR Contact Graph Routing

CL convergence layer

CLI convergence layer input

CLO convergence layer output

DTN Delay-Tolerant Networking

ICI Interplanetary Communication Infrastructure
ION Interplanetary Overlay Network

LSI link service input

LSO link service output

LTP Licklider Transmission Protocol

OWLT one-way light time

RFC request for comments

RFX Radio (R/F) Contacts

RTT round-trip time

TTL time to live

1.8 Network Operation Concepts

A small number of network operation design elements — fragmentation and reassembly,
bandwidth management, and delivery assurance (retransmission) — can potentially be
addressed at multiple layers of the protocol stack, possibly in different ways for different
reasons. In stack design it’s important to allocate this functionality carefully so that the
effects at lower layers complement, rather than subvert, the effects imposed at higher
layers of the stack. This allocation of functionality is discussed below, together with a
discussion of several related key concepts in the ION design.

24

1.8.1 Fragmentation and Reassembly

To minimize transmission overhead and accommodate asymmetric links (i.e., limited
“uplink” data rate from a ground data system to a spacecraft) in an interplanetary
network, we ideally want to send “downlink™ data in the largest possible aggregations —
coarse-grained transmission.

But to minimize head-of-line blocking (i.e., delay in transmission of a newly presented
high-priority item) and minimize data delivery latency by using parallel paths (i.e., to
provide fine-grained partial data delivery, and to minimize the impact of unexpected link
termination), we want to send “downlink” data in the smallest possible aggregations —
fine-grained transmission.

We reconcile these impulses by doing both, but at different layers of the ION protocol
stack.

First, at the application service layer (AMS and CFDP) we present relatively small
application data units (ADUS) — on the order of 64 KB — to BP for encapsulation in
bundles. This establishes an upper bound on head-of-line blocking when bundles are de-
queued for transmission, and it provides perforations in the data stream at which
forwarding can readily be switched from one link (route) to another, enabling partial data
delivery at relatively fine, application-appropriate granularity.

(Alternatively, large application data units may be presented to BP and the resulting large
bundles may be proactively fragmented at the time they are presented to the convergence-
layer adapter. This capability is meant to accommodate environments in which the
convergence-layer adapter has better information than the application as to the optimal
bundle size, such as when the residual capacity of a contact is known to be less than the
size of the bundle.)

Then, at the BP/LTP convergence layer adapter lower in the stack, we aggregate these
small bundles into blocks for presentation to LTP:

Any continuous sequence of bundles that are to be shipped to the same LTP
engine and all require assured delivery may be aggregated into a single block, to
reduce overhead and minimize report traffic.

However, this aggregation is constrained by a block size limit rule: each block
must contain an integral number N — where N is greater than zero — complete
bundles, but N can only exceed 1 when the sum of the sizes of all N bundles does
not exceed the nominal block size declared for the applicable span (the
relationship between the local node and the receiving LTP engine) during LTP
protocol configuration via Itpadmin.

Given a preferred block acknowledgment period — e.g., an acknowledgment traffic limit
of one report per second — nominal block size is notionally computed as the amount of
data that can be sent over the link to the receiving LTP engine in a single block
acknowledgment period at the planned outbound data rate to that engine.

Taken together, application-level fragmentation (or BP proactive fragmentation) and LTP
aggregation place an upper limit on the amount of data that would need to be re-
transmitted over a given link at next contact in the event of an unexpected link

25

termination that caused delivery of an entire block to fail. For example, if the data rate is
1 Mbps and the nominal block size is 128 KB (equivalent to 1 second of transmission
time), we would prefer to avoid the risk of having wasted five minutes of downlink in
sending a 37.5 MB file that fails on transmission of the last kilobyte, forcing
retransmission of the entire 37.5 MB. We therefore divide the file into, say, 1200
bundles of 32 KB each which are aggregated into blocks of 128 KB each: only a single
block failed, so only that block (containing just 4 bundles) needs to be retransmitted. The
cost of this retransmission is only 1 second of link time rather than 5 minutes. By
controlling the cost of convergence-layer protocol failure in this way, we avoid the
overhead and complexity of “reactive fragmentation” in the BP implementation.

Finally, within LTP itself we fragment the block as necessary to accommodate the
Maximum Transfer Unit (MTU) size of the underlying link service, typically the transfer
frame size of the applicable CCSDS link protocol.

1.8.2 Bandwidth Management

The allocation of bandwidth (transmission opportunity) to application data is requested
by the application task that’s passing data to DTN, but it is necessarily accomplished only
at the lowest layer of the stack at which bandwidth allocation decisions can be made —
and then always in the context of node policy decisions that have global effect.

The “outduct” interface to a given neighbor in the network is actually three queues of
outbound bundles rather than one: one queue for each of the defined levels of priority
(“class of service”) supported by BP. When an application presents an ADU to BP for
encapsulation in a bundle, it indicates its own assessment of the ADU’s priority. Upon
selection of a proximate forwarding destination node for that bundle, the bundle is
appended to whichever of the neighbor interface queues corresponds to the ADU’s
priority.

Normally the convergence-layer output (CLO) task servicing a given outduct — e.g., the
LTP output task Itpclo — extracts bundles in strict priority order from the heads of the
outduct’s three queues. That is, the bundle at the head of the highest-priority non-empty
queue is always extracted.

However, if the ION_BANDWIDTH_RESERVED compiler option is selected at the
time ION is built, the convergence-layer output (CLO) task servicing a given outduct
extracts bundles in interleaved fashion from the heads of the outduct’s three queues:

= Whenever the priority-2 (“express”) queue is non-empty, the bundle at the head of
that queue is the next one extracted.

= At all other times, bundles from both the priority-1 queue and the priority-0 queue
are extracted, but over a given period of time twice as many bytes of priority-1
bundles will be extracted as bytes of priority-0 bundles.

CLO tasks other than Itpclo simply segment the extracted bundles as necessary and
transmit them using the underlying convergence-layer protocol. In the case of Itpclo, the
output task aggregates the extracted bundles into blocks as described earlier and a second
daemon task named Itpmeter waits for aggregated blocks to be completed; Itpmeter,
rather than the CLO task itself, segments each completed block as necessary and passes

26

the segments to the link service protocol that underlies LTP. Either way, the transmission
ordering requested by application tasks is preserved.

1.8.3 Contact Plans

In the Internet, protocol operations can be largely driven by currently effective
information that is discovered opportunistically and immediately, at the time it is needed,
because the latency in communicating this information over the network is negligible:
distances between communicating entities are small and connectivity is continuous. In a
DTN-based network, however, ad-hoc information discovery would in many cases take
so much time that it could not be completed before the information lost currency and
effectiveness. Instead, protocol operations must be largely driven by information that is
pre-placed at the network nodes and tagged with the dates and times at which it becomes
effective. This information takes the form of contact plans that are managed by the R/F
Contacts (rfx) services of ION’s ici package.

Enqueue bundle
Tor transmission

Consume rdcv capacity

—————————

[Set nominal xmit & recv
rates. Regtore capacities.]

lock

Consume x[nit capacity Bundle: size,

destination, TTL

OWLT, tdggle xmit
& recv rates =0

Production &

LTP block N
consumption plans

Retrapsmit
on tieout C

Figure 6 RFX services in ION

The structure of ION’s RFX (contact plan) database, the rfx system elements that
populate and use that data, and affected portions of the BP and LTP protocol state
databases are shown in Figure 6. (For additional details of BP and LTP database

management, see the BP/LTP discussion later in this document.)

To clarify the notation of this diagram, which is also used in other database structure
diagrams in this document:

27

= Data objects of defined structure are shown as circles. Dark greyscale indicates
notionally non-volatile data retained in “heap” storage, while lighter greyscale
indicates volatile data retained in dynamic random access memory.

= Solid arrows connecting circles indicate one-to-many cardinality.

= A dashed arrow between circles indicates a potentially many-to-one reference
mapping.

= Arrows from processing elements (rectangles) to data entities indicate data
production, while arrows from data entities to processing elements indicate data
retrieval.

A contact is here defined as an interval during which it is expected that data will be
transmitted by DTN node A (the contact’s transmitting node) and most or all of the
transmitted data will be received by node B (the contact’s receiving node). Implicitly, the
transmitting mode will utilize some “convergence-layer” protocol underneath the Bundle
Protocol to effect this direct transmission of data to the receiving node. Each contact is
characterized by its start time, its end time, the identities of the transmitting and receiving
nodes, and the rate at which data are expected to be transmitted by the transmitting node
throughout the indicated time period.

(Note that a contact is specifically not an episode of activity on a link. Episodes of
activity on different links — e.g., different radio transponders operating on the same
spacecraft — may well overlap, but contacts by definition cannot; they are bounded time
intervals and as such are innately “tiled”. For example, suppose transmission on link X
from node A to node B, at data rate RX, begins at time T1 and ends at time T2; also,
transmission on link Y from node A to node B, at data rate RY begins at time T3 and
ends at time T4. If T1 = T3 and T2 = T4, then there is a single contact from time T1 to
time T2 at data rate RX + RY. If T1 < T3 and T2 = T4, then there are two contiguous
contacts: one from T1 to T3 at data rate RX, then one from T3 to T2 at data rate RX +
RY. If T1 <T3and T3<T2 < T4, then there are three contiguous contacts: one from T1
to T3 at data rate RX, then one from T3 to T2 at data rate RX + RY, then one from T2 to
T4 at data rate RY. And so on.)

A range interval is a period of time during which the displacement between two nodes A
and B is expected to vary by less than 1 light second from a stated anticipated distance.
(We expect this information to be readily computable from the known orbital elements of
all nodes.) Each range interval is characterized by its start time, its end time, the
identities of the two nodes to which it pertains, and the anticipated approximate distance
between those nodes throughout the indicated time period, to the nearest light second.

The topology timeline at each node in the network is a time-ordered list of scheduled or
anticipated changes in the topology of the network. Entries in this list are of two types:

. Contact entries characterize scheduled contacts.
. Range entries characterize anticipated range intervals.

Each node to which, according to the RFX database, the local node transmits data directly
via some convergence-layer protocol at some time is termed a neighbor of the local node.
Each neighbor is associated with an outduct — a set of outbound transmission queues — for

28

the applicable BP convergence-layer (CL) protocol adapter, so bundles that are to be
transmitted directly to this neighbor can simply be queued for transmission via that CL
protocol (as discussed in the Bandwidth Management notes above).

At startup, and at any time while the system is running, ionadmin inserts and removes
Contact and Range entries in the topology timeline of the RFX database. Inserting or
removing a Contact or Range entry will cause routing tables to be recomputed for the
destination nodes of all subsequently forwarded bundles, as described in the discussion of
Contact Graph Routing below.

Once per second, the rfxclock task (which appears in multiple locations on the diagram
to simplify the geometry) applies all topology timeline events (Contact and Range start,
stop, purge) with effective time in the past. Applying a Contact event that cites a
neighboring node revises the transmission or reception data rate between the local node
and that Neighbor. Applying a Range event that cites a neighboring node revises the
OWLT between the local node and that neighbor. Setting data rate or OWLT for a node
with which the local node will at some time be in direct communication may entail
creation of a Neighbor object.

1.8.4 Route Computation

ION’s computation of a route for a given bundle with a given destination endpoint is
accomplished by one of several methods, depending on the destination. In every case,
the result of successful routing is the insertion of the bundle into an outbound
transmission queue (selected according to the bundle’s priority) for one or more
neighboring nodes.

But before discussing these methods it will be helpful to establish some terminology:

Eqgress plans

ION can only forward bundles to a neighboring node by queuing them on some
explicitly specified outduct. Specifications that associate neighboring nodes with
outducts — possibly varying depending on the node numbers and/or service
numbers of bundles’ source entity IDs — are termed egress plans. They are
retained in ION’s unicast forwarding database.

Static routes

ION can be configured to forward to some specified node all bundles that are
destined for a given node to which no dynamic route can be discovered from an
examination of the contact graph, as described later. Static routing is
implemented by means of the “group” mechanism described below.

Unicast

When the destination of a bundle is a single node that is registered within a
known “singleton endpoint” (that is, an endpoint that is known to have exactly
one member), then transmission of that bundle is termed unicast. For this
purpose, the destination endpoint ID must be a URI formed in either the “dtn”
scheme (e.g., dtn://bobsmac/mail) or the “ipn” scheme (e.g., ipn:913.11).

Unicast Groups

29

When unicast routes must be computed to nodes for which no contact plan
information is known (e.g., the size of the network makes it impractical to
distribute all Contact and Range information for all nodes to every node, or the
destination nodes don’t participate in Contact Graph Routing at all), the job of
computing routes to all nodes may be partitioned among multiple gateway nodes.
Each gateway is responsible for managing routing information (for example, a
comprehensive contact graph) for some subset of the total network population — a
group, comprising all nodes whose node numbers fall within the range of node
numbers assigned to the gateway. A bundle destined for a node for which no
dynamic route can be computed from the local node’s contact graph may be
routed to the gateway node for the group within whose range the destination’s
node number falls. Unicast groups are retained in ION’s unicast forwarding
database. (Note that the group mechanism implements static routes in CGR in
addition to improving scalability.)

Multicast

When the destination of a bundle is all nodes that are registered within a known
“multicast endpoint” (that is, an endpoint that is not known to have exactly one
member), then transmission of that bundle is termed multicast. For this purpose

(in ION), the destination endpoint ID must be a URI formed in the “imc” scheme
(e.g., imc:913.11).

Multicast Groups

A multicast group is the set of all nodes in the network that are members of a
given multicast endpoint. Forwarding a bundle to all members of its destination
multicast endpoint is the responsibility of all of the multicast-aware nodes of the
network. These nodes are additionally configured to be nodes of a single
multicast spanning tree overlaid onto the dtnet. A single multicast tree serves to
forward bundles to all multicast groups: each node of the tree manages petitions
indicating which of its “relatives” (parent and children) are currently interested in
bundles destined for each multicast endpoint, either natively (due to membership
in the indicated group) or on behalf of more distant relatives.

1.8.4.1 Unicast

We begin unicast route computation by attempting to compute a dynamic route to the
bundle’s final destination node. The details of this algorithm are described in the section
on Contact Graph Routing, below.

If no dynamic route can be computed, but the final destination node is a “neighboring”
node that is directly reachable, then we assume that taking this direct route is the best
strategy unless the outduct to that neighbor is flagged as “blocked” due to a lapse in
convergence-layer functionality .

Otherwise we must look for a static route. If the bundle’s destination node number is in
the range of node numbers assigned to the gateways for one or more groups, then we
forward the bundle to that gateway node for the smallest such group. (If the gateway
node is a neighbor and the outduct to that neighbor is not blocked, we simply queue the

30

bundle on that outduct; otherwise we similarly look up the static route for the gateway
until eventually we resolve to some egress plan.)

If we can determine neither a dynamic route nor a static route for this bundle, but the
reason for this failure was outduct blockage that might be resolved in the future, then the
bundle is placed in a “limbo” list for future re-forwarding when some outduct is
“unblocked.”

Otherwise, the bundle cannot be forwarded. If custody transfer is requested for the
bundle, we send a custody refusal to the bundle’s current custodian; in any case, we
discard the bundle.

1.8.4.2 Multicast
Multicast route computation is much simpler.

e The topology of the single network-wide multicast distribution tree is established
in advance by invoking tree management library functions that declare the
children and parents of each node. These functions are currently invoked only
from the imcadmin utility program. (Manual configuration of the multicast tree
seems manageable for very small and generally static networks, such as the space
flight operations networks we’ll be seeing over the next few years, but eventually
an automated tree management protocol will be required.) Each relative of each
node in the tree must also be a neighbor in the underlying dtnet: multicast routing
loops are avoided at each node by forwarding each bundle only to relatives other
than the one from which the bundle was received, and currently the only
mechanism in ION for determining the node from which a bundle was received is
to match the sender’s convergence-layer endpoint ID to a plan in the unicast
forwarding database — i.e., to a neighbor.

¢ When an endpoint for the “imc” scheme is added on an ION node — that is, when
the node joins that multicast endpoint — BP administrative records noting the
node’s new interest in the application topic corresponding to the endpoint’s group
number are passed to all of the node’s immediate relatives in the multicast tree.
On receipt of such a record, each relative notes the sending relative’s interest and
forwards the record to all of its immediate relatives other than the one from which
the record was received, and so on. (Deletion of endpoints results in similar
propagation of cancelling administrative records.)

e A bundle whose destination endpoint cites a multicast group, whether locally
sourced or received from another node:

o Is delivered immediately, if the local node is a member of the indicated
endpoint.

o Is queued for direct transmission to every immediate relative in the
multicast tree other than the one from which the bundle was received (if

any).

31

1.8.5 Delivery Assurance

End-to-end delivery of data can fail in many ways, at different layers of the stack. When
delivery fails, we can either accept the communication failure or retransmit the data
structure that was transmitted at the stack layer at which the failure was detected. ION is
designed to enable retransmission at multiple layers of the stack, depending on the
preference of the end user application.

At the lowest stack layer that is visible to ION, the convergence-layer protocol, failure to
deliver one or more segments due to segment loss or corruption will trigger segment
retransmission if a “reliable” convergence-layer protocol is in use: LTP “red-part”
transmission or TCP (including Bundle Relay Service, which is based on TCP)™.

Segment loss may be detected and signaled via NAK by the receiving entity, or it may
only be detected at the sending entity by expiration of a timer prior to reception of an
ACK. Timer interval computation is well understood in a TCP environment, but it can be
a difficult problem in an environment of scheduled contacts as served by LTP. The
round-trip time for an acknowledgment dialogue may be simply twice the one-way light
time (OWLT) between sender and receiver at one moment, but it may be hours or days
longer at the next moment due to cessation of scheduled contact until a future contact
opportunity. To account for this timer interval variability in retransmission, the Itpclock
task infers the initiation and cessation of LTP transmission, to and from the local node,
from changes in the current xmit and recv data rates in the corresponding Neighbor
objects. This controls the dequeuing of LTP segments for transmission by underlying
link service adapter(s) and it also controls suspension and resumption of timers, removing
the effects of contact interruption from the retransmission regime. For a further
discussion of this mechanism, see the section below on LTP Timeout Intervals.

Note that the current OWLT in Neighbor objects is also used in the computation of the
nominal expiration times of timers and that Itpclock is additionally the agent for LTP
segment retransmission based on timer expiration.

It is, of course, possible for the nominally reliable convergence-layer protocol to fail
altogether: a TCP connection might be abruptly terminated, or an LTP transmission
might be canceled due to excessive retransmission activity (again possibly due to an
unexpected loss of connectivity). In this event, BP itself detects the CL protocol failure
and re-forwards all bundles whose acquisition by the receiving entity is presumed to have
been aborted by the failure. This re-forwarding is initiated in different ways for different
CL protocols, as implemented in the CL input and output adapter tasks. If immediate re-
forwarding is impossible because all potentially usable outducts are blocked, the affected
bundles are placed in the limbo list for future re-forwarding when some outduct is
unblocked.

In addition to the implicit forwarding failure detected when a CL protocol fails, the
forwarding of a bundle may be explicitly refused by the receiving entity, provided the

LIn ION, reliable convergence-layer protocols (where available) are by default used for every bundle. The
application can instead mandate selection of “best-effort” service at the convergence layer by setting the
BP_BEST EFFORT flag in the “extended class of service flags” parameter, but this feature is an ION
extension that is not supported by other BP implementations at the time of this writing.

32

bundle is flagged for custody transfer service. A receiving node’s refusal to take custody
of a bundle may have any of a variety of causes: typically the receiving node either (a)
has insufficient resources to store and forward the bundle, (b) has no route to the
destination, or (c) will have no contact with the next hop on the route before the bundle’s
TTL has expired. In any case, a “custody refusal signal” (packaged in a bundle) is sent
back to the sending node, which must re-forward the bundle in hopes of finding a more
suitable route.

Alternatively, failure to receive a custody acceptance signal within some convergence-
layer-specified or application-specified time interval may also be taken as an implicit
indication of forwarding failure. Here again, when BP detects such a failure it attempts
to re-forward the affected bundle, placing the bundle in the limbo list if re-forwarding is
currently impossible.

In the worst case, the combined efforts of all the retransmission mechanisms in ION are
not enough to ensure delivery of a given bundle, even when custody transfer is requested.
In that event, the bundle’s “time to live” will eventually expire while the bundle is still in
custody at some node: the bpclock task will send a bundle status report to the bundle’s
report-to endpoint, noting the TTL expiration, and destroy the bundle. The report-to
endpoint, upon receiving this report, may be able to initiate application-layer
retransmission of the original application data unit in some way. This final
retransmission mechanism is wholly application-specific, however.

1.8.6 Rate Control

In the Internet, the rate of transmission at a node can be dynamically negotiated in
response to changes in level of activity on the link, to minimize congestion. On deep
space links, signal propagation delays (distances) may be too great to enable effective
dynamic negotiation of transmission rates. Fortunately, deep space links are
operationally reserved for use by designated pairs of communicating entities over pre-
planned periods of time at pre-planned rates. Provided there is no congestion inherent in
the contact plan, congestion in the network can be avoided merely by adhering to the
planned contact periods and data rates. Rate control in ION serves this purpose.

While the system is running, transmission and reception of bundles is constrained by the
current capacity in the throttle of each outduct and induct. Completed bundle
transmission or reception activity reduces the current capacity of the applicable duct by
the capacity consumption computed for that bundle. This reduction may cause the duct’s
current capacity to become negative. Once the current capacity of the applicable duct’s
throttle goes negative, activity is blocked until non-negative capacity has been restored
by bpclock.

Once per second, the bpclock task increases the current capacity of each induct and
outduct throttle by one second’s worth of traffic at the nominal data rate for that duct,
thus enabling some possibly blocked bundle transmission and reception to proceed.

The nominal data rate for any duct of any CL protocol other than LTP (e.g., TCP) is a
constant, established at the time the protocol was declared during ION initialization. For
LTP, however, bpclock revises all ducts” nominal data rates once per second in accord
with the current data rates in the corresponding Neighbor objects, as adjusted by rfxclock

33

per the contact plan. This contact-plan-based adjustment is currently not possible for CL
protocols other than LTP because at present there is no straightforward mechanism for
mapping from Neighbor node number to protocol duct ID for any CL protocol other than
LTP. So data flow over LTP links may be episodic, but data flow over non-LTP links is
always continuous.

Note that this means that:

= JON’s rate control system will enable data flow over non-LTP links even if there
are no contacts in the contact plan that announce it. In this context the contact
plan serves only to support route computation, and no contact plan is needed at all
if static routes are provided for all destinations.

= JON’s rate control system will enable data flow over LTP links only if there are
contacts in the contact plan that announce it. In this context, announced contacts
are mandatory for at least all neighboring nodes that are reachable by LTP.

1.8.7 Flow Control

A further constraint on rates of data transmission in an ION-based network is LTP flow
control. LTP is designed to enable multiple block transmission sessions to be in various
stages of completion concurrently, to maximize link utilization: there is no requirement to
wait for one session to complete before starting the next one. However, if unchecked this
design principle could in theory result in the allocation of all memory in the system to
incomplete LTP transmission sessions. To prevent complete storage resource exhaustion,
we set a firm upper limit on the total number of outbound blocks that can be concurrently
in transit at any given time. These limits are established by Itpadmin at node
initialization time.

The maximum number of transmission sessions that may be concurrently managed by
LTP therefore constitutes a transmission “window” — the basis for a delay-tolerant, non-
conversational flow control service over interplanetary links. Once the maximum
number of sessions are in flight, no new block transmission session can be initiated —
regardless of how much outduct transmission capacity is provided by rate control — until
some existing session completes or is canceled.

Note that this consideration emphasizes the importance of configuring the aggregation
size limits and session count limits of spans during LTP initialization to be consistent
with the maximum data rates scheduled for contacts over those spans.

1.8.8 Storage Management

Congestion in a dtnet is the imbalance between data enqueuing and dequeuing rates that
results in exhaustion of queuing (storage) resources at a node, preventing continued
operation of the protocols at that node.

In ION, the affected queuing resources are allocated from notionally non-volatile storage
space in the SDR data store and/or file system. The design of ION is required to prevent
resource exhaustion by simply refusing to enqueue additional data that would cause it.

However, a BP router’s refusal to enqueue received data for forwarding could result in
costly retransmission, data loss, and/or the “upstream” propagation of resource

34

exhaustion to other nodes. Therefore the ION design additionally attempts to prevent
potential resource exhaustion by forecasting levels of queuing resource occupancy and
reporting on any congestion that is predicted. Network operators, upon reviewing these
forecasts, may revise contact plans to avert the anticipated resource exhaustion.

The non-volatile storage used by ION serves several purposes: it contains queues of
bundles awaiting forwarding, transmission, and delivery; it contains LTP transmission
and reception sessions, including the blocks of data that are being transmitted and
received; it contains queues of LTP segments awaiting radiation; it may contain CFDP
transactions in various stages of completion; and it contains protocol operational state
information, such as configuration parameters, static routes, the contact graph, etc.

Effective utilization of non-volatile storage is a complex problem. Static pre-allocation
of storage resources is in general less efficient (and also more labor-intensive to
configure) than storage resource pooling and automatic, adaptive allocation: trying to
predict a reasonable maximum size for every data storage structure and then rigidly
enforcing that limit typically results in underutilization of storage resources and
underperformance of the system as a whole. However, static pre-allocation is mandatory
for safety-critical resources, where certainty of resource availability is more important
than efficient resource utilization.

The tension between the two approaches is analogous to the tension between circuit
switching and packet switching in a network: circuit switching results in underutilization
of link resources and underperformance of the network as a whole (some peaks of
activity can never be accommodated, even while some resources lie idle much of the
time), but dedicated circuits are still required for some kinds of safety-critical
communication.

So the ION data management design combines these two approaches (see 1.5 above for
additional discussion of this topic):

= A fixed percentage of the total SDR data store heap size (by default, 20%) is
statically allocated to the storage of protocol operational state information, which
is critical to the operation of ION.

= Another fixed percentage of the total SDR data store heap size (by default, 20%)
is statically allocated to “margin”, a reserve that helps to insulate node
management from errors in resource allocation estimates.

= The remainder of the heap, plus all pre-allocated file system space, is allocated to
protocol traffic?.

The maximum projected occupancy of the node is the result of computing a congestion
forecast for the node, by adding to the current occupancy all anticipated net increases and
decreases from now until some future time, termed the horizon for the forecast.

The forecast horizon is indefinite — that is, “forever” — unless explicitly declared by
network management via the i onadmin utility program. The difference between the
horizon and the current time is termed the interval of the forecast.

2 Note that, in all occupancy figures, ION data management accounts not only for the sizes of the payloads
of all queued bundles but also for the sizes of their headers.

35

Net occupancy increases and decreases are of four types:

1. Bundles that are originated locally by some application on the node, which are
engueued for forwarding to some other node.

2. Bundles that are received from some other node, which are enqueued either for
forwarding to some other node or for local delivery to an application.

3. Bundles that are transmitted to some other node, which are dequeued from some
forwarding queue.

4. Bundles that are delivered locally to an application, which are dequeued from
some delivery queue.

The type-1 anticipated net increase (total data origination) is computed by multiplying the
node’s projected rate of local data production, as declared via an ionadmin command, by
the interval of the forecast. Similarly, the type-4 anticipated net decrease (total data
delivery) is computed by multiplying the node’s projected rate of local data consumption,
as declared via an ionadmin command, by the interval of the forecast. Net changes of
types 2 and 3 are computed by multiplying inbound and outbound data rates,

respectively, by the durations of all periods of planned communication contact that begin
and/or end within the interval of the forecast.

Congestion forecasting is performed by the ionwarn utility program. ionwarn may be
run independently at any time; in addition, the ionadmin utility program automatically
runs ionwarn immediately before exiting if it executed any change in the contact plan,
the forecast horizon, or the node’s projected rates of local data production or
consumption. Moreover, the rfxclock daemon program also runs ionwarn automatically
whenever any of the scheduled reconfiguration events it dispatches result in contact state
changes that might alter the congestion forecast.

If the final result of the forecast computation — the maximum projected occupancy of the
node over the forecast interval — is less than the total protocol traffic allocation, then no
congestion is forecast. Otherwise, a congestion forecast status message is logged noting
the time at which maximum projected occupancy is expected to equal the total protocol
traffic allocation.

Congestion control in ION, then, has two components:

First, ION’s congestion detection is anticipatory (via congestion forecasting)
rather than reactive as in the Internet.

Anticipatory congestion detection is important because the second component —
congestion mitigation — must also be anticipatory: it is the adjustment of
communication contact plans by network management, via the propagation of
revised schedules for future contacts.

(Congestion mitigation in an ION-based network is likely to remain mostly manual for
many years to come, because communication contact planning involves much more than
orbital dynamics: science operations plans, thermal and power constraints, etc. It will,
however, rely on the automated rate control features of ION, discussed above, which
ensure that actual network operations conform to established contact plans.)

36

Rate control in ION is augmented by admission control. ION tracks the sum of the sizes
of all zero-copy objects currently residing in the heap and file system at any moment.
Whenever any protocol implementation attempts to create or extend a ZCO in such a way
that total heap or file occupancy would exceed an upper limit asserted for the node, that
attempt is rejected.

1.8.9 Optimizing an ION-based network

ION is designed to deliver critical data to its final destination with as much certainty as
possible (and optionally as soon as possible), but otherwise to try to maximize link
utilization. The delivery of critical data is expedited by contact graph routing and bundle
prioritization as described elsewhere. Optimizing link utilization, however, is a more
complex problem.

If the volume of data traffic offered to the network for transmission is less than the
capacity of the network, then all offered data should be successfully delivered®. But in
that case the users of the network are paying the opportunity cost of whatever portion of
the network capacity was not used.

Offering a data traffic volume that is exactly equal to the capacity of the network is in
practice infeasible. TCP in the Internet can usually achieve this balance because it
exercises end-to-end flow control: essentially, the original source of data is blocked from
offering a message until notified by the final destination that transmission of this message
can be accommodated given the current negotiated data rate over the end-to-end path (as
determined by TCP’s congestion control mechanisms). In a delay-tolerant network no
such end-to-end negotiated data rate may exist, much less be knowable, so such precise
control of data flow is impossible.*

The only alternative: the volume of traffic offered by the data source must be greater than
the capacity of the network and the network must automatically discard excess traffic,
shedding lower-priority data in preference to high-priority messages on the same path.

ION discards excess traffic proactively when possible and reactively when necessary.

Proactive data triage occurs when ION determines that it cannot compute a route that will
deliver a given bundle to its final destination prior to expiration of the bundle’s Time To
Live (TTL). That is, a bundle may be discarded simply because its TTL is too short, but
more commonly it will be discarded because the planned contacts to whichever
neighboring node is first on the path to the destination are already fully subscribed: the
queue of bundles awaiting transmission to that neighbor is already so long as to consume
the entire capacity of all announced opportunities to transmit to it. Proactive data triage
causes the bundle to be immediately destroyed as one for which there is “No known route
to destination from here.”

3 Barring data loss or corruption for which the various retransmission mechanisms in ION cannot
compensate.

4 Note that ION may indeed block the offering of a message to the network, but this is local admission
control — assuring that the node’s local buffer space for queuing outbound bundles is not oversubscribed —
rather than end-to-end flow control. It is always possible for there to be ample local buffer space yet
insufficient network capacity to convey the offered data to their final destination, and vice versa.

37

The determination of the degree to which a contact is subscribed is based not only on the
aggregate size of the queued bundles but also on the estimated aggregate size of the
overhead imposed by all the convergence-layer (CL) protocol data units — at all layers of
the underlying stack — that encapsulate those bundles: packet headers, frame headers, etc.
This means that the accuracy of this overhead estimate will affect the aggressiveness of
ION’s proactive data triage:

= |f CL overhead is overestimated, the size of the bundle transmission backlog for
planned contacts will be overstated, unnecessarily preventing the enqueuing of
additional bundles — a potential under-utilization of available transmission
capacity in the network.

= |f CL overhead is underestimated, the size of the bundle transmission backlog for
planned contacts will be understated, enabling the enqueuing of bundles whose
transmission cannot in fact be accomplished by the network within the constraints
of the current contact plan. This will eventually result in reactive data triage.

Essentially, all reactive data triage — the destruction of bundles due to TTL expiration
prior to successful delivery to the final destination — occurs when the network conveys
bundles at lower net rates than were projected during route computation. These
performance shortfalls can have a variety of causes:

= As noted above, underestimating CL overhead causes CL overhead to consume a
larger fraction of contact capacity than was anticipated, leaving less capacity for
bundle transmission.

= Conversely, the total volume of traffic offered may have been accurately
estimated but the amount of contact capacity may be less than was promised: a
contact might be started late, stopped early, or omitted altogether, or the actual
data rate on the link might be less than was advertised.

= Contacts may be more subtly shortened by the configuration of ION itself. If the
clocks on nodes are known not to be closely synchronized then a “maximum
clock error” of N seconds may be declared, causing reception episodes to be
started locally N seconds earlier and stopped N seconds later than scheduled, to
avoid missing some transmitted data because it arrived earlier or later than
anticipated. But this mechanism also causes transmission episodes to be started N
seconds later and stopped N seconds earlier than scheduled, to avoid transmitting
to a neighbor before it is ready to receive data, and this contact truncation ensures
transmission of fewer bundles than planned.

= Flow control within the convergence layer underlying the bundle protocol may
constrain the effective rate of data flow over a link to a rate that’s lower than the
link’s configured maximum data rate. In particular, mis-configuration of the LTP
flow control window can leave transmission capacity unused while LTP engines
are awaiting acknowledgments.

= Even if all nodes are correctly configured, a high rate of data loss or corruption
due to unexpectedly high R/F interference or underestimated acknowledgment
round-trip times may cause an unexpectedly high volume of retransmission

38

traffic. This will displace original bundle transmission, reducing the effective
“goodput” data rate on the link.

= Finally, custody transfer may propagate operational problems from one part of the
network to other nodes. One result of reduced effective transmission rates is the
accumulation of bundles for which nodes have taken custody: the custodial nodes
can’t destroy those bundles and reclaim the storage space they occupy until
custody has been accepted by “downstream” nodes, so abbreviated contacts that
prevent the flow of custody acceptances can increase local congestion. This
reduces nodes’ own ability to take custody of bundles transmitted by “upstream”
custodians, increasing queue sizes on those nodes, and so on. In short, custody
transfer may itself ultimately impose reactive data triage simply by propagating
congestion.

Some level of data triage is essential to cost-effective network utilization, and proactive
triage is preferable because its effects can be communicated immediately to users,
improving user control over the use of the network. Optimizing an ION-based network
therefore amounts to managing for a modicum of proactive data triage and as little
reactive data triage as possible. It entails the following:

1. Estimating convergence-layer protocol overhead as accurately as possible, erring
(if necessary) on the side of optimism — that is, underestimating a little.

As an example, suppose the local node uses LTP over CCSDS Telemetry
to send bundles. The immediate convergence-layer protocol is LTP, but
the total overhead per CL “frame” (in this case, per LTP segment) will
include not only the size of the LTP header (nominally 5 bytes) but also
the size of the encapsulating space packet header (nominally 6 bytes) and
the overhead imposed by the outer encapsulating TM frame.

Suppose each LTP segment is to be wrapped in a single space packet,
which is in turn wrapped in a single TM frame, and Reed-Solomon
encoding is applied. An efficient TM frame size is 1115 bytes, with an
additional 160 bytes of trailing Reed-Solomon encoding and another 4
bytes of leading pseudo-noise code. The frame would contain a 6-byte
TM frame header, a 6-byte space packet header, a 5-byte LTP segment
header, and 1098 bytes of some LTP transmission block.

So the number of “payload bytes per frame” in this case would be 1098
and the number of “overhead bytes per frame” wouldbe 4 +6+6 +5 +
160 = 181. Nominal total transmission overhead on the link would be 181
/1279 = about 14%.

2. Synchronizing nodes’ clocks as accurately as possible, so that timing margins
configured to accommodate clock error can be kept as close to zero as possible.

3. Setting the LTP session limit and block size limit as generously as possible
(whenever LTP is at the convergence layer), to assure that LTP flow control does
not constrain data flow to rates below those supported by BP rate control.

39

4. Setting ranges (one-way light times) and queuing delays as accurately as possible,
to prevent unnecessary retransmission. Err on the side of pessimism — that is,
overestimate a little.

5. Communicating changes in configuration — especially contact plans — to all nodes
as far in advance of the time they take effect as possible.

6. Providing all nodes with as much storage capacity as possible for queues of
bundles awaiting transmission.

40

1.9 BP/LTP detail = how it works

Although the operation of BP/LTP in ION is complex in some ways, virtually the entire
system can be represented in a single diagram. The interactions among all of the
concurrent tasks that make up the node — plus a Remote AMS task or CFDP UT-layer
task, acting as the application at the top of the stack — are shown below. (The notation is
as used earlier but with semaphores added. Semaphores are shown as small circles, with
arrows pointing into them signifying that the semaphores are being given and arrows
pointing out of them signifying that the semaphores are being taken.)

i routing table

routes, fo

fo ding
needeéd
> ipnfw (BP forwarder)

tran ues tran, sion
i forwardjng database; n d
ipnadmin # Itpclo (duct) Itpeli (induct)

XxxIsi

l transmission medium T

Figure 7 ION node functional overview

Further details of the BP/LTP data structures and flow of control and data appear on the
following pages. (For specific details of the operation of the BP and LTP protocols as
implemented by the ION tasks, such as the nature of report-initiated retransmission in
LTP, please see the protocol specifications. The BP specification is documented in
Internet RFC 5050, while the LTP specification is documented in Internet RFC 5326.)

41

1.9.1 Databases

Figure 8 Bundle protocol database

offset
length

client ID

Figure 9 Licklider transmission protocol database

42

1.9.2 Control and data flow

Bundle Protocol

ipnadmin

rou

forward

ites,

fo ue
foryiarding
L

Rl

ipnfw (BP forwarder)

tran‘eue tran sion
n d

Waits for forwarding needed semaphore.

Gets bundle from queue.

Consults routing table and forwarding table to determine all plausible

proximate destinations — routing.

. A plausible proximate destination is the destination node of the
first entry in a contact sequence (a list of concatenated contact
periods) ending in a contact period whose destination node is
the bundle’s destination node and whose start time is less than
the bundle’s expiration time.

Appends bundle to transmission queue (based on priority) for best

plausible proximate destination.

Gives transmission needed semaphore for that transmission queue.

Figure 10 BP forwarder

tran eue tran sion

Itpclo (outduct)

fﬁs%‘

Waits for buffer open semaphore (indicating that the link’s session
buffer has room for the bundle).

Waits for transmission needed semaphore.

Gets bundle from queue, subject to priority.

Appends bundle to link’s session buffer — aggregation. Buffer size is
notionally limited by aggregation size limit, a persistent attribute of the
Span object: implicitly, the rate at which we want reports to be
transmitted by the destination engine.

Gives buffer closed semaphore when buffer occupancy reaches the
aggregation size limit.

Figure 11 BP convergence layer output

43

I_
v

L

o ks

Initializes session buffer, gives buffer open semaphore.

Waits for buffer closed semaphore (indicating that the session buffer is
ready for transmission).

Segments the entire buffer into segments of managed MTU size —
fragmentation.

Appends all segments to segments queue for immediate transmission.
Gives segment enqueued semaphore.

=

clased s r
St nt
en ed

Figure 12 LTP transmission metering

n

Waits for segment enqueued semaphore (indicating that there is now
something to transmit).

Gets segment from queue.

Sets retransmission timer if necessary.

Transmits the segment using link service protocol.

s nt
en ed

XxxIso

l transmission medium

Figure 13 LTP link service output

44

Receives a segment using link service protocol.

If data, generates report segment and appends it to queue — reliability.
Also inserts data into reception session buffer “red part” and, if that
buffer is complete, gives notice semaphore to trigger bundle extraction
and dispatching by Itpcli.

If a report, appends acknowledgement to segments queue.

If a report of missing data, recreates lost segments and appends them
to queue.

Gives segment enqueued semaphore.

A

segment
en ed

xxxlsi

transmission medium T

Figure 14 LTP link service input

45

1.10Contact Graph Routing (CGR)

CGR is a dynamic routing system that computes routes through a time-varying topology
of scheduled communication contacts in a DTN network. It is designed to support
operations in a space network based on DTN, but it also could be used in terrestrial
applications where operation according to a predefined schedule is preferable to
opportunistic communication, as in a low-power sensor network.

The basic strategy of CGR is to take advantage of the fact that, since communication
operations are planned in detail, the communication routes between any pair of “bundle
agents” in a population of nodes that have all been informed of one another’s plans can
be inferred from those plans rather than discovered via dialogue (which is impractical
over long-one-way-light-time space links).

1.10.1 Contact Plan Messages

CGR relies on accurate contact plan information provided in the form of contact plan
messages that currently are only read from ionrc files and processed by ionadmin, which
retains them in a non-volatile contact plan in the RFX database, in ION’s SDR data store.

Contact plan messages are of two types: contact messages and range messages.
Each contact message has the following content:

e The starting UTC time of the interval to which the message pertains.

e The stop time of this interval, again in UTC.

e The Transmitting node number.

e The Receiving node number.

e The planned rate of transmission from node A to node B over this interval, in
bytes per second.

Each range message has the following content:
e The starting UTC time of the interval to which the message pertains.
e The stop time of this interval, again in UTC.
e Node number A.
e Node number B.
e The anticipated distance between A and B over this interval, in light seconds.

Note that range messages may be used to declare that the “distance” in light seconds
between nodes A and B is different in the B-> A direction from the distance in the A>B
direction. While direct radio communication between A and B will not be subject to such
asymmetry, it’s possible for connectivity established using other convergence-layer
technologies to take different physical paths in different directions, with different signal
propagation delays.

46

1.10.2 Routing Tables

Each node uses Range and Contact messages in the contact plan to build a "routing table"
data structure.

The routing table constructed locally by each node in the network is a list of route lists,
one route list for every other node D in the network that is cited in any Contact or Range
in the contact plan. Route lists are computed as they are needed, and the maximum
number of route lists resident at a given is the number of nodes that are cited in any
Contacts or Ranges in the contact plan.

Each route in the route list for node D identifies a path to destination node D, from the
local node, that (a) begins with transmission to one of the local node’s neighbors in the
network— the initial receiving node for the route, termed the route’s entry node — and (b)
was computed for a specific payload class.

A payload class is a payload size limit such that any bundle whose payload’s size is less
than that limit is known to be forwardable along any route computed for that class. That
is, a route computed for payload class value N is guaranteed not to include any contact
that has capacity — contact duration multiplied by data transmission rate — less than N and
therefore can theoretically be guaranteed to accommodate any bundle whose payload’s
size is no greater than N.

For any given route, the contact from the local node to the entry node constitutes the
initial transmission segment of the end-to-end path to the destination node. Additionally
noted in each route object are all of the other contacts that constitute the remaining
segments of the route’s end-to-end path.

Each route object also notes the forwarding cost for a bundle that is forwarded along this
route. In this version of ION, CGR is configured to deliver bundles as early as possible,
so best-case final delivery time is used as the cost of a route. Other metrics might be
substituted for final delivery time in other CGR implementations. NOTE, however, that
if different metrics are used at different nodes along a bundle’s end-to-end path it
becomes impossible to prevent routing loops that can result in non-delivery of the data.

Finally, each route object also notes the route’s termination time, the time after which the
route will become moot due to the termination of the earliest-ending contact in the route.

The computed routes for a given destination node are listed in ascending cost order, i.e.,
the most desirable route appears first in the list.

1.10.3 Key Concepts

Expiration time

Every bundle transmitted via DTN has a time-to-live (TTL), the length of time after
which the bundle is subject to destruction if it has not yet been delivered to its
destination. The expiration time of a bundle is computed as its creation time plus its
TTL. When computing the next-hop destination for a bundle that the local bundle agent
is required to forward, there is no point in selecting a route that can't get the bundle to its
final destination prior to the bundle’s expiration time.

47

OWLT margin

One-way light time (OWLT) — that is, distance — is obviously a factor in delivering a
bundle to a node prior to a given time. OWLT can actually change during the time a
bundle is en route, but route computation becomes intractably complex if we can't
assume an OWLT "safety margin" — a maximum delta by which OWLT between any pair
of nodes can change during the time a bundle is in transit between them.

We assume that the maximum rate of change in distance between any two nodes in the
network is about 150,000 miles per hour, which is about 40 miles per second. (This was
the speed of the Helios spacecraft, the fastest man-made object launched to date.)

At this speed, the distance between any two nodes that are initially separated by a
distance of N light seconds will increase by a maximum of 80 miles per second of transit
(in the event that they are moving in opposite directions). This will result in data arrival
no later than roughly (N + 2Q) seconds after transmission — where the “OWLT margin”
value Q is (40 * N) divided by 186,000 — rather than just N seconds after transmission as
would be the case if the two nodes were stationary relative to each other. When
computing the expected time of arrival of a transmitted bundle we simply use N + 2Q, the
most pessimistic case, as the anticipated total in-transit time.

Capacity

The capacity of a contact is the product of its data transmission rate (in bytes per second)
and its duration (stop time minus start time, in seconds).

Estimated capacity consumption

The size of a bundle is the sum of its payload size and its header size®, but bundle size is
not the only lien on the capacity of a contact. The total estimated capacity consumption
(or “ECC”) for a bundle that is queued for transmission via some outduct is a more
lengthy computation.

For each recognized convergence-layer protocol, we can estimate the number of bytes of
“overhead” (that is, data that serves the purposes of the protocol itself rather than the user
application that is using it) for each frame of convergence-layer protocol transmission. If
the convergence layer protocol were UDP/IP over the Internet, for example, we might
estimate the convergence layer overhead per frame to be 100 bytes — allowing for the
nominal sizes of the UDP, IP, and Ethernet or SONET overhead for each IP packet.

We can estimate the number of bundle bytes per CL protocol frame as the total size of
each frame less the per-frame convergence layer overhead. Continuing the example
begun above, we might estimate the number of bundle bytes per frame to be 1400, which
is the standard MTU size on the Internet (1500 bytes) less the estimated convergence
layer overhead per frame

We can then estimate the total number of frames required for transmission of a bundle of
a given size: this number is the bundle size divided by the estimated number of bundle
bytes per CL protocol frame, rounded up.

5 The minimum size of an ION bundle header is 26 bytes. Adding extension blocks (such as those that
effect the Bundle Security Protocol) will increase this figure.

48

The estimated total convergence layer overhead for a given bundle is, then, the per-frame
convergence layer overhead multiplied by the total number of frames required for
transmission of a bundle of that size

Finally the ECC for that bundle can be computed as the sum of the bundle’s size and its
estimated total convergence layer overhead.

Residual capacity

The residual capacity of a given contact between the local node and one of its neighbors,
as computed for a given bundle, is the sum of the capacities of that contact and all prior
scheduled contacts between the local node and that neighbor, less the sum of the ECCs of
all bundles with priority equal to or higher than the priority of the subject bundle that are
currently queued on the outduct for transmission to that neighbor.

Plausible opportunity

A plausible opportunity for transmitting a given bundle to some neighboring node is
defined as a contact whose residual capacity is at least equal to the bundle’s ECC. That is,
if the capacity of a given contact is already fully subscribed, when computing routes for
the next bundle there is no purpose served by assuming transmission during that contact.

Excluded neighbors

A neighboring node C that refuses custody of a bundle destined for some remote node D
is termed an excluded neighbor for (that is, with respect to computing routes to) D. So
long as C remains an excluded neighbor for D, no bundles destined for D will be
forwarded to C — except that occasionally (once per lapse of the RTT between the local
node and C) a custodial bundle destined for D will be forwarded to C as a “probe
bundle”. C ceases to be an excluded neighbor for D as soon as it accepts custody of a
bundle destined for D.

Critical bundles

A Critical bundle is one that absolutely has got to reach its destination and, moreover, has
got to reach that destination as soon as is physically possible®.

For an ordinary non-Critical bundle, the CGR dynamic route computation algorithm uses
the routing table to select a single neighboring node to forward the bundle through. It is
possible, though, that due to some unforeseen delay the selected neighbor may prove to
be a sub-optimal forwarder: the bundle might arrive later than it would have if another
neighbor had been selected, or it might not even arrive at all.

For Critical bundles, the CGR dynamic route computation algorithm causes the bundle to
be inserted into the outbound transmission queues for transmission to all neighboring
nodes that can plausibly forward the bundle to its final destination. The bundle is
therefore guaranteed to travel over the most successful route, as well as over all other

6 1n ION, all bundles are by default non-critical. The application can indicate that data should be sent in a
Critical bundle by setting the BP. MINIMUM_LATENCY flag in the “extended class of service”
parameter, but this feature is an ION extension that is not supported by other BP implementations at the
time of this writing.

49

plausible routes. Note that this may result in multiple copies of a Critical bundle arriving
at the final destination.

1.10.4 Dynamic Route Selection Algorithm
Given a bundle whose destination is node D, we proceed as follows.

First, if no contacts in the contact plan identify transmission to node D, then we cannot
use CGR to find a route for this bundle; CGR route selection is abandoned.

Next, if the contact plan has been modified in any way since routes were computed for
any nodes, we discard all routes for all nodes and authorize route recomputaton. (The
contact plan changes may have invalidated any or all of those earlier computations.)

We create an empty list of Proximate Nodes (network neighbors) to send the bundle to.

We create a list of Excluded Nodes, i.e., nodes through which we will not compute a
route for this bundle. The list of Excluded Nodes is initially populated with:

e the node from which the bundle was directly received (so that we avoid cycling
the bundle between that node and the local node) — unless the Dynamic Route
Selection Algorithm is being re-applied due to custody refusal as discussed later;

e all excluded neighbors for the bundle’s final destination node.

If all routes computed for node D have been discarded due to contact plan modification,
then we must compute a new list of all routes from the local node to D. To do so:

e We construct an abstract contact graph, a directed acyclic graph whose root is a
notional contact from the local node to itself and whose other vertices are all other
contacts representing transmission “from” some node such that a contact “to” that
node already exists in the graph, excluding contacts representing transmission
“to” some node such that a contact “from” that node already exists in the graph.

A terminal vertex is also included in the graph, constituting a notional contact
from node D to itself.

e We perform several series of Dijkstra searches within this graph, one series of
searches for each payload class. On each search we find the lowest-cost route that
begins at the root of the graph and ends at the terminal vertex. Each time a route
is computed, we add it to the node’s list of routes and then remove the route’s
initial contact from the contact graph before searching for the next best route.
Each search series is terminated as soon as a search fails to find a route.

o During any search, every contact whose capacity is less than the
applicable payload class for the search is ignored.

o The lowest-cost route computed during a search is the one that is found to
have the earliest best-case delivery time, where the best-case delivery time
characterizing a route is given by the time at which a bundle would arrive
at node D if transmitted at the earliest possible moment of the last contact
in the route prior to the terminal vertex.

o Any contact whose end time is before the earliest possible time that the
bundle could arrive at the contact’s sending node is ignored.

50

o The earliest possible arrival time for the bundle on a given contact is
pessimistically computed as the sum of the bundle’s earliest possible
transmission time plus the range in light seconds from the contact’s
sending node to its receiving node, plus the applicable one-way light time
margin.

o The earliest possible transmission time for the bundle on a given contact is
the start time of the contact or bundle’s earliest possible arrival time at the
contact’s sending node, whichever is later.

If node D’s list of routes is still empty, then we cannot use CGR to find a route for
this bundle; CGR route selection is abandoned.

We next examine all of the routes that are currently computed for transmission of bundles
to node D.

Any route whose termination time is in the past is deleted from the list, and all
contacts in that route whose termination time is in the past are also deleted. But if
the end time of that route’s initial contact is still in the future, we run another
Dijkstra search to compute the best route (for the deleted route’s payload class)
given the remaining contacts, excluding all contacts that are initial contacts of
other routes that have not yet been deleted; if this search finds a route, the new
route is inserted into the appropriate location in the list.

Any route whose best-case final delivery time is after the bundle’s expiration time
is ignored, as is any route whose entry node is in the list of Excluded Nodes. Any
route that includes a contact whose capacity is less than the bundle’s payload size
is also ignored. Loopback routes are also ignored unless the local node is the
bundle’s final destination.

For each route, the aggregate radiation time for this bundle on this route is

computed by summing the product of payload size and contact transmission rate
over all contacts in the route. Any route for which the sum of best-case delivery
time and aggregate radiation time is after the bundle’s expiration time is ignored.

For each route that is not ignored:

We locate in the unicast forwarding database the egress plan for the route’s entry
node. From this directive we infer the convergence-layer “outduct” on which the
bundle would be sent if transmitted to that node. We then determine whether or
not the bundle could be transmitted during the initial contact of this route. There
are three criteria:

o If the outduct is currently “blocked” due to a detected or asserted loss of
connectivity, then the route cannot be selected.

o If'the bundle cannot be fragmented and its payload’s size exceeds the
outduct’s payload size limit, then the route cannot be selected.

o If the contact is not a “plausible opportunity” (as defined earlier) for
transmission of this bundle, then the route cannot be selected.

If the route is eligible for selection:

51

o

If the route’s entry node has not yet been added to the list of Proximate
Nodes for this bundle, then it is added to that list. Associated with the
entry node number in this list entry are the best-case final delivery time of
the route, the total number of “hops” in the route’s end-to-end path, and
the forfeit time for transmission to this node. Forfeit time is the route’s
termination time, the time by which the bundle must have been transmitted
to this node in order to have any chance of being forwarded on this route.

Otherwise (i.e., this route’s entry node is already in the Proximate Nodes
list), if the route’s best-case final delivery time is earlier than that of the
existing Proximate Nodes list entry for this node, then the earlier time
replaces that later time; if the delivery times are equal but the route’s hop
count is less than that of the existing entry, then the smaller hop count
replaces the larger one; if either of these changes are made, then this
route’s forfeit time replaces the list entry’s current forfeit time.

If, at the end of this procedure, the Proximate Nodes list is empty, then we have been
unable to use CGR to find a route for this bundle; CGR route selection is abandoned.

Otherwise:

o If the bundle is flagged as a critical bundle, then a cloned copy of this bundle is
enqueued for transmission on the outduct to every node in the Proximate Nodes

list.

e Otherwise, the bundle is enqueued for transmission on the outduct to the most
preferred neighbor in the Proximate Nodes list:

o

1.10.5

If one of the nodes in this list is associated with a best-case delivery time
that is earlier than that of all other nodes in the list, then it is the most
preferred neighbor.

Otherwise, if one of the nodes with the earliest best-case delivery time is
associated with a smaller hop count than every other node with the same
best-case delivery time, then it is the most preferred neighbor.

Otherwise, the node with the smallest node number among all nodes with
the earliest best-case delivery time and smallest hop count is arbitrarily
chosen as the most preferred neighbor.

Exception Handling

Conveyance of a bundle from source to destination through a DTN can fail in a number
of ways, many of which are best addressed by means of the Delivery Assurance
mechanisms described earlier. Failures in Contact Graph Routing, specifically, occur
when the expectations on which routing decisions are based prove to be false. These
failures of information fall into two general categories: contact failure and custody

refusal.

1) Contact failure

A scheduled contact between some node and its neighbor on the end-to-end route
may be initiated later than the originally scheduled start time, or be terminated

52

earlier than the originally scheduled stop time, or be canceled altogether.
Alternatively, the available capacity for a contact might be overestimated due to,
for example, diminished link quality resulting in unexpectedly heavy
retransmission at the convergence layer. In each of these cases, the anticipated
transmission of a given bundle during the affected contact may not occur as
planned: the bundle might expire before the contact’s start time, or the contact’s
stop time might be reached before the bundle has been transmitted.

For a non-Critical bundle, we handle this sort of failure by means of a timeout: if
the bundle is not transmitted prior to the forfeit time for the selected Proximate
Node, then the bundle is removed from its outbound transmission queue and the
Dynamic Route Computation Algorithm is re-applied to the bundle so that an
alternate route can be computed.

2) Custody refusal

A node that receives a bundle may find it impossible to forward it, for any of
several reasons: it may not have enough storage capacity to hold the bundle, it
may be unable to compute a forward route (static, dynamic, or default) for the
bundle, etc. Such bundles are simply discarded, but discarding any such bundle
that is marked for custody transfer will cause a custody refusal signal to be
returned to the bundle’s current custodian.

When the affected bundle is non-Critical, the node that receives the custody
refusal re-applies the Dynamic Route Computation Algorithm to the bundle so
that an alternate route can be computed — except that in this event the node from
which the bundle was originally directly received is omitted from the initial list of
Excluded Nodes. This enables a bundle that has reached a dead end in the routing
tree to be sent back to a point at which an altogether different branch may be
selected.

For a Critical bundle no mitigation of either sort of failure is required or indeed possible:
the bundle has already been queued for transmission on all plausible routes, so no
mechanism that entails re-application of CGR’s Dynamic Route Computation Algorithm
could improve its prospects for successful delivery to the final destination. However, in
some environments it may be advisable to re-apply the Dynamic Route Computation
Algorithm to all Critical bundles that are still in local custody whenever a new Contact is
added to the contact graph: the new contact may open an additional forwarding
opportunity for one or more of those bundles.

1.10.6 Remarks

The CGR routing procedures respond dynamically to the changes in network topology
that the nodes are able know about, i.e., those changes that are subject to mission
operations control and are known in advance rather than discovered in real time. This
dynamic responsiveness in route computation should be significantly more effective and
less expensive than static routing, increasing total data return while at the same time
reducing mission operations cost and risk.

53

Note that the non-Critical forwarding load across multiple parallel paths should be
balanced automatically:

o Initially all traffic will be forwarded to the node(s) on what is computed to be the
best path from source to destination.

e At some point, however, a node on that preferred path may have so much
outbound traffic queued up that no contacts scheduled within bundles’ lifetimes
have any residual capacity. This can cause forwarding to fail, resulting in custody
refusal.

e Custody refusal causes the refusing node to be temporarily added to the current
custodian’s excluded neighbors list for the affected final destination node. If the
refusing node is the only one on the path to the destination, then the custodian
may end up sending the bundle back to its upstream neighbor. Moreover, that
custodian node too may begin refusing custody of bundles subsequently sent to it,
since it can no longer compute a forwarding path.

e The upstream propagation of custody refusals directs bundles over alternate paths
that would otherwise be considered suboptimal, balancing the queuing load across
the parallel paths.

e Eventually, transmission and/or bundle expiration at the oversubscribed node
relieves queue pressure at that node and enables acceptance of custody of a
“probe” bundle from the upstream node. This eventually returns the routing
fabric to its original configuration.

Although the route computation procedures are relatively complex they are not
computationally difficult. The impact on computation resources at the vehicles should be
modest.

54

1.11 LTP Timeout Intervals

Suppose we’ve got Earth ground station ES that is currently in view of Mars but will be
rotating out of view (“Mars-set”) at some time T1 and rotating back into view (“Mars-
rise”) at time T3. Suppose we’ve also got Mars orbiter MS that is currently out of the
shadow of Mars but will move behind Mars at time T2, emerging at time T4. Let's also
suppose that ES and MS are 4 light-minutes apart (Mars is at its closest approach to
Earth). Finally, for simplicity, let’s suppose that both ES and MS want to be
communicating at every possible moment (maximum link utilization) but never want to
waste any electricity.

Neither ES nor MS wants to be wasting power on either transmitting or receiving at a
time when either Earth or Mars will block the signal.

ES will therefore stop transmitting at either T1 or (T2 - 4 minutes), whichever is earlier;
call this time Tewo. It will stop receiving — that is, power off the receiver — at either T1 or
(T2 + 4 minutes), whichever is earlier; call this time Tero. It will resume transmitting at
either T3 or (T4 - 4 minutes), whichever is later, and it will resume reception at either T3
or (T4 + 4 minutes), whichever is later; call these times Tet1 and Ter1.

Similarly, MS will stop transmitting at either T2 or (T1 - 4 minutes), whichever is earlier;
call this time Tmw. It will stop receiving — that is, power off the receiver — at either T2 or
(T1 + 4 minutes), whichever is earlier; call this time Tmro. It will resume transmitting at
either T4 or (T3 - 4 minutes), whichever is later, and it will resume reception at either T4
or (T3 + 4 minutes), whichever is later; call these times Tmu and Tmr1.

By making sure that we don’t transmit when the signal would be blocked, we guarantee
that anything that is transmitted will arrive at a time when it can be received. Any
reception failure is due to data corruption en route.

So the moment of transmission of an acknowledgment to any message is always equal to
the moment the original message was sent plus some imputed outbound queuing delay
QO1 at the sending node, plus 4 minutes, plus some imputed inbound and outbound
queuing delay QI1 + QO2 at the receiving node. The nominally expected moment of
reception of this acknowledgment is that moment of transmission plus 4 minutes, plus
some imputed inbound queuing delay QI2 at the original sending node. That is, the
timeout interval is 8 minutes + QO1 + QI1 + Q02 + QO2 — unless this moment of
acknowledgment transmission is during an interval when the receiving node is not
transmitting, for whatever reason. In this latter case, we want to suspend the
acknowledgment timer during any interval in which we know the remote node will not be
transmitting. More precisely, we want to add to the timeout interval the time difference
between the moment of message arrival and the earliest moment at which the
acknowledgment could be sent, i.e., the moment at which transmission is resumed’.

" 1f we wanted to be extremely accurate we could also subtract from the timeout interval the imputed
inbound queuing delay Ql, since inbound queuing would presumably be completed during the interval in
which transmission was suspended. But since we’re guessing at the queuing delays anyway, this
adjustment doesn’t make a lot of sense.

55

So the timeout interval Z computed at ES for a message sent to MS at time Tx is given
by:

Z = Q01 + 8 + QI1 + ((Ta = Tx + 4) > Tmo && Ta < Tue1) ? Twrx — Ta: 0) + QI2 +Q02;

This can actually be computed in advance (at time Tx) if T1, T2, T3, and T4 are known
and are exposed to the protocol engine.

If they are not exposed, then Z must initially be estimated to be (2 * the one-way light
time) + QI + QO. The timer for Z must be dynamically suspended at time Tmto In
response to a state change as noted by Itpclock. Finally, the timer must be resumed at
time Tmu (in response to another state change as noted by Itpclock), at which moment the
correct value for Z can be computed.

56

1.12CFDP

The ION implementation of CFDP is very simple, because only Class-1
(Unacknowledged) functionality is implemented: the store-and-forward routing
performed by Bundle Protocol makes the CFDP Extended Procedures unnecessary and
the inter-node reliability provided by the CL protocol underneath BP — in particular, by
LTP — makes the CFDP Acknowledged Procedures unnecessary. All that CFDP is
required to do is segment and reassemble files, interact with the underlying Unitdata
Transfer layer — BP/LTP — to effect the transmission and reception of file data segments,
and handle CFDP metadata including filestore requests. CFDP-ION does all this,
including support for cancellation of a file transfer transaction by cancellation of the
transmission of the bundles encapsulating the transaction’s protocol data units.

Note that all CFDP data transmission is “by reference”, via the ZCO system, rather than
“by value”: the retransmission buffer for a bundle containing CFDP file data is an extent
of the original file itself, not a copy retained in the ION database, and data received in
bundles containing CFDP PDU is written immediately to the appropriate location in the
reconstituted file rather than stored in the ION database. This minimizes the space
needed for the database. In general, file transmission via CFDP is the most memory-
efficient way to use ION in flight operations.

Give (on put or resume)

put, cancel,
suspend, resu

o transactioy, report, get gvent
suspendedresumed

bundle destruction ——|

om Take

edsh dd

A: EOF Sent, Transaction Finished
B: Fault, Abandoned, Transaction Finished
C: Metadata Recv, File Segment Recv, EOF Recv, Transaction Finished

Figure 15 A CFDP-ION entity

57

1.13Additional Figures for Manual Pages

1.13.1 list data structures (lyst, sdrlist, smlist)

List object:

List element objects:

Figure 16 1ON list data structures

1.13.2 psm partition structure

unassigned space

Figure 17 psm partition structure

58

1.13.3

Small:

Large:

1.13.4

psm and sdr block structures

[~ word size |

next free
- data
Oxffffff |size|
next free prev free
size data start
Oxffffffff Oxffffffff

Trailing overhead of large block enables a newly freed block to be
merged with the adjacent free block(s), if any, to minimize fragmentation.

Figure 18 psm and sdr block structures

sdr heap structure

) o transaction
in-DRAM heap in-file heap log
[diectory & datastoremap ;
)
pool of small blocks E
|
I oo S
i I H i] H
| ' N ' |
H ! H !
: P :
H ! H !
H unassigned space 1 H unassigned space 1 j
1 1
i P = v
i P :
H 4 [4 !
bmmmmmmmm e m e e e E . |
!]
!]
]
E pool of large blocks E
1
If present, used for all reading. If present, write-through for

persistence across power cycles.

Figure 19 sdr heap structure

59

2 Operation

One compile-time option is applicable to all ION packages: the platform selection
parameters -DVXWORKS and -DRTEMS affect the manner in which most task
instantiation functions are compiled. For VXWORKS and RTEMS, these functions are
compiled as library functions that must be identified by name in the platform’s symbol
table, while for Unix-like platforms they are compiled as main () functions.

2.1 Interplanetary Communication Infrastructure (ICI)

2.1.1 Compile-time options

Declaring values for the following variables, by setting parameters that are provided to
the C compiler (for example, ~-DFSWSOURCE Of -DSM_SEMBASEKEY=0x£f£13), will
alter the functionality of ION as noted below.

PRIVATE_SYMTAB

This option causes ION to be built for VxWorks 5.4 or RTEMS with reliance on a small
private local symbol table that is accessed by means of a function named
sm_FindFunction. Both the table and the function definition are, by default, provided
by the symtab. c source file, which is automatically included within the

platform sm.c source when this option is set. The table provides the address of the
top-level function to be executed when a task for the indicated symbol (name) is to be
spawned, together with the priority at which that task is to execute and the amount of
stack space to be allocated to that task.

PRIVATE_SYMTAB is defined by default for RTEMS but not for VxWorks 5.4.

Absent this option, ION on VxWorks 5.4 must successfully execute the VxWorks
symFindByName function in order to spawn a new task. For this purpose the entire
VxWorks symbol table for the compiled image must be included in the image, and task
priority and stack space allocation must be explicitly specified when tasks are spawned.

FSWLOGGER

This option causes the standard ION logging function, which simply writes all ION status
messages to a file named ion. 1og in the current working directory, to be replaced (by
#include) with code in the source file fswlogger.c. A file of this name must be in
the inclusion path for the compiler, as defined by —1xxxx compiler option parameters.

FSWCLOCK

This option causes the invocation of the standard time function within getUTCTime
(in ion.c) to be replaced (by #include) with code in the source file £swutc.c, which
might for example invoke a mission-specific function to read a value from the spacecraft
clock. A file of this name must be in the inclusion path for the compiler.

FSWWDNAME

60

This option causes the invocation of the standard getcwd function within cfdpInit (in
libcfdpP.c) to be replaced (by #include) with code in the source file wdname. c,
which must in some way cause the mission-specific value of current working directory
name to be copied into cfdpdbBuf.workingDirectoryName. A file of this name
must be in the inclusion path for the compiler.

FSWSYMTAB

If the PRIVATE_SYMTAB option is also set, then the FSWSYMTAB option causes the
code in source file mysymtab.c tobeincluded in platform sm.c in place of the
default symbol table access implementation in symtab.c. A file named mysymtab.c
must be in the inclusion path for the compiler.

FSWSOURCE

This option simply causes FSWLOGGER, FSWCLOCK, FSWWDNAME, and
FSWSYMTAB all to be set.

GDSLOGGER

This option causes the standard ION logging function, which simply writes all ION status
messages to a file named ion. 1og in the current working directory, to be replaced (by
#include) with code in the source file gds1logger.c. A file of this name must be in
the inclusion path for the compiler, as defined by —1xxxx compiler option parameters.

GDSSOURCE
This option simply causes GDSLOGGER to be set.
ION_OPS ALLOC=xx

This option specifies the percentage of the total non-volatile storage space allocated to
ION that is reserved for protocol operational state information, i.e., is not available for
the storage of bundles or LTP segments. The default value is 20.

ION_SDR_MARGIN=xx

This option specifies the percentage of the total non-volatile storage space allocated to
ION that is reserved simply as margin, for contingency use. The default value is 20.

The sum of ION_OPS_ALLOC and ION_SDR_MARGIN defines the amount of non-
volatile storage space that is sequestered at the time ION operations are initiated: for
purposes of congestion forecasting and prevention of resource oversubscription, this sum
is subtracted from the total size of the SDR “heap” to determine the maximum volume of
space available for bundles and LTP segments. Data reception and origination activities
fail whenever they would cause the total amount of data store space occupied by bundles
and segments to exceed this limit.

USING_SDR_POINTERS

This is an optimization option for the SDR non-volatile data management system: when
set, it enables the value of any variable in the SDR data store to be accessed directly by
means of a pointer into the dynamic memory that is used as the data store storage
medium, rather than by reading the variable into a location in local stack memory. Note
that this option must not be enabled if the data store is configured for file storage only,

61

i.e., if the SDR_IN_DRAM flag was set to zero at the time the data store was created by
calling sdr load profile. See the ionconfig(5) man page in Appendix A for more
information.

NO SDR_TRACE

This option causes non-volatile storage utilization tracing functions to be omitted from
ION when the SDR system is built. It disables a useful debugging option but reduces the
size of the executable software.

NO PSM_TRACE

This option causes memory utilization tracing functions to be omitted from ION when the
PSM system is built. It disables a useful debugging option but reduces the size of the
executable software.

IN_FLIGHT
This option controls the behavior of ION when an unrecoverable error is encountered.

If it is set, then the status message “Unrecoverable SDR error” is logged and the SDR
non-volatile storage management system is globally disabled: the current database access
transaction is ended and (provided transaction reversibility is enabled) rolled back, and
all ION tasks terminate.

Otherwise, the ION task that encountered the error is simply aborted, causing a core
dump to be produced to support debugging.

SM_SEMKEY =0xXXXX

This option overrides the default value (Oxee01) of the identifying “key” used in creating
and locating the global ION shared-memory system mutex.

SVR4_SHM

This option causes ION to be built using svr4 shared memory as the pervasive shared-
memory management mechanism. svr4 shared memory is selected by default when ION
is built for any platform other than MinGW, VxWorks 5.4, or RTEMS. (For these latter
operating systems all memory is shared anyway, due to the absence of a protected-
memory mode.)

POSIX1B _SEMAPHORES

This option causes ION to be built using POSIX semaphores as the pervasive semaphore
mechanism. POSIX semaphores are selected by default when ION is built for RTEMS
but are otherwise not used or supported; this option enables the default to be overridden.

SVR4_SEMAPHORES

This option causes ION to be built using svr4 semaphores as the pervasive semaphore
mechanism. svr4 semaphores are selected by default when ION is built for any platform
other than MinGW (for which Windows event objects are used), VxWorks 5.4 (for which
VxWorks native semaphores are the default choice), or RTEMS (for which POSIX
semaphores are the default choice).

SM_SEMBASEKEY =0xXXXX

62

This option overrides the default value (0xee02) of the identifying “key” used in creating
and locating the global ION shared-memory semaphore database, in the event that svr4
semaphores are used.

SEMMN I=xxx

This option declares to ION the total number of svr4 semaphore sets provided by the
operating system, in the event that svr4 semaphores are used. It overrides the default
value, which is 10 for Cygwin and 128 otherwise. (Changing this value typically entails
rebuilding the O/S kernel.)

SEMMSL =xxx

This option declares to ION the maximum number of semaphores in each svr4 semaphore
set, in the event that svr4 semaphores are used. It overrides the default value, which is 6
for Cygwin and 250 otherwise. (Changing this value typically entails rebuilding the O/S
kernel.)

SEMMNS=xxx

This option declares to ION the total number of svr4 semaphores that the operating
system can support; the maximum possible value is SEMMNI x SEMMSL. It overrides
the default value, which is 60 for Cygwin and 32000 otherwise. (Changing this value
typically entails rebuilding the O/S kernel.)

ION_NO_DNS

This option causes the implementation of a number of Internet socket 1/O operations to be
omitted for ION. This prevents ION software from being able to operate over Internet
connections, but it prevents link errors when 10N is loaded on a spacecraft where the
operating system does not include support for these functions.

ERRMSGS BUFSIZE=xxxx

This option set the size of the buffer in which ION status messages are constructed prior
to logging. The default value is 4 KB.

SPACE_ORDER=x

This option declares the word size of the computer on which the compiled ION software
will be running: it is the base-2 log of the number of bytes in an address. The default
value is 2, i.e., the size of an address is 22 = 4 bytes. For a 64-bit machine,
SPACE_ORDER must be declared to be 3, i.e., the size of an address is 2% = 8 bytes.

NO_SDRMGT

This option enables the SDR system to be used as a data access transaction system only,
without doing any dynamic management of non-volatile data. With the NO_SDRMGT
option set, the SDR system library can (and in fact must) be built from the sdrxn.c
source file alone.

DOS PATH_DELIMITER

63

This option causes ION_PATH DELIMITER to be set to ‘\’ (backslash), for use in
construction path names. The default value of ION PATH DELIMITER is ‘/° (forward
slash, as is used in Unix-like operating systems).

2.1.2 Build
To build ICI for a given deployment platform:

1. Decide where you want ION’s executables, libraries, header files, etc. to be
installed. The ION makefiles all install their build products to subdirectories
(named bin, lib, include, man, man/manl, man/man3, man/man5) of an ION
root directory, which by default is the directory named /opt. If you wish to use
the default build configuration, be sure that the default directories (/opt/bin, etc.)
exist; if not, select another ION root directory name — this document will refer to
it as $OPT — and create the subdirectories as needed. In any case, make sure that
you have read, write, and execute permission for all of the ION installation
directories and that:

e The directory /$OPT/bin is in your execution path.
e The directory /$OPT/lib is in your $LD_LOADLIB_PATH.
2. Edit the Makefile in ion/ici:

o Make sure PLATFORMS is set to the appropriate platform name, e.g., x86-
redhat, sparc-sol9, etc.

e Set OPT to your ION root directory name, if other than “/opt”.
3. Then:

cd ion/ici
make

make install

2.1.3 Configure

Three types of files are used to provide the information needed to perform global
configuration of the ION protocol stack: the ION system configuration (or ionconfig)
file, the ION administration command (ionrc) file, and the ION security configuration
(ionsecrc) file. For details, see the man pages for ionconfig(5), ionrc(5), and ionsecrc(5)
in Appendix A.

Normally the instantiation of ION on a given computer establishes a single ION node on
that computer, for which hard-coded values of wmKey and sdrName (see ionconfig(5))
are used in common by all executables to assure that all elements of the system operate
within the same state space. For some purposes, however, it may be desirable to establish
multiple ION nodes on a single workstation. (For example, constructing an entire self-
contained DTN network on a single machine may simplify some kinds of regression
testing.) 1ON supports this configuration option as follows:

e Multi-node operation on a given computer is enabled if and only if the
environment variable ION_NODE_LIST_DIR is defined in the environment of

64

every participating ION process. Moreover, the value assigned to this variable
must be the same text string in the environments of all participating ION
processes. That value must be the name (preferably, fully qualified) of the
directory in which the ION multi-node database file “ion_nodes” will reside.

The definition of ION_NODE_LIST_DIR makes it possible to establish up to one
ION nodes per directory rather than just one ION node on the computer. When
ionadmin is used to establish a node, the ionInitialize () function will get
that node’s wmKey and sdrName from the .ionconfig file, use them to allocate
working memory and create the SDR database, and then write a line to the
ion_nodes file noting the nodeNbr, wmKey, sdrName, and wdName for the node
it just initialized. wdName is the current working directory in which ionadmin
was running at the time it called ionInitialize (); itis the directory within
which the node resides.

This makes it easy to connect all the node's daemon processes — running within
the same current working directory — to the correct working memory partition and
SDR database: the ionattach () function simply searches the ion_nodes file
for a line whose wdName matches the current working directory of the process
that is trying to attach, then uses that line's wmKey and sdrName to link up.

It is also possible to initiate a process from within a directory other than the one in
which the node resides. To do so, define the additional environment variable
ION_NODE_WDNAME in the shell from which the new process is to be
initiated. When ionAttach () is called it will first try to get “current working
directory” (for ION attachment purposes only) from that environment variable;
only if ION_NODE_WDNAME is undefined will it use the actual cwd that it gets
from calling igetcwd().

2.1.4 Run
The executable programs used in operation of the ici component of ION include:

The ionadmin system configuration utility and ionsecadmin security
configuration utility, invoked at node startup time and as needed thereafter.

The rfxclock background daemon, which effects scheduled network configuration
events.

The sdrmend system repair utility, invoked as needed.

The sdrwatch and psmwatch utilities for resource utilization monitoring,
invoked as needed.

Each time it is executed, ionadmin computes a new congestion forecast and, if a
congestion collapse is predicted, invokes the node’s congestion alarm script (if any).
ionadmin also establishes the node number for the local node and starts/stops the
rfxclock task, among other functions. For further details, see the man pages for
ionadmin(1), ionsecadmin(1), rfxclock(1), sdrmend(1), sdrwatch(1), and psmwatch(1) in
Appendix A.

65

2.1.5 Test

Six test executables are provided to support testing and debugging of the ICI component
of ION:

= The file2sdr and sdr2file programs exercise the SDR system.
= The psmshell program exercises the PSM system.

= The file2sm, sm2file, and smlistsh programs exercise the shared-memory linked
list system.

For details, see the man pages for file2sdr(1), sdr2file(1), psmshell(1), file2sm(1),
sm2file(1), and smlistsh(1) in Appendix A.

66

2.2 Licklider Transmission Protocol (LTP)

2.2.1 Build
To build LTP;

1.

Make sure that the “ici” component of ION has been built for the platform on
which you plan to run LTP.

Edit the Makefile in ion/Itp:

= As for ici, make sure PLATFORMS is set to the name of platform on which
you plan to run LTP.

= Set OPT to the directory containing the bin, lib, include, etc. directories used
for building ici.

Then:
cd ion/ltp
make

make install

2.2.2 Configure

The LTP administration command (Itprc) file provides the information needed to
configure LTP on a given ION node. For details, see the man page for Itprc(5) in
Appendix A.

2.2.3 Run
The executable programs used in operation of the Itp component of ION include:

The Itpadmin protocol configuration utility, invoked at node startup time and as
needed thereafter.

The Itpclock background daemon, which effects scheduled LTP events such as
segment retransmissions.

The Itpmeter block management daemon, which segments blocks and effects
LTP flow control.

The udplsi and udplso link service input and output tasks, which handle
transmission of LTP segments encapsulated in UDP datagrams (mainly for testing
purposes).

Itpadmin starts/stops the Itpclock task and, as mandated by configuration, the udplsi and
udplso tasks.

For details, see the man pages for Itpadmin(1), Itpclock(1), Itpmeter(1), udplsi(1), and
udplso(1) in Appendix A.

67

2.2.4 Test

Two test executables are provided to support testing and debugging of the LTP
component of ION:

= Itpdriver is a continuous source of LTP segments.
= Itpcounter is an LTP block receiver that counts blocks as they arrive.
For details, see the man pages for Itpdriver(1) and Itpcounter(1) in Appendix A.

68

2.3 Bundle Protocol (BP)

2.3.1 Compile-time options

Declaring values for the following variables, by setting parameters that are provided to
the C compiler (for example, -DION NOSTATS Or -DBRSTERM=60), will alter the
functionality of BP as noted below.

TargetFFS

Setting this option adapts BP for use with the TargetFFS flash file system on the
VxWorks operating system. TargetFFS apparently locks one or more system semaphores
so long as a file is kept open. When a BP task keeps a file open for a sustained interval,
subsequent file system access may cause a high-priority non-BP task to attempt to lock
the affected semaphore and therefore block; in this event, the priority of the BP task may
automatically be elevated by the inversion safety mechanisms of VxWorks. This
“priority inheritance” can result in preferential scheduling for the BP task — which does
not need it — at the expense of normally higher-priority tasks, and can thereby introduce
runtime anomalies. BP tasks should therefore close files immediately after each access
when running on a VxWorks platform that uses the TargetFFS flash file system. The
TargetFFS compile-time option ensures that they do so.

BRSTERM=xx

This option sets the maximum number of seconds by which the current time at the BRS
server may exceed the time tag in a BRS authentication message from a client; if this
interval is exceeded, the authentication message is presumed to be a replay attack and is
rejected. Small values of BRSTERM are safer than large ones, but they require that
clocks be more closely synchronized. The default value is 5.

ION_NOSTATS
Setting this option prevents the logging of bundle processing statistics in status messages.
KEEPALIVE_PERIOD=xx

This option sets the number of seconds between transmission of keep-alive messages
over any TCP or BRS convergence-layer protocol connection. The default value is 15.

ION_BANDWIDTH_RESERVED

Setting this option overrides strict priority order in bundle transmission, which is the
default. Instead, bandwidth is shared between the priority-1 and priority-0 queues on a
2:1 ratio whenever there is no priority-2 traffic.

ENABLE_BPACS

This option causes Aggregate Custody Signaling source code to be included in the build.
ACS is alternative custody transfer signaling mechanism that sharply reduces the volume
of custody acknowledgment traffic.

ENABLE_IMC

69

This option causes IPN Multicast source code to be included in the build. IMC is
discussed in section 1.8.4 above.

2.3.2 Build
To build BP:

1. Make sure that the “ici” and “ltp” and “dgr” components of ION have been built
for the platform on which you plan to run BP.

2. Edit the Makefile in ion/bp:

= As for ici, make sure PLATFORMS is set to the name of platform on which
you plan to run BP.

= Set OPT to the directory containing the bin, lib, include, etc. directories used
for building ici.
3. Then:
cd ion/bp
make

make install

2.3.3 Configure

The BP administration command (bprc) file provides the information needed to
configure generic BP on a given ION node. The IPN scheme administration command
(ipnrc) file provides information that configures static and default routes for endpoints
whose IDs conform to the “ipn” scheme. The DTN scheme administration command
(dtn2rc) file provides information that configures static and default routes for endpoints
whose IDs conform to the “dtn” scheme, as supported by the DTN2 reference
implementation. For details, see the man pages for bprc(5), ipnrc(5), and dtn2rc(5) in
Appendix A.

2.3.4 Run

The executable programs used in operation of the bp component of ION include:

= The bpadmin, ipnadmin, and dtn2admin protocol configuration utilities,
invoked at node startup time and as needed thereafter.

= The bpclock background daemon, which effects scheduled BP events such as
TTL expirations and which also implements rate control.

= The ipnfw and dtn2fw forwarding daemons, which compute routes for bundles
addressed to “ipn”-scheme and “dtn”-scheme endpoints, respectively.

= The ipnadminep and dtn2adminep administrative endpoint daemons, which
handle custody acceptances, custody refusals, and status messages.

= The brsscla (server) and brsccla (client) Bundle Relay Service convergence-layer
adapters.

= The tcpcli (input) and tcpclo (output) TCP convergence-layer adapters.

70

The udpcli (input) and udpclo (output) UDP convergence-layer adapters.
The Itpcli (input) and Itpclo (output) LTP convergence-layer adapters.
The dgrcla Datagram Retransmission convergence-layer adapter.

The bpsendfile utility, which sends a file of arbitrary size, encapsulated in a
single bundle, to a specified BP endpoint.

The bpstats utility, which prints a snapshot of currently accumulated BP
processing statistics on the local node.

The bptrace utility, which sends a bundle through the network to enable a
forwarding trace based on bundle status reports.

The Igsend and Igagent utilities, which are used for remote administration of ION
nodes.

The hmackeys utility, which can be used to create hash keys suitable for use in
bundle authentication blocks and BRS convergence-layer protocol connections.

bpadmin starts/stops the bpclock task and, as mandated by configuration, the ipnfw,
dtn2fw, ipnadminep, dtn2adminep, brsscla, brsccla, , tcpcli, tcpelo, udpcli, udpclo,
Itpcli, Itpclo, and dgrcla tasks.

For details, see the man pages for bpadmin(1),ipnadmin(1), dtn2admin(1), bpclock(1),
ipnfw(1), dtn2fw(1), ipnadminep(1), dtn2adminep(1), brsscla(l), brsccla(l), tcpcli(1),

tcpelo(1), udpcli(1), udpclo(l), Itpcli(1), Itpclo(1), dgrcla(l), bpsendfile(1), bpstats(1),
bptrace(1), Igsend(1), Igagent(1), and hmackeys(1) in Appendix A.

2.3.5 Test

Five test executables are provided to support testing and debugging of the BP component
of ION:

bpdriver is a continuous source of bundles.
bpcounter is a bundle receiver that counts bundles as they arrive.

bpecho is a bundle receiver that sends an “echo” acknowledgment bundle back to
bpdriver upon reception of each bundle.

bpsource is a simple console-like application for interactively sending text strings
in bundles to a specified DTN endpoint, nominally a bpsink task.

bpsink is a simple console-like application for receiving bundles and printing
their contents.

For details, see the man pages for bpdriver(1), bpcounter(1), bpecho(1), bpsource(1), and
bpsink(1) in Appendix A.

71

2.4 Datagram Retransmission (DGR)

2.4.1 Build
To build DGR:

1. Make sure that the “ici” component of ION has been built for the platform on
which you plan to run DGR.

2. Edit the Makefile in ion/dgr:

= As for ici, make sure PLATFORMS is set to the name of platform on which
you plan to run DGR.

= Set OPT to the directory containing the bin, lib, include, etc. directories used
for building ici.

3. Then:
cd ion/dgr
make

make install

2.4.2 Configure

No additional configuration files are required for the operation of the DGR component of
ION.

2.4.3 Run

No runtime executables are required for the operation of the DGR component of ION.

2.4.4 Test

Two test executables are provided to support testing and debugging of the DGR
component of ION:

= file2dgr repeatedly reads a file of text lines and sends copies of those text lines
via DGR to dgr2file, which writes them to a copy of the original file.

For details, see the man pages for file2dgr(1) and dgr2file(1) in Appendix A.

72

2.5 Asynchronous Message Service (AMS)

2.5.1 Compile-time options

Defining the following macros, by setting parameters that are provided to the C compiler
(for example, -DNOEXPAT or -DAMS_INDUSTRIAL), will alter the functionality of
AMS as noted below.

NOEXPAT

Setting this option adapts AMS to expect MIB information to be presented to it in
“amsrc” syntax (see the amsrc(5) man page in Appendix A) rather than in XML syntax,
normally because the expat XML interpretation system is not installed. The default
syntax for AMS MIB information is XML, as described in the amsxml(5) man page in
Appendix A.

AMS_INDUSTRIAL

Setting this option adapts AMS to an “industrial” rather than safety-critical model for
memory management. By default, the memory acquired for message transmission and
reception buffers in AMS is allocated from limited ION working memory, which is fixed
at ION start-up time; this limits the rate at which AMS messages may be originated and
acquired. When -DAMS_INDUSTRIAL is set at compile time, the memory acquired for
message transmission and reception buffers in AMS is allocated from system memory,
using the familiar malloc() and free() functions; this enables much higher message traffic
rates on machines with abundant system memory.

2.5.2 Build

To build AMS:

1. Make sure that the “bp” component of ION has been built for the platform on
which you plan to run AMS.

2. Edit the Makefile in ion/cfdp:

= Just as for bp, make sure PLATFORMS is set to the name of platform on
which you plan to run AMS.

= Set OPT to the directory containing the bin, lib, include, etc. directories used
for building bp.

3. Then:
cd ion/ams
make

make install

2.5.3 Configure

There is no central configuration of AMS; each AMS entity (configuration server,
registrar, or application module) is individually configured at the time its initial MIB is

73

loaded at startup. For details of MIB file syntax, see the man pages for amsrc(5) and
amsxml(5) in Appendix A.

2.5.4 Run
The executable programs used in operation of the AMS component of ION include:

= The amsd background daemon, which serves as configuration server and/or as the
registrar for a single application cell.

= The ramsgate application module, which serves as the Remote AMS gateway for
a single message space.

= The amsstop utility, which terminates all AMS operation throughout a single
message space.

= The amsmib utility, which announces supplementary MIB information to selected
subsets of AMS entities without interrupting the operation of the message space.

For details, see the man pages for amsd(1), ramsgate(1), amsstop(1), and amsmib(1) in
Appendix A.
2.5.5 Test

Seven test executables are provided to support testing and debugging of the AMS
component of ION:

= amsbenchs is a continuous source of messages.

= amsbenchr is a message receiver that calculates bundle transmission performance
statistics.

= amshello is an extremely simple AMS “hello, world” demo program — a self-
contained distributed application in a single source file of about seventy lines.

= amsshell is a simple console-like application for interactively publishing,
sending, and announcing text strings in messages.

= amslog is a simple console-like application for receiving messages and piping
their contents to stdout.

= amslogprt is a pipeline program that simply prints AMS message contents piped
to it from amslog.

= amspubsub is a pair of functions for rudimentary testing of AMS functionality in
a VxWorks environment.

For details, see the man pages for amsbenchs(1), amsbenchr(1), amshello(1), amsshell(1),
amslog(1), amslogprt(1), amspub(1), and amssub(1) in Appendix A.

For further operational details of the AMS system, please see sections 4 and 5 of the
AMS Programmer’s Guide.

74

2.6 CCSDS File Delivery Protocol (CFDP)

2.6.1 Compile-time options
Defining the following macro, by setting a parameter that is provided to the C compiler
(i.e., -pTargetFFs), will alter the functionality of CFDP as noted below.

TargetFFS

Setting this option adapts CFDP for use with the TargetFFS flash file system on the
VxWorks operating system. TargetFFS apparently locks one or more system semaphores
so long as a file is kept open. When a CFDP task keeps a file open for a sustained
interval, subsequent file system access may cause a high-priority non-CFDP task to
attempt to lock the affected semaphore and therefore block; in this event, the priority of
the CFDP task may automatically be elevated by the inversion safety mechanisms of
VxWorks. This “priority inheritance” can result in preferential scheduling for the CFDP
task — which does not need it — at the expense of normally higher-priority tasks, and can
thereby introduce runtime anomalies. CFDP tasks should therefore close files
immediately after each access when running on a VxWorks platform that uses the
TargetFFS flash file system. The TargetFFS compile-time option assures that they do so.

2.6.2 Build

To build CFDP:

1. Make sure that the “bp” component of ION has been built for the platform on
which you plan to run CFDP.

2. Edit the Makefile in ion/cfdp:

= Just as for bp, make sure PLATFORMS is set to the name of platform on
which you plan to run CFDP.

= Set OPT to the directory containing the bin, lib, include, etc. directories used
for building bp.

3. Then:
cd ion/cfdp
make

make install

2.6.3 Configure

The CFDP administration command (cfdprc) file provides the information needed to
configure CFDP on a given ION node. For details, see the man page for cfdprc(5) in
Appendix A.

2.6.4 Run
The executable programs used in operation of the CFDP component of ION include:

75

= The cfdpadmin protocol configuration utility, invoked at node startup time and as
needed thereafter.

= The cfdpclock background daemon, which effects scheduled CFDP events such
as check timer expirations. The cfdpclock task also effects CFDP transaction
cancellations, by canceling the bundles encapsulating the transaction’s protocol
data units.

= The bputa UT-layer input/output task, which handles transmission of CFDP
PDUs encapsulated in bundles.

cfdpadmin starts/stops the cfdpclock task and, as mandated by configuration, the bputa
task.

For details, see the man pages for cfdpadmin(1), cfdpclock(1), and bputa(1) in Appendix
A.

2.6.5 Test

A single executable, cfdptest, is provided to support testing and debugging of the DGR
component of ION. For details, see the man page for cfdptest(1) in Appendix A.

76

2.7 Bundle Streaming Service (BSS)

2.7.1 Compile-time options

Defining the following macro, by setting a parameter that is provided to the C compiler
(e.g., -DWINDOW=10000), will alter the functionality of BSS as noted below.

WINDOW=xx

Setting this option changes maximum number of seconds by which the BSS database for
a BSS application may be “rewound” for replay. The default value is 86400 seconds,
which is 24 hours.

2.7.2 Build

To build BSS:
e Make sure that the “bp” component of ION has been built for the platform on
which you plan to run BSS.

e Edit the Makefile in ion/bss:

e As for ici, make sure PLATFORMS is set to the name of platform on which you
plan to run BSS.

e Set OPT to the directory containing the bin, lib, include, etc. directories used for
building ici.
e Then:
cd ion/bss
make

make install

2.7.3 Configure

No additional configuration files are required for the operation of the BSS component of
ION.

2.7.4 Run

No runtime executables are required for the operation of the BSS component of ION.

2.7.5 Test

Four test executables are provided to support testing and debugging of the BSS
component of ION:

e bssdriver sends a stream of data to bsscounter for non-interactive testing.

e bssStreamingApp sends a stream of data to bssrecv for graphical, interactive
testing.

77

For details, see the man pages for bssdriver(1), bsscounter(1), bssStreamingApp(1), and
bssrecv(1) in Appendix A.

78

Appendix A: ION Manpages

Executables (man section 1)

amsbenchr
amsbenchs
amsd
amshello
amslog
amslogprt
amsmib
amspub
amsshell
amsstop
amssub
ramsgate
acsadmin
acslist
bibeclo
bpadmin
bpcancel
bpchat
bpclock
bpcounter
bpdriver
bpecho
bping
bplist
bpnmtest
bprecvfile
bpsendfile
bpsink
bpsource
bpstats
bpstats2
bptrace
bptransit
brsccla
brsscla
cgrfetch
dccpcli
dccpclo
dgrcla
dtn2admin
dtn2adminep
dtn2fw
hmacleys
imcadmin
imcfw
ipnadmin
ipnadminep
ipnfw
lgagent
Igsend

Itpcli

Itpclo
stepcli
stcpclo
tepcli
tcpclo
udpcli
udpclo
bssStreamingApp
bssrecv
bsspadmin
udpbso
bpcp
bpcpd
bputa
cfdpadmin
cfdpclock
cfdptest
dtpcadmin
dtpcclock
dtpcd
dtpcrecere
dtpcsend
file2sdr
file2sm
ionadmin
ionsecadmin
owltsim
owlttb
psmshell
psmwatch
rfxclock
sdr2file
sdrmend
sdrwatch
sm2file
smlistsh
smrbtsh
dccplsi
dccplso
[tpadmin
Itpclock
Itpcounter
[tpdriver
Itpmeter
udplsi
udplso

Libraries (man section 3)

ams
bp

bpextensions
bss

bssp
cfdp

dor

dtpc

ion

llcv

lyst
memmgr
platform
psm

sdr
sdrhash
sdrlist
sdrstring
sdrtable
smlist
zco

Itp

Configuration files (man section 5)
amsrc
amsxml
acsrc
bprc
bssrc
dtn2rc
imcrc
ipnrc
Igfile
bssprc
cfdprc
dtpcrc
ionconfig
ionrc
ionsecrc
ltprc

AMSBENCHR(1) AMSexecutables AMSBENCHR(1)

NAME
amsbenchr — Asynchronous Message Service (AMS) benchmarking meter

SYNOPSIS
amsbenchr

DESCRIPTION
amsbenchris a test program that simply subscribes to subjeehth’ and receies messages published
by amsbenchsuntil all messages in the test — as indicated by the count of remaining messages, in in the
first four bytes of each message -vddeen receied. Thenit stops receiving messages, calculates and
prints performance statistics, and terminates.

amsbenchrwill register as an application module in the root unit of the venture identified by application
name ‘amsdemd’ and authority name‘test”. A configuration semr for the local continuum and a
registrar for the root unit of that venture (which may both be instantiated in a simgigdaemon task)
must be running in order famsbenchrto commence operations.

EXIT STATUS
-1 amsbenchrfailed, for reasons noted in the ion.log file.
“ o
amsbenchrterminated normally.

FILES
A MIB initialization file with the applicable default name (s@esrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

amsbenchr cahiregster.
amsbenchrfailed to registerfor reasons noted in the ion.log file.

amsbenchr: subject 'bench’ is unknown.
amsbenchrcant subscribe to test messages; probably an error imtRénitialization file.

amsbenchr cahsubscribe.
amsbenchrfailed to subscribe, for reasons noted in the ion.log file.

amsbenchr cahget event.
amsbenchrfailed to recere a nessage, for reasons noted in the ion.log file.

BUGS
Report bugs to <ion-bugs@km@no.eecs.ohiou.edu>

SEE ALSO
amsrg(5)

perl v5.18.2 2016-09-07 1

AMSBENCHS(1) AMSexecutables AMSBENCHS(1)

NAME

amsbenchs — Asynchronous Message Service (AMS) benchmarkiag dri
SYNOPSIS

amsbenchscount size
DESCRIPTION

amsbenchss a test program that simply publisteintmessages dfizebytes each on subjecbénch”,
then waits while all published messages are transmitted, terminating when the user uses "C to interrupt the

program. Theemaining number of messages to be published in the test is written into the first four octets
of each message.

amsbenchswill register as an application module in the root unit of the venture identified by application
name ‘amsdemd’ and authority name‘test”. A configuration semr for the local continuum and a
registrar for the root unit of that venture (which may both be instantiated in a simgigdaemon task)
must be running in order f@amsbenchgo commence operations.

EXIT STATUS

-1 amsbenchdailed, for reasons noted in the ion.log file.

“ o

amsbenchgerminated normally.

FILES

A MIB initialization file with the applicable default name (s@esrc(5)) must be present.
ENVIRONMENT

No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

No memory for amsbenchs.

Insufficient aailable memory for a message content buffer of the indicated size.
amsbenchs catregster.

amsbenchdailed to registerfor reasons noted in the ion.log file.

amsbenchs canset event manager.
amsbenchsfailed to start its backgroundrent management thread, for reasons noted in the ion.log
file.
amsbenchs: subject 'bench’ is unknown.
amsbenchscant publish test messages; probably an error invttieinitialization file.
amsbenchs canpublish message.
amsbenchdailed to publish, for reasons noted in the ion.log file.
BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>
SEE ALSO
amsrg(5)

perl v5.18.2 2016-09-07 1

AMSD(1) AMS executables AMSD(1)

NAME
amsd - AMS configuration server and/or registrar daemon

SYNOPSIS
amsd { @ | MIB_source_name} { . | @ | config_server_endpoint_spek [application_name
authority_nameeagstrar_unit_namg

DESCRIPTION

amsd is a background‘daemon’ task that functions as afMS “ configuration semr” in the local
continuum, as aAMS “ registrar’ in a specified cell, or both.

If MIB_source_nameés specified, it must name MIB initialization file in the correct format faamsd,
either amsrg(5) or amsxm(5), depending on whether or not —-DNOB{Pwas set at compile time.
Otherwise@ is required; in this case, the built-in defaulB is loaded.

If this amsdtask isNOT to run as a configuration server then the second command-line argument must be a
"’ character Otherwise the second command-line argument must be either '@’ or
config_server_endpoint_spedf '@’ then the endpoint specification for this configuration server is
automatically computed as the default endpoint specification for the primary transport service as noted in
theMIB: "hostname2357".

If an AMS module iSNOT to be run in a background thread for this daemon (enabling shutdown by
amsstog§l) and/or runtimeMiB update byamsmik(1)), then either the last three command-lirguarents
must be omitted or else tharnsd’ role must not be defined in tiveB loaded for this daemorOtherwise
theapplication_namendauthority_namerguments are required and ttemsd’ role must be defined in
theMIB.

If this amsd task iSNOT to run as a registrar then the last command-line argument must be omitted.
Otherwise the last three command-linguaments are required and yheaust identify a unit in arAMS
venture for the indicated application and authority that is known to operate in the local continuum, as noted

in theMIB. Note that the unit name for the “root uhitf a venture is the zero-length string "
EXIT STATUS
“ g
amsdterminated without error.

-1 amsd terminated due to an anomaly as noted in itrelog file. If this termination was not
commanded, westigate and sokvthe problem identified in the log file and restartsd

FILES
If MIB souice namas specified, then a file of this name must be pregetiierwise aviB initialization file
with the applicable default name (sasrcg(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithrelog log file:

amsd cart’loadMIB.
MIB initialization file was missing, unreadable, ovdiid.

amsd cart’startCs.
Configuration server initialization failed for reasons noted in ion.log file.

amsd cart'startRS.
Registrar initialization failed for reasons noted in ion.log file.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
amsmik(1), amsstoffl), amsrg(5), amsxm(5)

perl v5.18.2 2016-09-07 1

AMSHELLO(1) AMS executables AMSHELLO(1)

NAME
amshello — Asynchronous Message Service (AMS) demo program for UNIX

SYNOPSIS
amshello

DESCRIPTION
amshello is a sample program designed to demonstrate that an entire (very simpleutdibwilds
application can be written in just axféines of C code. When starteaimshelloforks a second process and
initiates transmission of &Hello’’ text message from one process to the gthger which both processes
unregister and terminate.

The amshello processes will register as application modules in the root unit ofethteire identified by
application name'amsdemd’ and authority nametest”. A configuration server for the local continuum
and a registrar for the root unit of that venture (which may both be instantiated in aasisgldaemon
task) must be running in order for theshelloprocesses to run.

EXIT STATUS
“ o
amshelloterminated normally.

FILES
A MIB initialization file with the applicable default name (s@esrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
No diagnostics apply.
BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
amsrg(5)

perl v5.18.2 2016-09-07 1

AMSLOG(1) AMS executables AMSLOG(1)

NAME
amslog — Asynchronous Message Service (AMS) test messageerecei

SYNOPSIS
amslogunit_name role_name application_name authority_name [{ s |i}]

DESCRIPTION
amslogis a message reception program designed té&\kStfunctionality.

Whenamslogis started, it registers as an application module in the unit identifiachibynameof the
venture identified byapplication_namendauthority _namethe role in which it rgisters must be indicated

in role_name A configuration server for the local continuum and a registrar for the indicated unit of the
indicated enture (which may both be instantiated in a sirgiesd daemon task) must be running in order
for amslogto run.

amslogruns as tw threads: a background thread that reeeAMS messages and logs them to standard
output, together with a foreground thread that acquires operating parameters in lines of console input to
control the flov of messages to the background thread.

When the first character of a line of input from stdin toaimslogforeground thread is”(period),amslog
immediately terminatesOtherwise, the first character of each line of input from stdin must be either '+’
indicating assertion of interest in a message subject or "=’ indicating cessation of interest in a Bubject.
each case, the name of the subject in question must begin in the second character of the ilnteline.
that “everything” is a valid subject name.

By default, amslog runs in ‘subscribe” mode: when interest in a message subject is assamesipg
subscribes to that subject; when interest in a message subject is resamdied, unsubscribes to that
subject. Thisbehaior can be werridden by providing a third command-line argumentatoslog — a
“mode’ indicator When mode is 'i’;/amslogruns in ‘invite’’ mode. In®invite” mode, when interest in a
message subject is assertaahsloginvites messages on that subject; when interest in a message subject is
rescindedamslogcancels its invitation for messages on that subject.

The ‘domain” of a subscription or invitation can optionally be specified immediately after the subject
name, on the same line of console input:

Domain continuum name may be specified, or the place-holder domain continuum_namay be
specified to indicate “all continua”.

If domain continuum name‘(°’ or otherwise) is specified, then domain unit name may be specified or
the place-holder domain unit name’* may be specified to indicate “the root uhiti.e., the entire
venture).

If domain unit name (“_’or otherwise) is specified, then domain role name may be specified.

Whenamslogruns in VxWorks OIRTEMS, the subject and content of each message are simply written to
standard output in a text line for display on the cons@iaenamslogruns in aUNIX ervironment, the
subject name length (a binary integer), subject na&se€l(text), content length (a binary irger), and
content ASCII text) are written to standard output for redirection either to a file or to a pépesiogprt.

Wheneer a receved message is flagged as a Quemyslogreturns a reply message whose content is the
string “Got ” followed by the first 128 bytes of the content of the Query message, enclosed in single quote
marks and followed by a period.

EXIT STATUS
-1 amslogterminated with an error as noted in the ion.log file.
“ OH
amslogterminated normally.

FILES
A MIB initialization file with the applicable default name (se@esrc(5)) must be present.

perl v5.18.2 2016-09-07 1

AMSLOG(1) AMS executables AMSLOG(1)

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
amslog cart’regster.
amslogfailed to registerfor reasons noted in the ion.log file.

amslog cart’set event manager.
amslogfailed to start its background thread, for reasons noted in the ion.log file.
amslog cart'read from stdin
amslogforeground thread failed to read console input, for reasons noted in the ion.log file.
BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
amsshel(1), amslogpr{1), amsrc(5)

perl v5.18.2 2016-09-07 2

AMSLOGPRI(1) AMS executables AMSLOGPR(1)

NAME
amslogprt — UNIX utility program for printing AMS log messages from amslog

SYNOPSIS
amslogprt

DESCRIPTION
amslogprt simply readsAMS actiity log messages from standard input (nominally writteraimglogand
prints them. When the content of a logged message is judged not toABElatext string, the content is
printed in hexadecimal.

amslogprt terminates at the end of input.
EXIT STATUS
“ g
amslogprt terminated normally.

FILES
No files are needed by amslogprt.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
None.

BUGS
Report bugs to <ion-bugs@lgano.eecs.ohiou.edu>

SEE ALSO
amsrg(5)

perl v5.18.2 2016-09-07 1

AMSMIB(1) AMS executables AMSMIB(1)

NAME
amsmib — Asynchronous Message Service (AMS) MIB update utility

SYNOPSIS
amsmib application_name authority_name role_name continuum_name unit_name file_name

DESCRIPTION
amsmib is a utility program that announces reldly brief Management Information BasklIB) updates
to a select population @&MS modules. Becausamsd processes may ruRAMS modules in background
threads, and because a singi® is shared in common among all threads of process,amsmib may
update the MIBs used by registrars and/or configuration servers as well.

MIB updates can only be propagated to modules for which the subjestiib’ was defined in th&1iB
initialization files cited at module registration timall ION AMS modules implicitly invite messages on
subject ‘amsmib’ (from all modules registered in rolamsmib’ in all continua of the same venture) at
registration time if subject “amsmikénd role “amsmib’ are defined in thaiB.

amsmib registers in the root cell of the message space identifiegppljcation_namendauthority _name
within the local continuum. It registers in the rolEmMsmib’; if this role is not defined in the (initiaB
loaded byamsmib at registration time, then registration fails amsmib terminates.

amsmib then reads into a memoryffer up to 4095 bytes dfliB update text from the file identified by
file_name TheMIB update text must conform tomsxm(5) oramsrc(5) syntax, depending on whether or
not the intended recipient modules were compiled with the —~DN@EXBtion.

amsmib then ‘announces’ (seeams_announce(in ams(3)) the contents of the memoryfter to all
modules of this same venture (identified dpplication_namend authority_namg that reistered in the
indicated role, in the indicated unit of the indicated continulfncontinuum_nameés " then the message
will be sent to modules in all continudf. role_nameis ™ then all modules will be eligible to regeite
message, gardless of the role in which tigegstered. Ifunit_names " (the root unit) then all modules
will be eligible to receie the message, gerdless of the unit in which tygegstered.

Upon reception of the announced message, each destination module will apply aligf thpelates in the
content of the message, in exactly the same way that its ofigiBatas loaded from thiB initialization
file when the module started running.

If multiple modules are running in the same memory space (e.g.feredif threads of the same process, or
in different tasks on the same VxWKs target) then the updates will be applied multiple times, because all
modules in the same memory space share a difigle MIB updates are idempotent, so this is harmless
(though some diagnostics may be printed).

Moreover, an amsd daemon will hge a elevant “MIB update” module running in a background thread if
application_nameandauthority_namewere cited on the command line that started the daemovidpco
the role ‘amsd’ was defined in the initia¥lIB loaded at the timamsdbegan running). TheMIB exposed
to the configuration server and/ogigrar running in that daemon will Blise be updated upon reception
of the announced message.

The name of the subject of the announced mib update mess&agesisib’; if this subject is not defined
in the (initial) MIB loaded byamsmib then the message cannot be announdéar can ag potential
recipient module recee the message if subject “amsniils not defined in that moduleidIB.

EXIT STATUS
“ o
amsmibterminated normally.
“qr
An anomalous exit status, indicating thatsmibfailed to register.

FILES
A MIB initialization file with the applicable default name (se@esrg(5) andamsxm(5)) must be present.

perl v5.18.2 2016-09-07 1

AMSMIB(1) AMS executables AMSMIB(1)

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

The following diagnostics may be issued toitirelog log file:

amsmib subject undefined.
Theamsmib utility was unable to announce th#B update message.

amsmib domain role unknown.
Theamsmib utility was unable to announce th#B update message.

amsmib domain continuum unknown.
Theamsmib utility was unable to announce th#B update message.

amsmib domain unit unknown.
Theamsmib utility was unable to announce th#B update message.

amsmib cart’'openMIB file.
Theamsmib utility was unable to construct théiB update message.

MIB file length > 4096.
TheMIB update text file was too long to fit into themsmib message buffer.

Cant seek to end oMIB file.
I/0O error in processing thelB update text file.

Cant readMiB file.
I/O error in processing thelB update text file.

amsmib cart’announce 'amsmib’ message.
Theamsmib utility was unable to announce th#B update message, for reasons noted in the log file.

amsmib cart'regster.
Theamsmib utility failed to registerfor reasons noted in the log file.

Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO

amsd1), ams(3), amsrg(5), amsxm(5)

perl v5.18.2 2016-09-07 2

AMSPUB(1) AMSexecutables AMSPUB(1)

NAME

amspub — Asynchronous Message Service (AMS) tegrdor VxWorks
SYNOPSIS

amspub”application_namté, " authority_name, " subject_nante, "messge_text
DESCRIPTION

amspubis a message publication program designed toAtdst functionality in a VxWorks evironment.
When anamspub task is started, it gisters as an application module in the root unit of theture
identified by application_nameand authority_name looks up the subject number fsubject_name
publishes a single message with conteassge _texton that subject, unregisters, and terminates.

A configuration server for the local continuum and a registrar for the root unit of the indieatedev
(which may both be instantiated in a singlasd daemon task) must be running in order damspub to
run.

EXIT STATUS
-1 amspubterminated with an error as noted in the ion.log file.
" 0”
amspubterminated normally.

FILES
Theamspubsource code is in the amspubsub.c source file.

A MIB initialization file with the applicable default name (s@asrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
amspub can'regster.
amspubfailed to registerfor reasons noted in the ion.log file.

amspub: subject is unknown
amspubcant publish test messages on the specified subject; possibly an erromiBthtialization
file.

amspub can’publish message.
amspubfailed to publish, for reasons noted in the ion.log file.

BUGS
Report bugs to <ion—bugs@k@no.eecs.ohiou.edu>

SEE ALSO
amssulfl), amsrg(5)

perl v5.18.2 2016-09-07 1

AMSSHELL(1) AMS executables AMSSHELL(1)

NAME

amsshell = Asynchronous Message Service (AMS) test message sender (UNIX)
SYNOPSIS

amsshellunit_name role_name application_name authority hame [{p|s|q|a}]
DESCRIPTION

amsshellis a message issuance program designed tanestunctionality.

Whenamsshellis started, it rgisters as an application module in the unit identifieditiy_nameof the
venture identified byapplication_namendauthority _namethe role in which it rgisters must be indicated

in role_name A configuration server for the local continuum and a registrar for the indicated unit of the
indicated enture (which may both be instantiated in a sirgisd daemon task) must be running in order
for amsshellto run.

amsshellruns as tw threads: a background thread that reeeiwatches forAMS configuration eents
(including shutdown), together with a fgreund thread that acquires operating parameters and message
content in lines of console input to control the issuance of messages.

The first character of each line of input from stdin toaihesshellindicates the significance of that line:

= Sets the name of the subject on which all messages are to be issued, until superseded by'another *
line. Thesubject name must begin at the second character of thisQipgonally, subject name may
be followed by a single '’ (space) character and then ttteofehe first message to be issued on this
subject, which is to be issued immediately.

r Sets the number of the role constraining the domain of message issuance. The role numbgimmust be
at the second character of this line.

c Sets the number of the continuum constraining the domain of message issuance. The continuum
number must begin at the second character of this line.

u Sets the number of the unit constraining the domain of message isstiaragnit number must g
at the second character of this line.

m Sets the number of the module to which subsequent messages are to be issued. The module number
must begin at the second character of this line.

Terminatesamsshell

When the first character of a line of input from stdin is none of theeati® entire line is taken to be the
text of a message that is to be issued immediatelythe previously specified subject, to theviwasly
specified module (if applicable), and subject to the previously specified domain (if applicable).

By default,amsshellruns in ‘publish” mode: when a message is to be issued, it is simply published.
behaior can be werridden by providing a fifth command-line argumenaiosshell- a “mode” i ndicator.
The supported modes are as follows:

p Thisis “publish’ mode. Eery message is published.

s This is ‘send’ mode. Eery message is sent yaiely to the application module identified by the
specified module, unit, and continuum numbers.

g This is ‘query” mode. Ewery message is sent yaiely to the application module identified by the
specified module, unit, and continuum numbers, andshellthen waits for a reply message before
continuing.

a This is ‘announce’mode. Eery message is announced to all modules in the domain established by
the previously specified role, unit, and continuum numbers.

EXIT STATUS
-1 amsshellterminated with an error as noted in the ion.log file.

“ OH
amsshellterminated normally.

perl v5.18.2 2016-09-07 1

AMSSHELL(1) AMS executables AMSSHELL(1)

FILES

A MIB initialization file with the applicable default name (s@esrc(5)) must be present.
ENVIRONMENT

No environment variables apply.

DIAGNOSTICS
amsshell can'regster.
amsshellfailed to registerfor reasons noted in the ion.log file.

amsshell can’set event manager.
amsshellfailed to start its background thread, for reasons noted in the ion.log file.
BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
amslog1), amsrc(5)

perl v5.18.2 2016-09-07 2

AMSSTOP(1) AMSexecutables AMSSDP(1)

NAME

amsstop — Asynchronous Message Service (AMS) message space shutdown utility
SYNOPSIS

amsstopapplication_name authority_name
DESCRIPTION

amsstopis a utility program that terminates the operation of all registrars and all application modules
running in the message space which is that portion of the indisa8dventure that is operating in the
local continuum. If one of theamsd tasks that are functioning as registrars for this venture is also
functioning as the configuration server for the local continuum, then that configuratien serlso
terminated.

application_namendauthority_namenust identify amAMS venture that is known to operate in the local
continuum, as noted in thiB for theamsstopapplication module.

A message space can only be shut dowarhgstopif the subject‘amsstop’is defined in the MIBs of all
modules in the message spaces.

EXIT STATUS
“ o
amsstopterminated normally.
“qr
An anomalous exit status, indicating tlaambsstopwas wnable to rgister and therefore failed to shut
down its message space, for reasons noted in the ion.log file.

FILES
A MIB initialization file with the applicable default name (s@esrc(5) andamsxm(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitivelog log file:

amsstop canregster.
This message indicates thehsstopwas unable to rgister possibly because théamsstop’ role is
not defined in th&IB initialization file.

amsstop subject undefined.
This message indicates thansstopwas unable to stop the message space becauséthsstop”
subject is not defined in the&iB initialization file.

amsstop can’publish 'amsstop’ message.
This message indicates tlanhsstopwas unable to publish a message on subject 'amsstop’ for reasons
noted in thaon.log log file.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
amsrg(5)

perl v5.18.2 2016-09-07 1

AMSSUB(1) AMSexecutables AMSSUB(1)

NAME

amssub — Asynchronous Message Service (AMS) test messagerémeV/xWorks
SYNOPSIS

amssub"application_namt, " authority_namé, " subject_name
DESCRIPTION

amssubis a message reception program designed toAtSt functionality in a VxWorks evironment.
When anamssubtask is started, it registers as an application module in the root unit oEtheares
identified by application_nameand authority_name looks up the subject number fsubject_name
subscribes to that subject, and begins witgiand printing messages on that subject until terminated by
amsstop

A configuration server for the local continuum and a registrar for the root unit of the indiemtemev
(which may both be instantiated in a singlesd daemon task) must be running in order donssubto
run.

EXIT STATUS
-1 amssubterminated with an error as noted in the ion.log file.
“ o
amssubterminated normally.

FILES
Theamssubsource code is in the amspubsub.c source file.

A MIB initialization file with the applicable default name (s@esrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
amssub camregster.
amssubfailed to registerfor reasons noted in the ion.log file.

amssub: subject is unknown

amssubcant subscribe to messages on the specified subject; possibly an erroniis thntialization
file.

amssub can'subscribe.
amssubfailed to subscribe, for reasons noted in the ion.log file.

amssub can'get event.
amssubfailed to recere message, for reasons noted in the ion.log file.
BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
amspul{l), amsrg(5)

perl v5.18.2 2016-09-07 1

RAMSGATE(1) AMS executables RAMSGAE(1)

NAME

ramsgate — Remote AMS gatay daemon
SYNOPSIS

ramsgateapplication_name authority_nanfibundles_TTIL
DESCRIPTION

ramsgateis a backgrounddaemon’ task that functions as a Remates gaeway. application_namend
authority_namemust identify amMS venture that is knen to operate in the local continuum, as noted in
theMIB for theramsgateapplication module.

ramsgatewill register as an application module in the root unit of the indicated venture, so a configuration
sener for the local continuum and a registrar for the root unit of the indicated venture (which may both be
instantiated in a singl@msddaemon task) must be running in orderrlimsgateto commence operations.

ramsgatewith communicate with otheRAMS gateway modules in other continua by means of VS
network protocol noted in thRAMS gaeway endpointID for the local continuum, as identifiedxdicitly
or implicitly) in theMIB.

If the RAMS network protocol is‘bp” (i.e., theDTN Bundle Protocol), then a®N Bundle Protocol node
must be operating on the local computer and that node musgibtered in the8P endpoint identified by
theRAMS gaeway endpointID for the local continuumMoreover, in this case the value diindles_TTL-
if specified — will be takn as the lifetime in seconds that is to be declared fotbathdles’ issued by
ramsgate bundles_TTLldefaults to 86400 seconds (one day) if omitted.

EXIT STATUS
“ Oll
ramsgateterminated normally.

“qr
ramsgatefailed, for reasons noted in the ion.log file; the task terminated.

FILES
A MIB initialization file with the applicable default name (s@esrc(5)) must be present.

ramsgaterecords all ‘petitions” (requests for data on behalf &S modules in other continua) in a file
named ‘petition.log”. At startup, theamsgatedaemon automatically reads and processes all petitions in
the petition.log file just as if tlyewere receied in real time. Note that this means that you can cause
petitions to be, in éct, “pre-receved” by simply editing this file prior to startup. This can be an
especially dkctive way to configure eRAMS network in which long signal propagjon times wuld
otherwise retard real-time petitioning and thus delay the onset of fully functional message exchange.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

ramsgate cantun.
RAMS gaeway functionality failed, for reasons noted in the ion.log file.

BUGS
Note that theAMS design principle of receiving messages immediately and enqueuing thereriturad
ingestion by the application module - rather than imposing application-layecdidrol onAMS message
traffic — enables high performance but reakamsgate vulnerable to message spik Sinceproduction
and transmission of bundles is typically slower thans message receptiornver TCP service, thelON
working memory and/or heap spaceditable for AMS event insertion and/or undle production can be
quickly exhausted if a high rate of application message production is sustained for a long enough time.
Mechanisms for defending against this sort of failure are under, fwidfpr nov the best mitigations are
simply to (a) build with compiler option -AMS_INDUSTRIAL=1, (b) allocate as much space as possible
to ION working memory anéDRheap (se@nconfig(5)) and (c) limit the rate odMS message issuance.

Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

RAMSGATE(1) AMS executables RAMSGAE(1)

SEE ALSO
amsrg(5), petition_log(5)

perl v5.18.2 2016-09-07 2

ACSADMIN(1) BP executables ASADMIN(L)

NAME

acsadmin — ION Agggete Custody Signal (ACS) administration interface

SYNOPSIS

acsadmin[commands_filenanje

DESCRIPTION

acsadminconfigures agggete custody signal behavior for the logaN node.

It operates in response AGS configuration commands found in the fil@mmands_filenam# provided,; if
not,acsadminprints a simple prompt (:) so that the user may type commands directly into standard input.

The format of commands farommands_filenamean be queried fronacsadmin with the 'h’ or '?’
commands at the prompt. The commands are documenaedria(5).

EXIT STATUS

“0” Successful completion ¢fCS administration.

EXAMPLES

FILES

acsadmin
Enter interactie ACS configuration command entry mode.

acsadmin hostl.acs
Execute all configuration commandshiostl.acsthen terminate immediately.

Seeacsrc(5) for details of thé\CS configuration commands.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

Note: al ION administration utilities xgect source file input to be linesA$ClIl text that are NL-delimited.
If you edit the acsrc file on aiMlows machine, be sure tse dos2unix to cowert it to Unix text f ormat
before presenting it tacsadmin Otherwiseacsadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

acsadmin cam’attach tolON.
There is naSDR data store foacsadminto use. You should runionadmin(1) first, to set up asDR
data store fofON.

Cant open command file...
Thecommands_filenangpecified in the command line dogwxist.

Various errors that doh'‘causeacsadminto fail but are noted in thin.log log file may be caused by
improperly formatted commandsvgn at the prompt or in thecommands_filenaméle. Pleasesee
acsrc(5) for details.

Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO

ionadmin(1), bpadmin(1), acsrc(b)

perl v5.18.2 2016-09-07 1

ACSLIST(1) BPexecutables ASLIST(1)

NAME

acslist — Aggrgate Custody Signals (ACS) utility for checking custody IDs.
SYNOPSIS

acslist[-s|——stdouf]
DESCRIPTION

acslistis a utility program that lists all mappings fromrlleID to custodyiD currently in the local indle
agent'sACS ID database, in no specific ordek bundle D (defined iInRFC505(is the tuple of (sourcglD,
creation time, creation count, fragment offset, fragment lengthgustodyID (defined in draft-jenkins-
aggregeae-custody-signals) is an integer that the local bundle agent will be able to mapridiel for
the purposes of aggraing and compressing custody signals.

The format for mappings is:
(ipn:13.1,333823688,95,0,0)—>(26)
While listing, acslistalso checks the custody database for self-consistgnend if it detects ayerrors it
will print a line starting with “Mismatch:’and describing the error.
—s|-—stdout tells acslistto print results to stdout, rather than to i log.
EXIT STATUS
° acslistterminated after verifying the consistgraf the custodyD database.
“q
acslistwas wnable to attach to th&CS database, or it detected an inconsistenc

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued:

Cant attach toACS.
acsadminhas not yet initializedCS operations.

Mismatch: (description of the mismatch)
acslistdetected an inconsistgnin the database; this is a bugA@s.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
acsadmir(1), bplist(1)

perl v5.18.2 2016-09-07 1

BIBECLO(1) BPexecutables BIBECLO(1)

NAME
bibeclo — BP covergence layer output task using bundle—in—bundle encapsulation

SYNOPSIS
bibeclo

DESCRIPTION
bibeclo is a background‘daemon’ task that extractsumdles from the queues of bundles ready for
transmission via undle-in-tundle encapsulatiorB(BE) to remote bundle protocol agents, encapsulates
them inBP administratve records of (non-standard) record typeBP (ENCAPSULATED_BUNDLE, and
sends those administnegi records to designatddTN nodes. Theeceving nodes are expected to process
these receied administratve records by simply dispatching the encapsulated bundles ag ihdldebeen
receved from neighboring nodes in the normal course of operations.

Note thatbibeclo is a ‘promiscuous” CLO daemon, able to transmit bundles to/ &#BE destination
induct. Itsduct name is "* rather than the induct name oy aimgle BIBE destination induct to which it
might be dedicated, so scheme configuration directhat cite this outduct must provide destination induct
IDs. For theBIBE corvergence-layer protocol, destination induct IDs are sing#hendpoint IDs.

bibeclo is spawned automatically bgpadmin in response to thes” (START) command that starts
operation of the Bundle Protocol, and it is terminatedteydmin in response to an 'x'TOP command.
bibeclo can also be spawned and terminated in responSYABT and STOP commands that pertain
specifically to theBIBE corvergence layer protocol.

EXIT STATUS
“ 0”
bibeclo terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sol the problem identified in the log file and usgadmin to restart
bibeclo.

“ 1”
bibeclo terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then usgmadmin to restarbibeclo.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

bibeclo cart attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such bibe duct.
No BIBE outduct with duct name "™ has been added to Bifedatabase. Uskpadmin to stop the
BIBE cornvergence-layer protocol, add the outduct, and then restaBi@&eprotocol.

CLOtask is already started for this duct.
Redundant initiation dfibeclo.

Cant create bundle fo€LO; stopping.
Insufficient memory for bffer used to decode the primary blocks of outbound bundles, so that time-to-
live and class of service can be determined. This is a system €@tmeckION log, correct problem,
and restarBIBE.

Cant decode bundleCLO stopping.
This is a system erroiCheckION log, correct problem, and rest&iBE.

perl v5.18.2 2016-09-07 1

BIBECLO(1) BPexecutables BIBECLO(1)

Cant prepend heade€LO stopping.
This is a system erroiCheckION log, correct problem, and rest&iBE.

Cant send encapsulated bund{&;0 stopping.
This is a system erroiCheckION log, correct problem, and rest&iBE.

['] Encapsulated bundle not sent.
Malformed bundle issuance request, which might be a software @watact technical support.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bp(3)

perl v5.18.2 2016-09-07 2

BPADMIN(1) BP executables BRDMIN(1)

NAME

bpadmin — ION Bundle Protocol (BP) administration interface

SYNOPSIS

bpadmin [commands_filenamje]

DESCRIPTION

bpadmin configures, starts, manages, and stops bundle protocol operations for th@Nauade.

It operates in response B® configuration commands found in the flemmands_filenamé provided; if

not, bpadmin prints a simple prompt (;) so that the user may type commands directly into standard input.
If commands_filenamis a period (.), the effect is the same as if a command file containing the single
command X’ were passed fgpadmin — that is, thelON node’s bpclock task, forwarder tasks, and
convergence layer adapter tasks are stopped.

The format of commands facommands_filenamean be queried fronbpadmin with the 'h’ or '?’
commands at the prompt. The commands are documeribgaci(b).

EXIT STATUS

“0” Successful completion &P administration.

EXAMPLES

FILES

bpadmin
Enter interactie BP configuration command entry mode.

bpadmin hostl.bp
Execute all configuration commandshiost1.bpthen terminate immediately.

bpadmin .
Stop all bundle protocol operations on the local node.

Seebprc(5) for details of th&P configuration commands.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

Note: al ION administration utilities expect source file input to be lineasitil text that are NL-delimited.
If you edit the bprc file on a Wdows machine, be sure tse dos2unix to cowvert it to Unix text f ormat
before presenting it tbpadmin. Otherwise bpadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

ION cant set custodiareID information.
The custodial_endpoint_idpecified in théP initialization ('1’) command is malformedRemember
that the format for this gument is iprelement_numbed and that the final O is required, as
custodial/administration service isnalys service 0.Additional detail for this error is provided if one
of the following other errors is present:

MalformedEID.
Malformed custodiaiEID.

bpadmin cart’attach tolON.
There is noSDR data store fobpadminto use. You should runionadmin(1) first, to set up asDR
data store folON.

Cant open command file...
Thecommands_filenangpecified in the command line dogsxist.

Various errors that dot’causebpadmin to fail but are noted in th®n.log log file may be caused by
improperly formatted commandsvgn at he prompt or in theommands_filenanfde. Pleaseseebprc(5)
for details.

perl v5.18.2 2016-09-07 1

BPADMIN(1) BP executables BRDMIN(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
ionadmin(1), bprc(5), ipnadmin(1), ipnrc (5), dtnadmin(1), dtnrc(5)

perl v5.18.2 2016-09-07

BPCANCEL(1) BPexecutables BPCANCEL(1)

NAME

bpcancel - Bundle Protocol (BP) bundle cancellation utility
SYNOPSIS

bpcancelsource_EID creation_seconflsreation_counffragment_offseffragment_lengtl]
DESCRIPTION

bpcancel attempts to locate the bundle identified by the command-line paransdteysvand cancel
transmission of thisundle. Bundlesor which multiple copies he keen queued for transmission dare
canceled, because one or more of those copies might alreeg\oden transmitted.Transmission of a
bundle that has ner been cloned and that is still in local bundle storage is cancelled by simulation of an
immediate time-to-lie expiration.

EXIT STATUS
“ o

bpcancelhas terminated.

FILES

No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitivelog log file:

Cant attach toBP.
bpadmin has not yet initialize@P operations.

bpcancel failed finding bundle.
The attempt to locate the subject bundle failed due to some serious systenit evilbprobably be
necessary to terminate and re-initialize the le@al node.

bpcancel failed destroying bundle.
Probably an unreserable database erran which case the locabN node must be terminated and re-
initialized.

bpcancel failed.
Probably an unresrable database erran which case the locadN node must be terminated and re-
initialized.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
bplist(1)

perl v5.18.2 2016-09-07 1

BPCHAT(1) BPexecutables BPCHA(1)

NAME
bpchat — Bundle Protocol chat test program

SYNOPSIS
bpchat sourceEID destEIDct]

DESCRIPTION
bpchat uses Bundle Protocol to send input text in bundles, and display the payload widréaailes as
output. Itis similar to the talk utilitybut operates\er the Bundle Protocol. It operatesdila @mbination
of the bpsource and bpsink utilities in one program (enligsource,bpchat emits bundles with a
sourceEID.

If the sourceEIDanddestEIDare bothbpchat applications, then teovusers can chat with each otheteo
the Bundle Protocol: lines that one user types on #ybdard will be transportedver the network in
bundles and displayed on the screen of the other user (and/¢hee)e

bpchat terminates upon receiving tis¢GQUIT signal, i.e., “C from thedyboard.
EXIT STATUS
“ 0”
bpchat has terminated normallyAny problems encountered during operation will be noted in the
ion.log log file.

“qr
bpchat has terminated due toB® transmit or receptioreflure. Detailsshould be noted in then.log
log file.
OPTIONS
[ct] If the string ‘ct’” is appended as the last argument, then bundles will be sent with custody transfer
requested.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produceddpghat are written to théON log file ion.log.

Cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Cant open own endpoint.
Another application has already opemsehEndpointld Terminate that application and rerun.

bpchat bundle reception failed.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

No space foECO extent.

ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant createzCoO.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpchat cart’'send echo bundle.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

BPCHAT(1) BPexecutables BPCHA(1)

SEE ALSO
bpechd1), bpsourcegl), bpsink(1), bp(3)

perl v5.18.2 2016-09-07

BPCLOCK(1) BPexecutables BPCLOCK(1)

NAME
bpclock — Bundle Protocol (BP) daemon task for managing schedtdets e

SYNOPSIS
bpclock

DESCRIPTION
bpclock is a backgrounddaemon’ task that periodically performs scheduled Bundle Protocolites.
It is spawned automatically Bypadmin in response to thes” command that starts operation of Bundle
Protocol on the locabN node, and it is terminated lmpadmin in response to an ’X'YTOR command.

Once per secontpclock takes the following action:

First it (a) destroys all bundles whose TTLséd@xwpired, (b) enqueues for re-forwarding alindles

that were expected to Ve been transmitted (by ceergence-layer output tasks) bywdout are still

stuck in their assigned transmission queues, and (c) enqueues for re-forwarding all bundles for which
custody has not yet been taken that were expectededoben receied and acknowledged by mo(as

noted by irocation of thebpMemo()function by some carergence-layer adapter that had CL-specific
insight into the appropriate interval to wait for custody acceptance).

Thenbpclock adjusts the transmission and receptidnottles” that control rates dfTP transmission
to and reception from neighboring nodes, in response to data rate changes as note®Fi the
database byfxclock.

bpclock then checks for bundle origination activity that has been blocked due thdiesfallocated
space foBP traffic in the ION data store: if space for bundle origination isvravailable, bpclock
gives the bundle production throttle semaphore to unblock that activity.

Finally, bpclock applies rate control to all ceergence-layer protocol inducts and outducts:

For each inductppclock increases the current capacity of the duct by the applicable nominal data
reception rate.If the revised current capacity is greater than zbpzjock gives the throttles
semaphore to unblock data acquisition (which correspondingly reduces the current capacity of the
duct) by the associated a@ngence layer input task.

For each outductbpclock increases the current capacity of the duct by the applicable nominal
data transmission rate. If theviged current capacity is greater than zdmoglock gives the
throttle’s £maphore to unblock data transmission (which correspondingly reduces the current
capacity of the duct) by the associatedveogence layer output task.
EXIT STATUS
“ o
bpclock terminated, for reasons noted in tio@.log file. If this termination was not commanded,
investigate and sol/the problem identified in the log file and Uggdmin to restarbpclock.
“qr
bpclock was unable to attach to Bundle Protocol operations, probably betguassmin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

bpclock cart attach toBP.
bpadmin has not yet initialize@P operations.

perl v5.18.2 2016-09-07 1

BPCLOCK(1) BPexecutables BPCLOCK(1)

Cant dispatch gents.
An unrecwoerable database error was encountetsatlock terminates.

Cant adjust throttles.
An unrecwoerable database error was encountetsatlock terminates.

BUGS
Report bugs to <ion—bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), rfxclock(1)

perl v5.18.2 2016-09-07 2

BPCOUNTER(1) BRexecutables BPCOUNTER(1)

NAME

bpcounter — Bundle Protocol reception test program
SYNOPSIS

bpcounter ownEndpointidmaxCourit
DESCRIPTION

bpcounter uses Bundle Protocol to reeeigpplication data units from a remdtedri ver application task.
When the total number of application data units it has vedt&kceedsmaxCountit terminates and prints
its reception count. IfnaxCounis omitted, the default limit is 2 billion application data units.
EXIT STATUS
“ o
bpcounter has terminated Any problems encountered during operation will be noted indhdog
log file.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produceddpgounter are written to théON log file ion.log.

Cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Cant open own endpoint.
Another application has already opemsehEndpointld Terminate that application and rerun.

bpcounter bundle reception failed.

BP system error Check for earlier diagnostic messages describing the cause of the error; correct

problem and rerun.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpdriver(1), bpechd1), bp(3)

perl v5.18.2 2016-09-07 1

BPDRIVER(1) BPexecutables BPDRIVER(1)

NAME
bpdriver — Bundle Protocol transmission test program
SYNOPSIS
bpdriver nbrOfCycles ownEndpointld destinationEndpoirftehgth] [tTTL]
DESCRIPTION
bpdriver uses Bundle Protocol to sendrOfCyclesapplication data units of length indicatedlbggth to
a wunterpart application task that has openedthendpoint identified byestinationEndpointld
If omitted, lengthdefaults to 60000.

TTL indicates the number of seconds thdies may remain in the network, undeded, before the are
automatically destroyed. If omitte@TL defaults to 300 seconds.

bpdriver normally runs in‘echo” mode: after sending each bundle #itg for an acknowledgmentibdle
before sending the next onEor this purpose, the counterpart application task shoulibbeha

Alternatively bpdriver can run in ‘streaming’ mode, i.e., without expecting or receig
acknavledgments. Streamingode is enabled whdengthis specified as a getive rumber in which
case the addite inverse oflengthis used as the fefctive value oflength For this purpose, the counterpart
application task should h@pcounter.

If the efective value oflengthis 1, the sizes of the transmitted service data units will be randomly selected
multiples of 1024 in the range 1024 to 62464.

bpdriver normally runs with custody transfer disabletb request custody transfer for all bundles sent by
bpdriver, specify nbrOfCyclesas a ngaive rumber; the addite inverse ofnbrOfCycleswill be used as its
effective value in this case.

When all copies of the file kia keen sentbpdriver prints a performance report.
EXIT STATUS
" OH
bpdriver has terminatedAny problems encountered during operation will be noted indhgog log
file.

FILES
The service data units transmitted lyydriver are sequences of text obtained from a file in the current
working directory named “bpdvierAduFile”, which bpdriver creates automatically.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produceddpgiri ver are written to theON log file ion.log.

Cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Cant open own endpoint.
Another application has already opemsehEndpointld Terminate that application and rerun.

Cant createADU file
Operating system erroCheck errtext, correct problem, and rerun.

Error writing toADU file
Operating system erroCheck errtext, correct problem, and rerun.

bpdriver can't create file ref.
ION system errar Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpdriver can't createzCO.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

perl v5.18.2 2016-09-07 1

BPDRIVER(1) BPexecutables BPDRIVER(1)

bpdriver can't send message
Bundle Protocol service to the remote endpoint has been stopped.

bpdriver reception failed
bpdriver is in “echo” mode, and Bundle Protocol dedry service has been stopped.

BUGS
Report bugs to <ion—bugs@@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpcounte(1), bpechql), bp(3)

perl v5.18.2 2016-09-07 2

BPECHO(1) BRexecutables BPECHO(1)

NAME
bpecho — Bundle Protocol reception test program

SYNOPSIS
bpechoownEndpointid

DESCRIPTION
bpechouses Bundle Protocol to reeeigpplication data units from a remdtedriver application task.In
response to each reeed goplication data unit it sends back aecho’ application data unit of length 2,
the NULL-terminated string “x”.

bpechoterminates upon receiving tis$GQUIT signal, i.e., "C from thedyboard.
EXIT STATUS
“ g
bpecho has terminated normallyAny problems encountered during operation will be noted in the
ion.log log file.
“qr
bpechohas terminated due toB#® reception &ilure. Detailsshould be noted in tHen.log log file.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produceddpgechoare written to theéON log file ion.log.

Cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Cant open own endpoint.
Another application has already opemsehEndpointld Terminate that application and rerun.

bpecho bundle reception failed.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

No space fozCO extent.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant createzCoO.
ION system errar Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpecho cart’'send echo bundle.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpdriver(1), bpcountel), bp(3)

perl v5.18.2 2016-09-07 1

BPING(1) BPexecutables BPING(1)

NAME

bping — Send and rese Bundle Protocol echo bundles.
SYNOPSIS

bping [-c coun] [-i interval] [—p priority] [—q wait] [-r flag] [t tt]] srcEID destEIQreporttoEID]
DESCRIPTION

bping sends bundles frosrcEID to destEID If the destEIDechoes the bundles back (for instance, it is a
bpechoendpoint),bping will print the round-trip time. When complete, bping will print statistics before
exiting. Itis very similar tgping, except it works with the bundle protocol.

bping terminates when one of the following happens: it kasethe SIGINT signal (Ctrl+C), it receies
responses to all of the bundles it sent, or it has sechatitof its bundles and waitedait seconds.

When bping is executed in a VxWorks oIRTEMS ervironment, its runtime guments are presented
positionally rather than byeword, in this order: count, interval, priorjtyait, flags,TTL, verbosity (a
Boolean, defaulting to zero), sourew, destinatiorElD, report-toEID.

SourceEID and destinatiolID are alvays required.

EXIT STATUS
These exit statuses are taken froimyg.
" 0“
bping has terminated normallgnd receved responses to all the packets it sent.
" 1”
bping has terminated normalliut it did not receie responses to all the packets it sent.
“on
bping has terminated due to an err@etails should be noted in tien.log log file.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produceddmyng are written to théON log file ion.logand printed to standard error
Diagnostic messages that docausebping to terminate indicate aiure parsing an echo responsmtie.
This means thatlestEIDisn’t an eho endpoint: i responding with some otheumhdle message of an
unexpected format.

Cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Cant open own endpoint.
Another application has already opemsehEndpointld Terminate that application and rerun.

bping bundle reception failed.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

No space fozCO extent.
ION system errar Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant createzCO.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bping cant send echo bundle.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

perl v5.18.2 2016-09-07 1

BPING(1) BPexecutables BPING(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpechq1), bptrace(1), bpadmin(1), bp(3), ping(8)

perl v5.18.2 2016-09-07 2

BPLIST(1) BPexecutables BPLIST(1)

NAME

bplist — Bundle Protocol (BP) utility for listing queued bundles
SYNOPSIS

bplist
DESCRIPTION

bplist is a utility program that lists all bundles currently in the local bundle ag#éitieline” list, in
expiration-time sequence. Identifying primary block information is printed, together witlarttbASCII
dumps of the payload and all extension blocks.

EXIT STATUS
“ Q"
bplist terminated, for reasons noted in tbe.log file.
“qr
bplist was wnable to attach to Bundle Protocol operations, probably bedmasimin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithrelog log file:

Cant attach toBP.
bpadmin has not yet initialize@P operations.

BUGS
Report bugs to <ion—-bugs@@no.eecs.ohiou.edu>

SEE ALSO
bpclock(1)

perl v5.18.2 2016-09-07 1

BPNMTEST(1) BPexecutables BPNMTEST(1)

NAME
bpnmtest — Bundle Protocol (BP) network management statistics test

SYNOPSIS
bpnmtest

DESCRIPTION
bpnmtest simply prints to stdout messages containing the current values B® aktwork management
tallies, then terminates.

EXIT STATUS
“ OH
bpnmtesthas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

Cant attach toBP.
bpadmin has not yet initialize@P operations.

BUGS
Report bugs to <ion-bugs@lgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

BPRECVFILE(1) BPexecutables BPRECVFILE(L)

NAME

bprecvfile — Bundle Protocol (BP) file reception utility
SYNOPSIS

bprecvfile own_endpoint_IOmax_file}
DESCRIPTION

bprecvfile is intended to seevas he counterpart tbpsendfile It usesbp_receive()to receve hundles
containing file content. The content of each bundle is simply written to a file naestiléeN” where N is
the total number of bundles reead snce the program lgan running.

If a max_filesvalue of N (where N > Q) is provided, the program will terminate automatically upon
completing its Nth file reception. Otherwise it will run indefinitely; use "C to terminate the program.

EXIT STATUS
“ o
bprecvfile has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

Cant attach toBP.
bpadmin has not yet initialize@P operations.

Cant open own endpoint.
Another BP application task currently haswn_endpoint_IDopen for bundle origination and
reception. Ty again after that task has terminated. If no such task exists, it mayarhahed while
still holding the endpoint open; the easiest workaround is to select a different source endpoint.

bprecvfile bundle reception failed.

BP system error Check for earlier diagnostic messages describing the cause of the error; correct

problem and rerun.

bprecvfile: cart’open test file
File system errorbprecvfile terminates.

bprecvfile: cart' receve hundle content.

BP system error Check for earlier diagnostic messages describing the cause of the error; correct

problem and rerun.

bprecvfile: cart' write to test file
File system errorbprecvfile terminates.

bprecvfile cannot continue.

BP system error Check for earlier diagnostic messages describing the cause of the error; correct

problem and rerun.
bprecvfile: cart'handle bundle delery.

BP system error Check for earlier diagnostic messages describing the cause of the error; correct

problem and rerun.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpsendfilgl1), bp(3)

perl v5.18.2 2016-09-07 1

BPSENDFILE(1) BRexecutables BPSENDFILE(1)

NAME

bpsendfile — Bundle Protocol (BP) file transmission utility
SYNOPSIS

bpsendfileown_endpoint_ID destination_endpoint_ID file_ndelass_of servide
DESCRIPTION

bpsendfile usesbp_send()to issue a singleumdle to a designated destination endpoint, containing the
contents of the file identified kijle_name then terminates. The bundle is sent with no custody transfer
requested, witlfTL of 300 seconds (5 minutesyVhenclass_of servicés omitted, the bundle is sent at
standard priority; for details of tretass_of servicparameterseebptrace(1).

EXIT STATUS
" 0“
bpsendfilehas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

Cant attach toBP.
bpadmin has not yet initialize@P operations.

Cant open own endpoint.
Another BP application task currently haswn_endpoint_IDopen for bundle origination and
reception. Ty again after that task has terminated. If no such task exists, it mayrhahed while
still holding the endpoint open; the easiest workaround is to select a different source endpoint.

Cant stat the file
Operating system erroCheck errtext, correct problem, and rerun.

bpsendfile cart’create file ref.
Probably an unreserable database erton which case the locaN node must be terminated and re-
initialized.

bpsendfile cam’createzCO.
Probably an unresrable database erran which case the locabN node must be terminated and re-
initialized.

bpsendfile can’send file in bundle.

BP system error Check for earlier diagnostic messages describing the cause of the error; correct

problem and rerun.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bprecvfilg(1), bp(3)

perl v5.18.2 2016-09-07 1

BPSINK(1) BPexecutables BPSINK(1)

NAME
bpsink — Bundle Protocol reception test program

SYNOPSIS
bpsink ownEndpointld

DESCRIPTION
bpsink uses Bundle Protocol to regeigplication data units from a remolgsource application task.
For each application data unit it rewes, it prints theADU’s length and— if length is less than 86- its
text.

bpsink terminates upon receiving tIGQUIT signal, i.e., "C from thedyboard.
EXIT STATUS
“ g
bpsink has terminated Any problems encountered during operation will be noted indhdog log
file.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produceddpgink are written to th¢ON log file ion.log.

Cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Cant open own endpoint.
Another application has already opemsehEndpointld Terminate that application and rerun.

bpsink bundle reception failed.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant receve payload.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant handle delvery.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpsourcgl), bp(3)

perl v5.18.2 2016-09-07 1

BPSOURCE(1) BRxecutables BPSOURCE(1)

NAME

bpsource — Bundle Protocol transmission test shell
SYNOPSIS

bpsourcedestinationEndpointl§ text] [-t TTL]
DESCRIPTION

When text is supplied,bpsource simply uses Bundle Protocol to setekt to a counterparbpsink
application task that has opened Breendpoint identified byestinationEndpointlcthen terminates.

Otherwise bpsource offers the user an interaeti “shell” for testing Bundle Protocol data transmission.
bpsourceprints a prompt string (') to stdout, accepts a string of text from stdin, uses Bundle Protocol to
send the string to a counterpésink application task that has opened &R endpoint identified by
destinationEndpointldthen prints another prompt string and so din. terminate the program, enter a
string consisting of a single exclamation point (!) character.

TTL indicates the number of seconds thdies may remain in the network, undeded, before theare
automatically destroyed. If omitte@TL defaults to 300 seconds.

The source endpoind for each hindle sent bybpsourceis the null endpointD, i.e., the bundles are
anorymous. Allbundles are sent standard priority with no custody transfer and no status reports requested.
EXIT STATUS
" 0“
bpsourcehas terminatedAny problems encountered during operation will be noted inahéog log
file.

FILES
The service data units transmitted lgysource are sequences ofxteobtained from a file in the current
working directory named “bpsourceAduFile”, whidipsourcecreates automatically.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produceddpgourceare written to théON log file ion.log.

Cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

bpsource fgets failed
Operating system erroCheck errtext, correct problem, and rerun.

No space fozCO extent.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant createzCO extent.
ION system errar Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpsource cab’'sendADU
Bundle Protocol service to the remote endpoint has been stopped.

BUGS
Report bugs to <ion—bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpsink(1), bp(3)

perl v5.18.2 2016-09-07 1

BPSTATS(1) BPexecutables BPSATS(1)

NAME
bpstats — Bundle Protocol (BP) processing statistics query utility

SYNOPSIS
bpstats

DESCRIPTION
bpstats simply logs messages containing the current values @Pafirocessing statistics accumulators,
then terminates.

EXIT STATUS
“ OH
bpstatshas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

bpstats can’attach toBP.
bpadmin has not yet initialize@P operations.

BUGS
Report bugs to <ion-bugs@lgano.eecs.ohiou.edu>

SEE ALSO
ion(3)

perl v5.18.2 2016-09-07 1

BPSTATS2(1) BPexecutables BPSATS2(1)

NAME

bpstats2 — Bundle Protocol (BP) processing statistics query utility via bundles
SYNOPSIS

bpstats2sourceEID[default destEID][ct]
DESCRIPTION

bpstats2 creates bindles containing the current values of Bift processing statistics accumulators.
creates these bundles when:

e an interrogation bundle is dedred tosourceEID the contents of the bundle are discarded, & ne
statistics bundle is generated and sent to the source of the iatemolundle. Theformat of the
interrogation bundle is irrekant.

e aSIGUSRI1signal is deliered to thebpstats2application: a ne statistics bundle is generated and sent
to default destEID

EXIT STATUS
" Oll
bpstats2has terminated. Anproblems encountered during operation will be noted irichdog log
file.
“qr
bpstats2failed to start up or receg tundles. Diagnoséhe issue reported in then.log file and try
again.
OPTIONS

[ct] If the string ‘ct’’ is appended as the last argument, then statistics bundles will be sent with custody

transfer requested.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

bpstats2 canbp_attach()
bpadmin has not yet initialize@P operations.

bpstats2 cam'open own endpoint.
AnotherBP application has opened that endpoint; close it and try again.

No space fozCO extent.

ION system error Check for earlier diagnostic messages describing the cause of the error; correct

problem and rerun.
Cant createzCO extent.

ION system error Check for earlier diagnostic messages describing the cause of the error; correct

problem and rerun.

bpstats2 cam'send stats bundle.
Bundle Protocol service to the remote endpoint has been stopped.

Cant send stats: bad de&tD (destEID)
The destinatiorEID printed is an imalid destinationEID. The destinatiorEID may be specified in
default destEIDor the sourcé&ID of the interrogation tindle. Ensur¢hatdefault destElOs anEID
that is \alid for ION, and that the interrogator is a sSougb that is also a valid destinati@iD. Note
that “dtn:none”is not a valid destinatio&ID, but is a \alid sourceEID.

NOTES
A very simple interrogator is bpchat which can repeatedly intaetedgpstats2 by just striking the enter

key.

perl v5.18.2 2016-09-07 1

BPSTATS2(1) BPexecutables BPSATS2(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpstatq1), bpchat(1)

perl v5.18.2 2016-09-07 2

BPTRACE(1) BPexecutables BPTREE(1)

NAME
bptrace — Bundle Protocol (BP) network trace utility

SYNOPSIS
bptrace own_endpoint_ID destination_endpoint_IDeport-to_endpoint_ID TTL class_of service
"trace_text [status_report_flads

DESCRIPTION
bptrace usesbp_send(}o issue a singleundle to a designated destination endpoint, with status reporting
options enabled as selected by the then terminatesThe status reports returned as the bundle makes its
way through the network provide a weof the operation of the network as currently configured.

TTL indicates the number of seconds the trace bundle may remain in the networkietetidliefore it is
automatically destroyed.

class_of servicdas custody-requestegriority[.ordinal[.unreliablecritical[.flow-label]], where custody-
requestednust be 0 or 1 (Boolearpriority must be 0 (bulk) or 1 (standard) or Xfgedited),ordinal must

be 0-254 unreliablemust be 0 or 1 (Booleangritical must also be 0 or 1 (Boolean), dtmiv-labelmay

be ary unsigned intger. ordinal is ignored ifpriority is not 2. Settingclass_of servicéo “0.2.254" or
“1.2.254" gives a hundle the highest possible prioritySetting unreliable to 1 causesBP to foregyo
retransmission in thevent of data loss, both at ti&® layer and at the ceprgence layer Settingcritical to

1 causes contact graph routing to forward thadie on all plausible routes rather than just thest’ route

it computes; this may result in multiple copies of thedie arriving at the destination endpoint, but when
used in conjunction with priority 2.254 it ensures that the bundle will beedsdi as soon as psically
possible.

trace_textcan be apstring of ASCII text; alternatvely, if we want to send a file, it can b@’ f ollowed by
the file name.

status_report_flagsnust be a sequence of status report flags, separated by commas, with ho embedded
whitespace. Eacstatus report flag must be one of the following; ctviwd, dlv, del.

EXIT STATUS
“ Q"
bptrace has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

bptrace cant’attach toBP.
bpadmin has not yet initialize@P operations.

bptrace cart’open own endpoint.
Another BP application task currently haswn_endpoint_IDopen for bundle origination and
reception. Ty again after that task has terminated. If no such task exists, it mayraahed while
still holding the endpoint open; the easiest workaround is to select a different source endpoint.

No space for bptrace text.
Probably an unresgrable database erran which case the locadN node must be terminated and re-
initialized.

bptrace cant’createzCO.
Probably an unreserable database erton which case the locadN node must be terminated and re-
initialized.

perl v5.18.2 2016-09-07 1

BPTRACE(1) BPexecutables BPTREE(1)

bptrace car’send message.
BP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bp(3)

perl v5.18.2 2016-09-07 2

BPTRANSIT(1) BPexecutables BPTRANSIT(1)

NAME
bptransit — Bundle Protocol (BP) daemon task for forwarding ved¢dundles

SYNOPSIS
bptransit

DESCRIPTION
bptransit is a backgrounddaemon’ task that is responsible for presenting@’s forwarding daemons
ary bundles that were recad from other nodes (i.e., bundles whose payloads reside in Inkstmd
space) and are destined for yet other nodesdoing so, it migrates these bundles from Inbouunffieb
space to Outboundulfer space on the same prioritized basis as the insertion of locally sourced outbound
bundles.

Management of the bptransit daemon is automatic. It is spawned automatidafizchyin in response to
the ’'s’ command that starts operation of Bundle Protocol on the lIosahode, and it is terminated by
bpadmin in response to an ’X'YTOR command.

Wheneer a receved bundle is determined to W@ a estination other than the local node, a pointer to that
bundle is appended to one ofdvgueues of ‘In-transit” bundles, one for bundles whose forwarding is
provisional (depending on thevalability of OutboundzCO buffer space; bundles in this queue are
potentially subject to congestion loss) and one for bundles whose forwarding is confiBunedles
receved via corvergence-layer adapters that can sustaiw ffontrol, such asSTCP,are appended to the

“ confirmed’ queue, while those from CLAs that cannot sustaiw ffontrol (such a&TP) are appended to
the “provisional’ queue.

bptransit comprises tw threads, one for each in-transit queue. The confirmed in-transit thread dequeues
bundles from the ‘confirmed’ queue and m@es them from Inbound to Outboun#dCO buffer space,
blocking (if necessary) until space becomesilable. Theprovisional in-transit queue dequeuasmbles
from the ‘provisional” queue and mees them from Inbound to OutbourgCO buffer space if Outbound
space is\ailable, discarding (“abandoning”) them if it is not.
EXIT STATUS
" Oll
bptransit terminated, for reasons noted in tbe.log file. If this termination was not commanded,
investigate and sok/the problem identified in the log file and ugEdmin to restarbptransit.
“qr
bptransit was unable to attach to Bundle Protocol operations, probably bebaasimin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

bptransit cart’attach toBP.
bpadmin has not yet initialize@P operations.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1)

perl v5.18.2 2016-09-07 1

BRSCCLA(1) BPexecutables BRSCCLA(1)

NAME

brsccla - BRSC-based BP smrgence layer adapter (input and output) task
SYNOPSIS

brscclaserver_hostnanjeserver_port_nlgr own_node_nbr
DESCRIPTION

BRSC is the ‘client” side of the Bundle Relay ServicBRS) convergence layer protocol foBP. It is
complemented bBRSS,the ‘server’ side of theBRS corvergence layer protocol faP. BRSclients send
bundles directly only to the sezy regadless of their final destinations, and the server forwards them to
other clients as necessary.

brsccla is a background'daemon’ task comprising three threads: one that connects t@Riseserver,
spavns the other threads, and then hand3&SC protocol output by transmitting bundleveo the
connected socket to thBRS sener; one that simply sends periodigeepalve’” messages v&r the
connected socket to the server (to assure that local inactivity tloeesé the connection to be lost); and
one that handleBRSCprotocol input from the connected server.

The output thread connects to the s€s/TCP soclet atserver_hostnamandserver_port_nbrsends oer

the connected socket the clientwn_node_nbkin SDNV representation) follwed by a 32-bit time tag
and a 160-biHMAC-SHAL1 digest of that time tag, to authenticate itself; checks the authenticity of the
160-bit countersign returned by the sarvspawns thedepalve and receier threads; and then pms
extracting bundles from the queues of bundles ready for transmissidBR@@ and transmitting those
bundles wer the connected socket to the sarEach transmitted bundle is preceded by its length, a 32-bit
unsigned integer in network byte orddhe default value foserver_port_nbyif omitted, is 80.

The reception thread reges hundles @er the connected socket and passes them to the bundle protocol
agent on the locdbN node. Eachbundle recered on the connection is preceded by its length, a 32-bit
unsigned integer in network byte order.

The lkeepalve thread simply sends dundle length’value of zero (a 32-bit unsigned integer in ragtw
byte order) to the server onceesy 15 seconds.

Note thatbrsccla is not a ‘promiscuous’ corvergence layer daemon: it can transmit bundles only to the
BRS sener to which it is connected, so scheme configuration dmescthat cite this outduct need only
provide the protocol nhame and tB®RSCoutduct name as specified on the command line whsetla is
started.

brsccla is spawned automatically bgpadmin in response to thes” (START) command that starts
operation of the Bundle Protocol, and it is terminatedfgdmin in response to an 'X'TOP command.
brsccla can also be spamed and terminated in response SPART and STOP commands that pertain
specifically to theBRSCcorvergence layer protocol.

EXIT STATUS

“ o
brsccla terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and ugedmin to restart the
BRSCprotocol.

“qr
brscclaterminated abnormallyor reasons noted in then.log file. Investigate and sole the problem
identified in the log file, then udgpadmin to restart th&RSCprotocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

perl v5.18.2 2016-09-07 1

BRSCCLA(1) BPexecutables BRSCCLA(1)

brsccla cart’attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such brsc induct.
No BRSCinduct with duct name matchirgprver_hostnamewn_node_nhrand server_port_nbihas
been added to theP database. Uskpadmin to stop theBRSC corvergence-layer protocol, add the
induct, and then restart tiBRSCprotocol.

CLI task is already started for this duct.
Redundant initiation dbrsccla

No such brsc outduct.
No BRSC outduct with duct name matchirggrver_hostnameown_node_nhrand server_port_nbr
has been added to tB® database. Uskpadmin to stop theBRSC corvergence-layer protocol, add
the outduct, and then restart BRSCprotocol.

Cant connect to server.
Operating system erroCheck errtext, correct problem, and reseRsC.

Cant regster with server.
Configuration error Authentication hasafled, probably because (a) the client and server are using
different HMAC/SHAL keys or (b) the clocks of the client and server differ by more than 5 seconds.
Update security policdatabase(s), as necessand assure that the clocks are synchronized.

brsccla cart’create recefer thread
Operating system erroCheck errtext, correct problem, and reseRsC.

brsccla cart’create keepatle tread
Operating system erroCheck errtext, correct problem, and reseRSC.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), brsscla(1)

perl v5.18.2 2016-09-07 2

BRSSCLA(L) BPexecutables BRSSCLA(L)

brsscla - BRSS-based BP wergence layer adapter (input and output) task

SYNOPSIS

brssclalocal_hostnamjelocal_port_nbi[first_duct_nbr_in_scopéast_duct_nbr_in_scope

DESCRIPTION

BRSSis the ‘server’ side of the Bundle Relay ServicBRS) corvergence layer protocol foBP. It is
complemented bBRSC,the “client” side of theBRS corvergence layer protocol faP.

brssclais a background'daemon’ task that spawns twplus N threads: one that handlBRSS client
connections and spawns setk for continued data interchange with connected clients; one that handles
BRSSprotocol output by transmittingver those spawned sockets to the associated clients; and one input
thread for each spawned socket, to haB&#sSprotocol input from the associated connected client.

The connection thread simply accepts connections oOFCR soclet bound tolocal_hostnameand
local_port_nbrand spawns reception threads. The default valueéat_port_nbr if omitted, is 80.

Each reception thread reees over the sockt connection the node number of the connecting client (in
SDNV representation), followed by a 32-bit time tag and a 160+2ikC-SHA1 digest of that time tag.
The node number must be in the rafigg_duct_nbr_in_scopthroughlast_duct_nbr_in_scop&clusive;
when omitted, first_duct_nbr_in_scopedefaults to 1 and last_duct_nbr_in_scopedefaults to
first_duct_nbr_in_scopelus 255. The receing thread also checks the time tag, requiring that ferdif
from the current time by no more thBRSTERM (default value 5) seconds. It then recomputes the digest
value using theHMAC-SHA1 key named hode_numbebrs" as recorded in tHeN security database (see
ionsecrg5)), requiring that the supplied and computed digests be identical. If all registration conditions are
met, the receing thread sends the client a countersigna similarly computedHMAC-SHAL1 digest, for

the time tag that is 1 second later than theideml time tag— to assure the client of its own authentigity
then commences receiving bundlegrahe connected soek Eachbundle recered on he connection is
preceded by its length, a 32-bit unsigned integer in network byte drdereceied bundles are passed to
the bundle protocol agent on the loN node.

The output thread extracts bundles from the queues of bundles ready for transmisBR®&St@ remote
bundle protocol agents, finds the connected clients whose node numbers match the proximetecdeei
numbers assigned to the bundles by the routing daemons that enqueued them, and trangmd&eshe b
over the sockets to those client&ach transmitted bundle is preceded by its length, a 32-bit unsigned
integer in network byte order.

Note thatbrssclais a ‘promiscuous’ corvergence layer daemon, able to transmindles to ayp BRSS
destination induct for which it has reeed a ®@nnection. Itssole outduc rame is the name of the
corresponding induct, rather than the induct name gfsargle BRSS destination induct to which the
outduct might be dedicated, so scheme configuration diescthat cite this outduct must proe
destination induct IDsFor the BRS corvergence-layer protocol, destination induct IDs are simply the node
numbers of connected clients.

brssclais spawned automatically lppadmin in response to the” (START) command that starts operation
of the Bundle Protocol, and it is terminatedlpadmin in response to an 'x'TOP command. brsscla
can also be spawned and terminated in responSEART and STOPcommands that pertain specifically to
theBRSScorvergence layer protocol.

EXIT STATUS

" 0“
brsscla terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and ug@dmin to restart the
BRSSprotocol.

“qr
brssclaterminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then udgadmin to restart th&RSSprotocol.

perl v5.18.2 2016-09-07 1

BRSSCLA(L) BPexecutables BRSSCLA(L)

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

brsscla can’attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such brss induct.
No BRSSinduct with duct name matchirgcal_hostnamendlocal_port_nbrhas been added to the
BP database. Usbpadmin to stop theBRSS corvergence-layer protocol, add the induct, and then
restart theBRSSprotocol.

CLI task is already started for this duct.
Redundant initiation dbrsscla

No such brss outduct.
No BRSSoutduct with duct name matchimgcal _hostnameandlocal_port_nbrhas been added to the
BP database. Uskpadmin to stop theBRSScorvergence-layer protocol, add the outduct, and then
restart theBRSSprotocol.

Cant getIP address for host
Operating system erroCheck errtext, correct problem, and reseRSS.

Cant openTCPsocket
Operating system erro— unable to openTCP soclet for accepting connections. Check edite
correct problem, and rest@RSS.

Cant initialize socket (note: must be root for port 80)
Operating system erroCheck errtext, correct problem, and reseRESS.

brsscla can’create sender thread
Operating system erroCheck errtext, correct problem, and reseRSS.

brsscla car’create access thread
Operating system erroCheck errtext, correct problem, and reseRSS.

BUGS
Report bugs to <ion—-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), brsccla(1)

perl v5.18.2 2016-09-07 2

CGRFETCH(1) BRexecutables CGRFETCH(1)

NAME
cgrfetch — Visualize CGR simulations

SYNOPSIS
cgrfetch [OPTIONS$ DEST-NODE

DESCRIPTION
cgrfetch usesCGR to simulate sending auhdle from the local node tBEST-NODE It traces the
execution of CGRto generate graphs of the routes that were considered and the routes that were ultimately
chosen to forward along. No bundle is sent during the simulation.

A JSON representation of the simulation is output @JTPUT-FILE The representation includes
parameters of the simulation and a structure for each considered route, which in turn includes calculated
parameters for the route and an image of the contact graph.

Thedot(1) tool from the Graphviz package is used to generate the contact graph images and is required for
cgrfetch(1). The base641) tool from coreutils is used to embed the images inJ8@N and is also
required.

OPTIONS

DEST-NODE
The final destination to route too Be wseful, it should be a node that exists in the contact plan.

—q Disable trace message output.
—-j DisableJSONoutput.

-m Use a minimum-laternyc extended COS for the bundle. This ends up sending the bundle to all
proximate nodes.

-t DISPAT CH-OFFSET
Request a dispatch time BISPATCH-OFFSETseconds from the time the command is rungdkef
0).
—e EXPIRATION-OFFSET
Set the hndle expiration time t&EXPIRATION-OFFSETBeconds from the time the command is run
(default: 3600).
-s BUNDLE-SIZE
Set the bundle payload sizeBUNDLE-SIZEbytes (default: 0).

-0 OUTPUT-FILE
SendJSONto OUTPUT-FILE(default: stdout).

—d PROTO:NAME
UsePROTOas the outduct protocol amhME as the outduct name (deifit: udp:*). Usdist to list all
available outducts.

EXAMPLES

cgrfetch 8
SimulateCGRwith destination node 8 and dispatch time equal to the current time.

cgrfetch 8 -t 60
Do the same with a dispatch time 60 seconds in the future.

cgrfetch —d list
List all available outducts.

SEE ALSO
dot(1), base641)

perl v5.18.2 2016-09-07 1

DCCPCLI(1) BPexecutables DCCPCLI(1)

NAME
dccpcli — DCCP-based BP o@ngence layer input task

SYNOPSIS
dccpclilocal_hostnamiglocal_port_nbi

DESCRIPTION
dccpceli is a background‘daemon’ task that recees DCCP datagrams via @&CCP soclet bound to
local_hostnameandlocal_port_nbr extracts lundles from those datagrams, and passes them taitiakeb
protocol agent on the locedN node.

If not specified, port number defaults to 4556.

Note thatdccpcli has no fragmentation support at all. Therefore, thgefarbundle that can be sent via this
corvergence layer is limited to just under the linkiJU (typically 1500 bytes).

The cowergence layer input task is spawned automaticallypbpgdmin in response to the 's'START)
command that starts operation of the Bundle Protocol; #tteofehe command that is used to spawn the
task must be praded at the time theédccp” convergence layer protocol is added to e database. The
convergence layer input task is terminated fyggadmin in response to an 'xX’TOP command. dccpcli
can also be spaned and terminated in responseSTART and STOPcommands that pertain specifically to
theDCCPcorvergence layer protocol.

EXIT STATUS

“ 0“
dccpcli terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sol the problem identified in the log file and usgadmin to restart
dccpcli.

“qr
dccpcli terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then usgpadmin to restardccpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

dccpcli cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such dccp duct.
No DCCP induct matchingocal_hostnameand local_port_nbrhas been added to tie® database.
Usebpadmin to stop theDCCP corvergence-layer protocol, add the induct, and then restab@daP
protocol.

CLI task is already started for this duct.
Redundant initiation adficcpcli.

dccpcli cant getIP address for host.
Operating system erroCheck errtext, correct problem, and resthxtpcli.

CLI cant openDCCPsocket. This probably meab€CPis not supported on your system.

Operating system errofhis probably means that you are not using an operating system that supports

DCCP. Make aure that you are using a current Linux kernel and thaDtheP modules are being
compiled. Check errtext, correct problem, and rest@zzpcli.

CLI cant initialize socket.
Operating system erroCheck errtext, correct problem, and resthtpcli.

perl v5.18.2 2016-09-07 1

DCCPCLI(2) BPexecutables

dccpcli cant get acquisition work area.
ION system error Check errtext, correct problem, and restitpcli.

dccpcli cant create ner thread.

Operating system erroCheck errtext, correct problem, and resthtpcli.

BUGS
Report bugs to <ion—bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), dccpclo(1)

perl v5.18.2 2016-09-07

DCCPCLI(1)

DCCPCLO(1) BRexecutables DCCPCLO(1)

NAME
dccpclo - DCCP-based BP a@mgence layer output task

SYNOPSIS
dccpcloremote_hostnanfjgemote_port_nbr

DESCRIPTION
dccpclois a backgrounddaemon’ task that connects to a remote ngde-CPsoclket atremote_hostname
andremote_port_nbrlt then begins extracting bundles from the queues of bundles ready for transmission
via DCCPto this remote bundle protocol agent and transmitting those bundi®sCisdatagrams to the
remote host.

If not specifiedremote_port_nbdefaults to 4556.

Note thatdccpclois not a “promiscuous’ corvergence layer daemon: it can transmit bundles only to the
node to which it is connected, so scheme configuration diesdhiat cite this outduct need only pide
the protocol name and the outduct name as specified on the command lirdceg®aois started.

Note also thatlccpclohas no fragmentation support at all. Therefore, the largest bundle that can be sent via
this covergence layer is limited to just under the linkigU (typically 1500 bytes).

dccpclo is spawned automatically bgpadmin in response to the 's’START) command that starts
operation of the Bundle Protocol, and it is terminatedteydmin in response to an 'x'TOP command.
dccpclo can also be spmed and terminated in responseSPART and STOP commands that pertain
specifically to thedCCPcorvergence layer protocol.
EXIT STATUS
“ o
dccpclo terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sol the problem identified in the log file and usgadmin to restart
dccpclo
“ 1”
dccpcloterminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then usgpadmin to restardccpclo

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

dccpclo cart attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No memory forDCCPbuffer in dccpclo.
ION system error Check errtext, correct problem, and restitpclo.

No such dccp duct.
No DCCP outduct matchindocal_hostnamendlocal_port_nbrhas been added to tig® database.
Usebpadmin to stop thebCCPcorvergence-layer protocol, add the outduct, and then resftapcla.

CLO task is already started for this duct.
Redundant initiation aficcpclo.

dccpclo cart getIP address for host.
Operating system erroCheck errtext, correct problem, and resthxtpclo.

dccpclo cart create thread.
Operating system erroCheck errtext, correct problem, and resthtpclo

perl v5.18.2 2016-09-07 1

DCCPCLO(1) BRexecutables DCCPCLO(1)

CLO cant openDCCPsocket. This probably meab€£CPis not supported on your system.
Operating system errofhis probably means that you are not using an operating system that supports
DCCP. Make aure that you are using a current Linux kernel and thaDtheP modules are being
compiled. Check errtext, correct problem, and resi@pclo.

CLO cant initialize socket.
Operating system erroCheck errtext, correct problem, and resthxtpclo.

CLO send()error on socket.
Operating system erroCheck errtext, correct problem, and resthtpclo.

Bundle is too big fobCCP CLO.
Configuration error: bundles that are too largedfGCPtransmission (i.e., lger than thevTU of the
link or 65535 bytes—whichever is smaller) are being enqueued fidccpclo. Change routing or use
smaller bundles.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), dccpcli(1)

perl v5.18.2 2016-09-07 2

DGRCLA(1) BPexecutables DGRCLA(1)

NAME
dgrcla - DGR-based BP caargence layer adapter (input and output) task

SYNOPSIS
dgrcla local_hostnamielocal_port_nbi

DESCRIPTION
dgrcla is a backgrounddaemon’ task that spawns tthreads, one that handIB&R corvergence layer
protocol input and a second that handdeR corvergence layer protocol output.

The input thread recsis DGR messages via dDP soclet bound tdocal_hostnamendlocal_port_nbr
extracts bundles from those messages, and passes them tmdhe firotocol agent on the lodaiN node.
(local_port_nbrdefaults to 1113 if not specified.)

The output thread extractsitdles from the queues of bundles ready for transmissiobGfato remote
bundle protocol agents, encapsulates thel@&R messages, and sends those messages to the appropriate
remote UDP soclets as indicated by the host nhames &l port nhumbers (destination induct names)
associated with the bundles by the routing daemons that enqueued them.

Note thatdgrcla is a ‘promiscuous’ convergence layer daemon, able to transmindiles to ap DGR
destination induct.ts duct name is the name of the corresponding induct, rather than the induct name of
ary single DGR destination induct to which it might be dedicated, so scheme configurationvegdictit

cite this outduct must provide destination induct IPsr the DGR corvergence-layer protocol, destination
induct IDs are identical to induct names, i.e.ytle of the formlocal_hostnamjelocal_port_nbi.

dgrcla is spawned automatically lypadmin in response to the 'sSTART) command that starts operation
of the Bundle Protocol, and it is terminated bpadmin in response to an 'X’'STOP command. dgrcla
can also be spawned and terminated in resporS®ART and STOPcommands that pertain specifically to
the DGR corvergence layer protocol.

EXIT STATUS

" OH
dgrcla terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and uggadmin to restart
dgrcla.

“qr
dgrcla terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then udgpadmin to restardgrcla.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithrelog log file:

dgrcla cart attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such dgr induct.
No DGR induct with duct name matchirlgcal_hostnamendlocal_port_nbrhas been added to the
BP database. Usbpadmin to stop theDGR corvergence-layer protocol, add the induct, and then
restart thedGR protocol.

CLI task is already started for this engine.
Redundant initiation afigrcla.

No such dgr induct.
No DGR outduct with duct name matchimgcal _hostnamendlocal_port_nbrhas been added to the
BP database. Usbpadmin to stop theDGR corvergence-layer protocol, add the outduct, and then

perl v5.18.2 2016-09-07 1

DGRCLA(1) BPexecutables DGRCLA(1)

restart thedGR protocol.

Cant getIP address for host
Operating system erroCheck errtext, correct problem, and reszeR.

dgrcla cart openDGR service access point.
DGR system error Check prior messages ion.log log file, correct problem, and then stop and restart
the DGR protocol.

dgrcla cart create sender thread
Operating system erroCheck errtext, correct problem, and resteR.

dgrcla cart create receier thread
Operating system erroCheck errtext, correct problem, and restzeR.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5)

perl v5.18.2 2016-09-07 2

DTN2ADMIN(1) BP executables DTN2ADMIN(1)

NAME

dtn2admin - baseline "dtn" scheme administration interface
SYNOPSIS

dtn2admin [commands_filenanie
DESCRIPTION

dtn2admin configures the locabN nodes routing of bundles to endpoints whose IDs conform todthe
endpointiD scheme.dtn is a non-CBHE-conformant scheme. The structurdtnfendpoint IDs remains
somavhat in flux at the time of this writing, but endpoint IDs in thte scheme historically & been
strings of the form "dtn:Aode_namidemux_tokel, where node_namenormally identifies a computer
somavhere on the network amtemux_tokemormally identifies a specific application processing point.
Although thedtn endpointiD scheme imposes more transmissia@rioead than thépn scheme,|ON
provides support fordtn endpoint IDs to enable interoperation with other implementations of Bundle
Protocol.

dtn2admin operates in response tddth” scheme configuration commands found in the file
commands_filenamé provided; if not,dtn2admin prints a simple prompt (;) so that the user may type
commands directly into standard input.

The format of commands fartommands_filenamean be queried frondtn2admin with the 'h’ or '?’
commands at the prompt. The commands are documendalirc(5).

EXIT STATUS
“0” Successful completion of “dthscheme administration.
“1” Unsuccessful completion ofdtn” scheme administration, due to inability to attach to the Bundle
Protocol system or to initialize the “dtrscheme.

EXAMPLES
dtn2admin
Enter interactie “dtn’” scheme configuration command entry mode.

dtn2admin hostl.dtn2rc
Execute all configuration commandshiostl.dtn2rcthen terminate immediately.

FILES
Seedtn2rc(5) for details of th@©TN scheme configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: al ION administration utilities expect source file input to be lineasll text that are NL-delimited.
If you edit the dtn2rc file on a Mdows machine, be sure se dos2unix to cowert it to Unix text
format before presenting it tdtn2admin. Otherwisedtn2admin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

dtn2admin can’attach toBP.
Bundle Protocol has not been initialized on this computet need to rubbpadmin(1) first.

dtn2admin cart’initialize routing database.
There is nsDRdata store fodtn2adminto use. Please rionadmin(1) to start the locabN node.

Cant open command file...
Thecommands_filenanspecified in the command line dogsxist.

Various errors that doh‘causedtn2admin to fail but are noted in thimn.log log file may be caused by
improperly formatted commandsvgh at the prompt or in thecommands_filenaméle. Pleasesee
dtn2rc(5) for details.

perl v5.18.2 2016-09-07 1

DTN2ADMIN(1) BP executables DTN2ADMIN(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
dtn2rc(5)

perl v5.18.2 2016-09-07 2

DTN2ADMINEP(1) BPexecutables DTN2ADMINEP(1)

NAME
dtn2adminep — administrag endpoint task for the "dtn" scheme

SYNOPSIS
dtn2adminep

DESCRIPTION
dtn2adminep is a background‘daemon’ task that recees and processes administnai tundles (all
custody signals and, nominallgll bundle status reports) that are sent to ftthm"*~scheme administratée
endpoint on the locaDN node, if and only if such an endpoinasvestablished Hdypadmin. It is spawned
automatically bybpadmin in response to the 'sSSTART) command that starts operation of Bundle Protocol
on the locallON node, and it is terminated bgpadmin in response to an 'X’TOP command.
dtn2adminep can also be spaed and terminated in responseSTART and STOPcommands that pertain
specifically to the “dtri’scheme.

dtn2adminep responds to custody signals as specified in the Bundle Protocol specifiB@as0. It
responds to bundle status reports by log@igll text messages describing the reported activity.
EXIT STATUS

" OH
dtn2adminep terminated, for reasons noted in then.log file. If this termination was not
commanded, westigate and sol the problem identified in the log file and usgadmin to restart
dtn2adminep.

“qr
dtn2adminep was wnable to attach to Bundle Protocol operations as wnable to load thedtn”
scheme database, probably becdysmin has not yet been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitivelog log file:

dtn2adminep canhattach toBP.
bpadmin has not yet initialize@P operations.

dtn2adminep cahload routing database.
dtn2admin has not yet initialized the “dthscheme.

dtn2adminep cahget adminEID.
dtn2admin has not yet initialized the “dthScheme.

dtn2adminep crashed.
An unrecwoerable database error was encounterdid2adminep terminates.

BUGS
Report bugs to <ion—-bugs@@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), dtn2admin(1).

perl v5.18.2 2016-09-07 1

DTN2FW(1) BPexecutables DTN2FW(1)

NAME

dtn2fw — bundle route computation task for the "dtn" scheme

SYNOPSIS

dtn2fw

DESCRIPTION

dtn2fw is a background‘daemon’ task that pops bundles from the queue of bundle destined for
“ dtn"-scheme endpoints, computes proximate destinations for thoskels, and appends those bundles to
the appropriate queues of bundles pending transmission to those computed proximate destinations.

For each possible proximate destination (that is, neighboring node) there is a separate queue for each
possible lgel of bundle priority: 0, 1, 2. Each outbound bundle is appended to the queue matching the
bundle’s designated priority.

Proximate destination computation is affected by static routes as configute®@bgmin(1).

dtn2fw is spawned automatically lipypadmin in response to the” (START) command that starts operation
of Bundle Protocol on the loc&#bN node, and it is terminated lypadmin in response to an 'X'TOP
command. dtn2fw can also be spawned and terminated in responS&ART and STOP commands that
pertain specifically to the “dthscheme.

EXIT STATUS

FILES

" 0“
dtn2fw terminated, for reasons noted in iba.log log file. If this termination was not commanded,
investigate and sok/the problem identified in the log file and ug®dmin to restardtn2fw.

“qr
dtn2fw could not commence operations, for reasons noted inrteg log file. Investigate and sol
the problem identified in the log file, then lg®admin to restardtn2fw.

No configuration files are needed.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

The following diagnostics may be issued toithelog log file:

dtn2fw cant attach toBP.
bpadmin has not yet initialize@P operations.

dtn2fw cant load routing database.
dtn2admin has not yet initialized the “dthScheme.

Cant create lists for route computation.
An unrecwerable database error was encounteidd2fw terminates.

'dtn’ scheme is unknown.
The *dtn” scheme was not added whiepadmin initialized BP operations. Usbpadmin to add and
start the scheme.

Cant take forwarder semaphore.
ION system errordtn2fw terminates.

Cant enqueue bundle.
An unrecwoerable database error was encounteidd2fw terminates.

Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO

bpadmin(1), dtn2admin(1), bprc(5), dtn2rc(5).

perl v5.18.2 2016-09-07 1

HMACKEYS(1) BPexecutables HMACKEYS(1)

NAME
hmacleys — uility program for generating good HMAC-SHA®Ys

SYNOPSIS
hmackeys[keynames_filenamle

DESCRIPTION
hmackeys writes files containing randomized 160-biykvalues suitable for use bBYMAC-SHA1L in
support of Bundle Authentication Block processing, Bundle Relay Service connections, or other functions
for which symmetric hash computation is applicable. One file is written for eachakne presented to
hmadkeys the content of each file is 20 conseertiandomly selected 8-bit irger values, and the name
given to each file is simply Keynamehmk®".

hmackeysoperates in response to theykrames found in the fileeynames_filenamene name per file
text line, if provided; if not,hmackeysprints a simple prompt (;) so that the user may type frames
directly into standard input.

When the program is run in intera@inode, either enter 'q’ or press "C to terminate.

EXIT STATUS
“0” Completion of key generation.

EXAMPLES
hmacleys
Enter interactie HMAC/SHAL key generation mode.

hmacleys hostl.leynames
Create a &y file for each ky rame inhostl.leynamesthen terminate immediately.

FILES
No other files are used in the operatiomafadkeys

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to the logfile ion.log:

Cant open leynames file...
Thekeynames_filenamepecified in the command line doasXist.

BUGS
Report bugs to <ion—-bugs@@no.eecs.ohiou.edu>

SEE ALSO
brsscla(1), ionsecadmirfl)

perl v5.18.2 2016-09-07 1

IMCADMIN(1) BP executables IMCADMIN(1)

NAME

imcadmin - Interplanetary Multicast (IMC) scheme administration interface
SYNOPSIS

imcadmin [commands_filenanje
DESCRIPTION

imcadmin configures the locaDN nodes routing of bundles to endpoints whose IDs conform toirtie
endpointiD scheme.imcis a CBHE-conformant scheme; that igerg endpointiD in theimc scheme is a
string of the form “imaroup_numbeservice_numbérwhere group_number(an IMC multicast group
number) serves asGBHE “ node numbet’and service_numbeidentifies a specific application processing
point.

imcadmin operates in response ttMC scheme configuration commands found in the file
commands_filenamé provided; if not,imcadmin prints a simple prompt () so that the user may type
commands directly into standard input.

The format of commands facommands_filenamean be queried fronimcadmin with the 'h’ or '?’
commands at the prompt. The commands are documenitedriz(5).

EXIT STATUS
“ 0" Successful completion dMC scheme administration.
“1” Unsuccessful completion dMC scheme administration, due to inability to attach to the Bundle
Protocol system or to initialize th®C scheme.

EXAMPLES
imcadmin
Enter interactie IMC scheme configuration command entry mode.

imcadmin hostl.imcrc
Execute all configuration commandshiostl.ipnr¢ then terminate immediately.

FILES
Seeimcrc(5) for details of theéMC scheme configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: al ION administration utilities xgpect source file input to be linesA$ClIl text that are NL-delimited.
If you edit the ipnrc file on a Wdows machine, be sure tse dos2unix to cowert it to Unix text f ormat
before presenting it tancadmin. Otherwiseimcadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

imcadmin cart attach toBP.
Bundle Protocol has not been initialized on this compufet need to rubbpadmin(1) first.

imcadmin cart'initialize routing database.
There is nsDRdata store formcadminto use. Please rionadmin(1) to start the locaDN node.

Cant open command file...
Thecommands_filenanmspecified in the command line dogsxist.

Various errors that doh‘causeimcadmin to fail but are noted in th®n.log log file may be caused by
improperly formatted commandsvgh at the prompt or in thecommands_filenaméle. Pleasesee
imcrc(5) for details.

BUGS
Report bugs to <ion—-bugs@@no.eecs.ohiou.edu>

SEE ALSO
imcrc(5)

perl v5.18.2 2016-09-07 1

IMCFW(1) BPexecutables IMCFW(1)

NAME

imcfw — bundle route computation task for the IMC scheme
SYNOPSIS

imcfw
DESCRIPTION

imcfw is a background'daemon’ task that pops bundles from the queue whdde destined for IMC-
scheme (Interplanetary Multicast) endpoints, determines whightives” on the IMC multicast tree to
forward the bundles to, and appends thosedles to the appropriate queues of bundles pending
transmission to those proximate destinations.

For each possible proximate destination (that is, neighboring node) there is a separate queue for each
possible lgel of bundle priority: 0, 1, 2. Each outboundrle is appended to the queue matching the
bundle’s designated priority.

Proximate destination computation is determined by multicast group membership as resulting from nodes’
registration in multicast endpoints,\goned by multicast tree structure as configuredhigadmin(1).

imcfw is spawned automatically lypadmin in response to the” (START) command that starts operation
of Bundle Protocol on the loc&N node, and it is terminated Wpadmin in response to an 'X’'TOP
command. imcfw can also be spawned and terminated in responSgART and STOP commands that
pertain specifically to the1C scheme.

EXIT STATUS

FILES

“ Q"
imcfw terminated, for reasons noted in ibe.log log file. If this termination was not commanded,
investigate and sob/the problem identified in the log file and ugEadmin to restarimcfw.

“qr
imcfw could not commence operations, for reasons noted iioiheg log file. Investigate and soky
the problem identified in the log file, then ugEdmin to restarimcfw.

No configuration files are needed.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

The following diagnostics may be issued toitirelog log file:

imcfw cant attach toBP.
bpadmin has not yet initialize@P operations.

imcfw cant load routing database.
ipnadmin has not yet initialized th®N scheme.

Cant create lists for route computation.
An unrecwoerable database error was encounteligttfw terminates.

'imc’ scheme is unknown.
The IMC scheme was not added whigsadmin initialized BP operations. Usépadmin to add and
start the scheme.

Cant take forwarder semaphore.
ION system errorimcfw terminates.

Cant exclude sender from routes.
An unrecwoerable database error was encounteigttfw terminates.

Cant enqueue bundle.
An unrecwoerable database error was encounteigttfw terminates.

perl v5.18.2 2016-09-07 1

IMCFW(1) BPexecutables IMCFW(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), imcadmin(1), bprc(5), imcrc(5)

perl v5.18.2 2016-09-07 2

IPNADMIN(1) BP executables IPRDMIN(1)

NAME

ipnadmin — Interplanetary Internet (IPN) scheme administration interface
SYNOPSIS

ipnadmin [commands_filenanie
DESCRIPTION

ipnadmin configures the localON nodes routing of bundles to endpoints whose IDs conform toigthe
endpointiD scheme.ipn is a CBHE-conformant scheme; that igerg endpointiD in theipn scheme is a
string of the form "ipmode_numbeservice_numbémwherenode_numbeis aCBHE “ hode numbetrand
service_numbedentifies a specific application processing point.

ipnadmin operates in response tdPN scheme configuration commands found in the file

commands_filenaméf provided; if not,ipnadmin prints a simple prompt (:) so that the user may type
commands directly into standard input.

The format of commands faaommands_filenamean be queried fronipnadmin with the 'h’ or '?’
commands at the prompt. The commands are documeni@uargs).

EXIT STATUS
“0” Successful completion 0PN scheme administration.
“1” Unsuccessful completion dPN scheme administration, due to inability to attach to the Bundle
Protocol system or to initialize theN scheme.

EXAMPLES
ipnadmin
Enter interactie IPN scheme configuration command entry mode.

ipnadmin hostl.ipnrc
Execute all configuration commandshiostl.ipnr¢ then terminate immediately.

FILES
Seeipnrc (5) for details of thePN scheme configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: al ION administration utilities expect source file input to be lineasstll text that are NL-delimited.
If you edit the ipnrc file on a Wdows machine, be sure tse dos2unix to cowert it to Unix text f ormat
before presenting it tgpnadmin. Otherwiseipnadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

ipnadmin cart attach toBP.
Bundle Protocol has not been initialized on this computet need to ruthpadmin(1) first.

ipnadmin cart'initialize routing database.
There is nBDRdata store foipnadminto use. Please ruiaonadmin(1) to start the locabN node.

Cant open command file...
Thecommands_filenangpecified in the command line dogwxist.

Various errors that doh'causeipnadmin to fail but are noted in thimn.log log file may be caused by
improperly formatted commandsvgn at he prompt or in theommands_filenanfde. Pleaseseeipnrc(5)
for details.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
ipnrc(5)

perl v5.18.2 2016-09-07 1

IPNADMINEP(1) BPexecutables IPRMDMINEP(1)

NAME
ipnadminep — administra endpoint task for the IPN scheme

SYNOPSIS
ipnadminep

DESCRIPTION
ipnadminep is a background‘daemon’ task that recees and processes administragi lundles (all
custody signals and, nominallgll bundle status reports) that are sent to the IPN-scheme admiwngstrati
endpoint on the locaDN node, if and only if such an endpoinasvestablished Hdypadmin. Itis spawned
automatically bybpadmin in response to the 'sSSTART) command that starts operation of Bundle Protocol
on the locallON node, and it is terminated bgpadmin in response to an 'X’TOP command.
ipnadminep can also be spaned and terminated in responseSTART and STOPcommands that pertain
specifically to thePN scheme.

ipnadminep responds to custody signals as specified in the Bundle Protocol specifie&Bp50. It
responds to bundle status reports by log@iggll text messages describing the reported activity.
EXIT STATUS

" OH
ipnadminep terminated, for reasons noted in tha.log file. If this termination was not commanded,
investigate and sok/the problem identified in the log file and ugmdmin to restaripnadminep.

“qr
ipnadminep was wunable to attach to Bundle Protocol operations as wnable to load tHeN scheme
database, probably becaugEmdmin has not yet been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithrelog log file:

ipnadminep can’attach toBP.
bpadmin has not yet initialize@P operations.

ipnadminep cat’load routing database.
ipnadmin has not yet initialized th®N scheme.

ipnadminep crashed.
An unrecwoerable database error was encountetipdadminep terminates.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), ipnadmin(1), bprc(5).

perl v5.18.2 2016-09-07 1

IPNFW(1) BPexecutables IPNFW(1)

NAME

ipnfw — bundle route computation task for the IPN scheme
SYNOPSIS

ipnfw
DESCRIPTION

ipnfw is a background‘daemon’ task that pops bundles from the queue ofidle destined for IPN-
scheme endpoints, computes proximate destinations for thwskeb, and appends those bundles to the
appropriate queues of bundles pending transmission to those computed proximate destinations.

For each possible proximate destination (that is, neighboring node) there is a separate queue for each
possible lgel of bundle priority: 0, 1, 2. Each outbound bundle is appended to the queue matching the
bundle’s designated priority.

Proximate destination computation is affected by static and default routes as configipeddoyin(1)
and by contact graphs as managedbadmin(1) andrfxclock(1).

ipnfw is spawned automatically lhpadmin in response to the 'sSTART) command that starts operation
of Bundle Protocol on the loc&N node, and it is terminated lypadmin in response to an 'X'TOP
command. ipnfw can also be spawned and terminated in responSFART and STOP commands that
pertain specifically to th®®N scheme.

EXIT STATUS

FILES

" 0“
ipnfw terminated, for reasons noted in fbe.log log file. If this termination was not commanded,
investigate and sok/the problem identified in the log file and Ug@dmin to restaripnfw.

“qr
ipnfw could not commence operations, for reasons noted iltheg log file. Investigate and soly
the problem identified in the log file, then ugEadmin to restaripnfw.

No configuration files are needed.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

The following diagnostics may be issued toitivelog log file:

ipnfw cant attach toBP.
bpadmin has not yet initialize@P operations.

ipnfw cant load routing database.
ipnadmin has not yet initialized theN scheme.

Cant create lists for route computation.
An unrecaerable database error was encounteiipdfw terminates.

'ipn’ scheme is unknown.
The IPN scheme was not added whigpadmin initialized BP operations. Usépadmin to add and
start the scheme.

Cant take forwarder semaphore.
ION system erroripnfw terminates.

Cant exclude sender from routes.
An unrecaerable database error was encounteiipdfw terminates.

Cant enqueue bundle.
An unrecwoerable database error was encounteiipdfw terminates.

perl v5.18.2 2016-09-07 1

IPNFW(1) BPexecutables IPNFW(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), ipnadmin(1), bprc(5), ipnrc(5)

perl v5.18.2 2016-09-07 2

LGAGENT(1) BPexecutables LGAENT(1)

NAME
Igagent — ION Load/Go remote agent program

SYNOPSIS
lgagentown_endpoint_ID

DESCRIPTION
ION Load/Go is a system for management of an ION-based network, enablingethgice of ION
administratve rograms at remote nodes. The system comprisegrvgramsjgsendandlgagent

The Igagent task on a gien node opens the indicatd®N endpoint for bundle reception, reees the
extracted payloads of Load/Gadles sent to it bygsend as run on one or more remote nodes, and
processes those payloads, which are the text of Load/Go source files.

Load/Go source file content is limited to newline-terminated linesS@fil characters. Morspecifically,

the text of ap Load/Go source file is a sequencdind setsof two types:file capsulesanddirectives Any
Load/Go source file may contain yamumber of file capsules and yamumber of directies, freely
intermingled in ap order, but the typical structure of a Load/Go source file is simply a single file capsule
followed by a single directe.

Whenlgagentidentifies a file capsule, it copies all of the capsutet lines to a n& file that it creates in
the current working directoryWhenlgagentidentifies a directie, it executes the directe by passing the
text of the directie © the pseudoshell(function (seeplatform(3)). Igagent processes the line sets of a
Load/Go source file in the order in which yreppear in the file, so the text of a dirgetimay reference a
file that was created as the result of processing a prior file capsule in the same source file.

EXIT STATUS
“ 0”
Load/Go remote agent processing has terminated.

FILES
Igfile contains the Load/Go file capsules and divestthat are to be processed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitivelog log file:

Igagent: cart’attach toBP.
Bundle Protocol is not running on this computeun bpadmin(1) to starBP.

Igagent: cart’'open own endpoint.
own_endpoint_IDs not a declared endpoint on the lo& node. Rurbpadmin(1) to add it.

Igagent: bundle reception failed.
ION system problem. krestigate and correct before restarting.

Igagent cannot continue.
Igagent processing problem. See earlier diagnostic messages for detadstigate and correct
before restarting.

Igagent: no space for bundle content.
ION system problem: ha exhausted eeilable SDRdata store reserves.

Igagent: cart’receve undle content.
ION system problem: ha exhausted eeilable SDRdata store reserves.

Igagent: cart’handle bundle delery.
ION system problem. krestigate and correct before restarting.

Igagent: pseudoshell failed.
Error in directve line, usually an attempt tokecute a non-existent administration program (e.g., a
misspelled program nameJerminates processing of source file content.

perl v5.18.2 2016-09-07 1

LGAGENT(1) BPexecutables LGAENT(1)

A variety of other diagnostics noting source file parsing problems may also be refdrése. errors are

non-fatal but thg terminate the processing of the source file content from the most recenthedecei
bundle.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
Igsend(1), Igfile (5)

perl v5.18.2 2016-09-07 2

LGSEND(1) BPexecutables LGSEND(1)

NAME
Igsend - ION Load/Go command program

SYNOPSIS
Igsendcommand_file_name own_endpoint_ID destination_endpoint_ID

DESCRIPTION
ION Load/Go is a system for management of an ION-based network, enablingethgice of ION
administratve rograms at remote nodes. The system comprisegrivgramsjgsendandlgagent

The Igsend program reads a Load/Go source file from a local file system, encapsulates the text of that
source file in a bundle, and sends the bundle igagenttask that is waiting for data at a designabaa
endpoint on the remote node.

To do 9, it first reads all lines of the Load/Go source file identifiedcbsnmand_file_nameto a
temporary bffer in ION's SDR data store, concatenating the lines of the file and retaining \alinee
characters. Theit invokes the bp_send()function to create and send a bundle whose payload is this
temporary hffer, whose destination iglestination_endpoint_IDand whose source endpoinD is
own_endpoint_ID Then it terminates.

EXIT STATUS
" Oll
Load/Go file transmission succeeded.
“ 1“
Load/Go file transmissiorailed. Examineon.logto determine the cause of the failure, then re-run.

FILES
Igfile contains the Load/Go file capsules and divectiat are to be sent to the remote node.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitivelog log file:

Igsend: cart’attach toBP.
Bundle Protocol is not running on this computeun bpadmin(1) to starBP.

Igsend: cart’open own endpoint.
own_endpoint_IDs not a declared endpoint on the lo& node. Rurbpadmin(1) to add it.

Igsend: cart’open file ofLG commandserror description
command_file_namaoesnt identify a file that can be opene@orrect spelling of file name or fike’
access permissions.

Igsend: cart'get size ofL.G command fileerror description
Operating system problem. estigate and correct before rerunning.

lgsend:LG cmd file size > 64000.
Load/Go command file is too &. Splitit into multiple files if possible.

Igsend: no space for application data unit.
ION system problem: ha exhausted eeilable SDRdata store reserves.

Igsend: fgets failederror description
Operating system problem. Vestigate and correct before rerunning.

Igsend: cart’create application data unit.
ION system problem: v@ exhausted wailable SDRdata store reserves.

lgsend: cart’send bundle.
ION system problem. lestigate and correct before rerunning.

perl v5.18.2 2016-09-07 1

LGSEND(1) BPexecutables LGSEND(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
Igagent (1), Igfile (5)

perl v5.18.2 2016-09-07 2

LTPCLI(1) BPexecutables IPCLI(1)

NAME

Itpcli — LTP—-based BP camrgence layer input task
SYNOPSIS

Itpcli local_node_nbr
DESCRIPTION

ltpcli is a backgrounddaemon’ task that recees LTP data transmission blocks, extracts bundles from the
received blocks, and passes them to the bundle protocol agent on thédticabde.

Itpcli is spawned automatically bypadmin in response to the 'sSTART) command that starts operation
of the Bundle Protocol; the text of the command that is used ¥mge task must be provided at the time
the ‘Itp’’ corvergence layer protocol is added to tBe database. Theorvergence layer input task is
terminated byopadmin in response to an '’x'TOP command. ltpcli can also be spawned and terminated
in response tSTART andSTOPcommands that pertain specifically to thé corvergence layer protocol.

EXIT STATUS

“ o
Itpcli terminated normally for reasons noted in th®n.log file. If this termination was not
commanded, westigate and sol the problem identified in the log file and usgadmin to restart
Itpcli .

" 1”
ltpcli terminated abnormallyfor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then usgpadmin to restaritpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

ltpcli cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such Itp duct.
No LTP induct matchindocal_node_nbihas been added to tBe database. Udepadmin to stop the
LTP corvergence-layer protocol, add the induct, and then restatiTthgrotocol.

CLI task is already started for this duct.
Redundant initiation dfpcli.

ltpcli cant initialize LTP.
Itpadmin has not yet initializedTP operations.

Itpcli can't open client access.
Another task has already opened the client serviceHowver LTP.

Itpcli cant create receier thread
Operating system erroCheck errtext, correct problem, and restai.

BUGS
Report bugs to <ion—bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), Itpadmin(1), Itprc (5), Itpclo (1)

perl v5.18.2 2016-09-07 1

LTPCLO(1) BPexecutables ITPCLO(1)

NAME
Itpclo — LTP-based BP coargence layer adapter output task

SYNOPSIS
Itpclo remote_node_nbr

DESCRIPTION
Itpclo is a background‘daemon’ task that extractsumdles from the queues of segments ready for
transmission viaTP to the remote bundle protocol agent identifieddrgote _node_nband passes them to
the localLTP engine for aggigetion, segmentation, and transmission to the remote node.

Note thatltpclo is not a ‘promiscuous’ corvergence layer daemon: it can transmiindles only to the

node for which it is configured, so scheme configuration diresctiat cite this outduct need only pide

the protocol name and the outduct name (the remote node number) as specified on the command line when
Itpclo is started.

Itpclo is spawned automatically Hypadmin in response to the 'sSTART) command that starts operation
of the Bundle Protocol, and it is terminateddpadmin in response to an 'x'TOP command.ltpclo can
also be spawned and terminated in responSTART and STOPcommands that pertain specifically to the
LTP corvergence layer protocol.
EXIT STATUS
" 0”
Itpclo terminated normallyfor reasons noted in then.log file. If this termination w&s not
commanded, westigate and sok the problem identified in the log file and ug@admin to restart the
BRSCprotocol.
“ 1”
Itpclo terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then uspadmin to restart th&RSCprotocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithrelog log file:

Itpclo cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such Itp duct.
No LTP outduct with duct name matchimgmote_node_nbhas been added to tB® database. Use
bpadmin to stop theLTP corvergence-layer protocol, add the outduct, and then restartThe
protocol.

CLO task is already started for this duct.
Redundant initiation dfpclo.

Itpclo cant initialize LTP.
Itpadmin has not yet initializedTP operations.

BUGS
Report bugs to <ion—-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), Itpadmin(1), Itprc (5), Itpcli (1)

perl v5.18.2 2016-09-07 1

STCPCLI(1) BPexecutables STCPCLI(1)

NAME
sstcpeli — DTN simple TCP ceargence layer input task

SYNOPSIS
stcpclilocal_hostnamielocal_port_nbi

DESCRIPTION
stepcliis a backgrounddaemon’ task comprising 1 + N threads: one that han@ite® connections from
remotestcpclotasks, spawning sockets for data reception from those tasks, plus one input thread for each
spawned socket to handle data receptiga that socket.

The connection thread simply accepts connections oOFCR soclet bound tolocal_hostnameand
local_port_nbrand spawns reception threads. The default valuedat_port_nbr if omitted, is 4556.

Each reception thread reees bundles oer the associated connected seickEachbundle recered on the
connection is preceded by a 32-bit unsigned integer in network byte order indicating the length of the
bundle. Thereceved bundles are passed to the bundle protocol agent on theddcabde.

stepcliis spawned automatically ypadmin in response to the 'sSTART) command that starts operation
of the Bundle Protocol; the text of the command that is used g task must be provided at the time
the “stcp” corvergence layer protocol is added to tBe database. Theorvergence layer input task is
terminated bybpadmin in response to an 'x’TOP command. stcpcli can also be spawned and
terminated in response BTART and STOPcommands that pertain specifically to ¥h&CP corvergence
layer protocol.

EXIT STATUS

" OH
stcpeli terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and uggadmin to restart
stepcli.

“qr
stcpcli terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then udgpadmin to restaristcpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitivelog log file:

stcpcli cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such stcp duct.
No STCPinduct matchindocal_hostnamandlocal_port_nbrhas been added to tBe database. Use
bpadmin to stop theSTCP corvergence-layer protocol, add the induct, and then restarStaP
protocol.

CLI task is already started for this duct.
Redundant initiation atcpcli.

Cant getIP address for host
Operating system erroCheck errtext, correct problem, and res&¥rCP.

Cant openTCP socket
Operating system erroCheck errtext, correct problem, and res&rCP.

Cant initialize socket
Operating system erroCheck errtext, correct problem, and res&¥rCP.

perl v5.18.2 2016-09-07 1

STCPCLI(1) BPexecutables STCPCLI(1)

stcpcli cant create access thread
Operating system erroCheck errtext, correct problem, and res&¥rCP.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), stcpclo(1)

perl v5.18.2 2016-09-07 2

STCPCLO(1) BRexecutables STCPCLO(1)

NAME
stcpclo — DTN simple TCP coargence layer adapter output task

SYNOPSIS
stcpcloremote _hostnanjgemote_port_nigr

DESCRIPTION
stcpclois a backgrounddaemon’ task that connects to a remote nedeZP soclet atremote_hostname
andremote_port_nbr It then begins extractingundles from the queues of bundles ready for transmission
via TCP to this remote bundle protocol agent and transmitting those bundiethe connected socket to
that node. Each transmittedirimlle is preceded by a 32-bit integer in network byte order indicating the
length of the bundle.

If not specifiedremote_port_nbdefaults to 4556.

Note thatstcpclois not a “promiscuous’ corvergence layer daemon: it can transmiinbdles only to the
node to which it is connected, so scheme configuration diesdhiat cite this outduct need only pide
the protocol name and the outduct name as specified on the command liretophkris started.

stcpclois spawned automatically Hypadmin in response to the 'sSTART) command that starts operation
of the Bundle Protocol, and it is terminatedldpadmin in response to an 'x'TOP command. stcpclo
can also be spawned and terminated in resporS®ART and STOPcommands that pertain specifically to
the STCPcorvergence layer protocol.

EXIT STATUS

“ Q"
stcpclo terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and ug@admin to restart the
STCPprotocol.

“qr
stcpcloterminated abnormallyor reasons noted in then.log file. Investigate and solke the problem
identified in the log file, then udgpadmin to restart the&sTCPprotocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

stcpclo cart attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such stcp duct.
No STCPoutduct with duct name matchimgmote_hostnamandremote_port_nbihas been added to
the BP database. Usbpadmin to stop theSTCP corvergence-layer protocol, add the outduct, and
then restart th6 TCPprotocol.

CLOtask is already started for this duct.
Redundant initiation aétcpclo.

Cant getIP address for host
Operating system erroCheck errtext, correct problem, and res&¥rCP.

BUGS
Report bugs to <ion-bugs@lgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), stcpcli(1)

perl v5.18.2 2016-09-07 1

TCPCLI(1) BPexecutables TCPCLI(1)

NAME

tcpcli — DTN TCPCL-compliant carergence layer input task
SYNOPSIS

tepcli local_hostnamielocal_port_nbt
DESCRIPTION

tcpcli is a backgrounddaemon’ task comprising 1 + N threads: one that hang@ieB connections from

remotetcpclo tasks, spawning sockets for data reception from those tasks, plus one input thread for each

spawned socket to handle data receptige that socket.

The connection thread simply accepts connections OFCR soclet bound tolocal_hostnameand
local_port_nbrand spawns reception threads. The default valuedai_port_nbr if omitted, is 4556.

Each time a connection is established, the end-points will fishamge contact headers, because

connection parameters need to beyatated. tcpcli records the acknowledgement flags, reacti
fragmentation flag and pedive aknovledgements flag in the contact header it nesefrom its peer
tcpclo task.

Each reception thread reees bundles oer the associated connected seickEachbundle recered on the
connection is preceded by message type, fragmentation flags, and size represent&ibrng drne
received bundles are passed to the bundle protocol agent on thedocabde.

tcpceli is spawned automatically Hypadmin in response to the 'sSTART) command that starts operation

of the Bundle Protocol; thexeof the command that is used to spawn the task must be provided at the time

the “tcp” corvergence layer protocol is added to tBe database. Theorvergence layer input task is
terminated byopadmin in response to an 'x'TOP command.tcpcli can also be spawned and terminated
in response tSTART andSTOPcommands that pertain specifically to th&P corvergence layer protocol.

EXIT STATUS

“ o
tcpcli terminated normally for reasons noted in thmn.log file. If this termination \&s not
commanded, westigate and sol the problem identified in the log file and usgadmin to restart
tepcli.

“ 1”
tcpcli terminated abnormallyor reasons noted in then.log file. Investigate and sol the problem
identified in the log file, then usgpadmin to restartcpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

tcpceli cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such tcp duct.
No TCPinduct matchindocal_hostnamendlocal_port_nbrhas been added to tBe database. Use
bpadmin to stop theTCP corvergence-layer protocol, add the induct, and then restartT@re
protocol.

CLI task is already started for this duct.
Redundant initiation afcpcli.

Cant getIP address for host
Operating system erroCheck errtext, correct problem, and restap.

perl v5.18.2 2016-09-07 1

TCPCLI(1) BPexecutables

Cant openTCPsocket

Operating system erroCheck errtext, correct problem, and restap.

Cant initialize socket

Operating system erroCheck errtext, correct problem, and restap.

tcpceli cant create access thread

Operating system erroCheck errtext, correct problem, and restap.

BUGS
Report bugs to <ion-bugs@km@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), tcpclo(1)

perl v5.18.2 2016-09-07

TCPCLI(1)

TCPCLO(1) BPexecutables TCPCLO(1)

NAME
tcpclo - DTN TCPCL-compliant ceergence layer adapter output task

SYNOPSIS
tcpclo remote_hostnanfgemote_port_nbjr

DESCRIPTION

tcpclo is a backgrounddaemon’ task that connects to a remote ngdeCP soclet atremote_hostname
and remote_port_nhr It sends a contact heademnd it records the acknowledgement flag, reacti
fragmentation flag and gdive acknonvledgements flag in the contact header it rasefrom its peetcpcli
task. Itthen bgins extracting bundles from the queues of bundles ready for transmissib@Pvia this
remote bundle protocol agent and transmitting those bundéeshe connected soekto that node Each
transmitted bundle is preceded by message type, segmentation flagssamn/andicating the size of the
bundle (in bytes).

If not specifiedremote_port_nbdefaults to 4556.

Note thattcpclo is not a ‘promiscuous’ corvergence layer daemon: it can transminbdles only to the
node to which it is connected, so scheme configuration diesdhat cite this outduct need only pide
the protocol name and the outduct name as specified on the command linepeheis started.

tcpclo is spawned automatically Bypadmin in response to the 'sSTART) command that starts operation
of the Bundle Protocol, and it is terminated bpadmin in response to an 'x’'TOP command. tcpclo
can also be spawned and terminated in responSEART and STOPcommands that pertain specifically to
the TCP corvergence layer protocol.

EXIT STATUS

" 0”
tcpclo terminated normallyfor reasons noted in thion.log file. If this termination was not
commanded, westigate and sol the problem identified in the log file and ug@admin to restart the
TCPCL protocol.

“qr
tcpclo terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then usdpadmin to restart th@CPCL protocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

tcpclo cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such tcp duct.
No TCP outduct with duct name matchimgmote_hostnamandremote_port_nbihas been added to
the BP database. Uslepadmin to stop therCP corvergence-layer protocol, add the outduct, and then
restart therCP protocol.

CLOtask is already started for this duct.
Redundant initiation afcpclo.

Cant getIP address for host
Operating system erroCheck errtext, correct problem, and restap.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

TCPCLO(1) BPexecutables TCPCLO(1)

SEE ALSO
bpadmin(1), bprc(5), tcpcli(1)

perl v5.18.2 2016-09-07 2

UDPCLI(1) BPexecutables UDPCLI(1)

NAME
udpcli — UDP-based BP ceergence layer input task

SYNOPSIS
udpcli local_hostnamielocal_port_nbt

DESCRIPTION
udpcli is a background‘daemon’ task that recees UDP datagrams via &JDP soclet bound to
local_hostnameandlocal_port_nbr extracts lundles from those datagrams, and passes them taitiakeb
protocol agent on the locedN node.

If not specified, port number defaults to 4556.

The cowergence layer input task is spaed automatically bypadmin in response to the 'S'START)
command that starts operation of the Bundle Protocol; ttieofehe command that is used to spawn the
task must be provided at the time thalp” corvergence layer protocol is added to tBie database. The
convergence layer input task is terminatedbgadmin in response to an 'X’'TOP command. udpcli can
also be spawned and terminated in responSFA®T and STOPcommands that pertain specifically to the
UDP corvergence layer protocol.
EXIT STATUS
" 0“
udpcli terminated normallyfor reasons noted in then.log file. If this termination was not
commanded, westigate and sol the problem identified in the log file and uggadmin to restart
udpcli.
“qr
udpcli terminated abnormallyor reasons noted in then.log file. Investigate and sole the problem
identified in the log file, then uspadmin to restarudpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitivelog log file:

udpcli cant attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such udp duct.
No UDP induct matchindocal_hostnamendlocal_port_nbrhas been added to tB® database. Use
bpadmin to stop theUDP corvergence-layer protocol, add the induct, and then restartuthe
protocol.

CLI task is already started for this duct.
Redundant initiation afidpcli.

Cant getIP address for host
Operating system erroCheck errtext, correct problem, and restipp.

Cant openUDP socket
Operating system erroCheck errtext, correct problem, and rest:pp.

Cantinitialize socket
Operating system erroCheck errtext, correct problem, and rest:pe.

udpcli cant create receier thread
Operating system erroCheck errtext, correct problem, and rest:pe.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

UDPCLI(1) BPexecutables UDPCLI(1)

SEE ALSO
bpadmin(1), bprc(5), udpclo(1)

perl v5.18.2 2016-09-07 2

UDPCLO(1) BPexecutables UDPCLO(1)

NAME
udpclo - UDP-based BP caargence layer output task

SYNOPSIS
udpclo

DESCRIPTION
udpclo is a background‘daemon’ task that extracts bundles from the queues of bundles ready for
transmission viauUDP to remote hndle protocol agents, encapsulates theraDP datagrams, and sends
those datagrams to the appropriate renud® soclets as indicated by the host names amP port
numbers (destination induct names) associated with the bundles by the routing daemons that enqueued
them.

Note thatudpclo is a ‘promiscuous”CLO daemon, able to transmit bundles tg aP destination induct.

Its duct name is "* rather than the induct name of single UDP destination induct to which it might be
dedicated, so scheme configuration dixestithat cite this outduct must provide destination induct IDs.
For the UDP corvergence-layer protocol, destination induct IDs are identical to induct names, iyear¢he
of the formlocal_hostnamjelocal_port_nbt.

udpclo is spawned automatically lypadmin in response to the 'sSTART) command that starts operation
of the Bundle Protocol, and it is terminateddpadmin in response to an 'x'TOP command. udpclo
can also be spawned and terminated in responS®ART and STOPcommands that pertain specifically to
the UDP corvergence layer protocol.
EXIT STATUS
“ 0”
udpclo terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sol the problem identified in the log file and usgadmin to restart
udpclo.
“ 1”
udpclo terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then usgpadmin to restartudpclo.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

udpclo cart attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No memory foruDP buffer in udpclo.
ION system error Check errtext, correct problem, and restipp.

No such udp duct.
No UDP outduct with duct name "™ has been added toBRalatabase. Udepadmin to stop theuDP
corvergence-layer protocol, add the outduct, and then restauiRgprotocol.

CLO task is already started for this engine.
Redundant initiation afidpclo.

CLO can't openUDP socket
Operating system erroCheck errtext, correct problem, and restatpclo.

CLO write() error on socket
Operating system erroCheck errtext, correct problem, and restatpclo.

perl v5.18.2 2016-09-07 1

UDPCLO(1) BPexecutables UDPCLO(1)

Bundle is too big foUDP CLA.
Configuration error: bundles that are to@&afor UDP transmission (i.e., larger than 65535 bytes) are
being enqueued fardpclo. Change routing.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), udpcli(1)

perl v5.18.2 2016-09-07 2

BSSSTREAMINGAPP(1) BS8xecutables BSSSTREAMINGAPP(1)

NAME

bssStreamingApp — Bundle Streaming Service transmission test program
SYNOPSIS

bssStreamingAppown_endpoint_ID destination_endpoint_[@ass_of servide
DESCRIPTION

bssStreamingAppusesBSSto send streaming dataes BP from own_endpoint_I0Oo bssrecv listening at
destination_endpoint_IDclass_of servicés as specified fobptrace(1); if omitted, lundles are sent at
BP's gandard priority (1).

The bundles issued tssStreamingAppall have 66000-byte payloads, where tA8CII representation of

a positive integer (increasing monotonically from 0, by 1, throughout the operation of the program) appears
at the start of each payload. All bundles are sent with custody transfer requested, with timeetadi 1

day The application meters output by sleeping for 12800 microseconds after issuing each bundle.

Use CTRL-C to terminate the program.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bssrec\(1), bss(3)

perl v5.18.2 2016-09-07 1

BSSRECV(1) BS®xecutables BSSRECV(1)

NAME

bssrecv — Bundle Streaming Service reception test program

SYNOPSIS

bssrecv

DESCRIPTION

bssrecvusesBSSto acquire streaming data frdmssStreamingApp

bssrecvis a menu-dkien interactve test program, run from the operating system shell proripie
program enables the user to begin and end a sessiB8Sodlata acquisition fronbssStreamingApp
displaying the data as it ares in real time; to replay data acquired during the current session; and to replay
data acquired during a prior session.

The user must provide values for three parameters in order to initiate the acquisition or replay of data from
bssStreamingApp

BSSdatabase name
All data acquired by thBSSsession thread will be written taB&S" databasécomprising three files:
table, list, and dataThe name of the database is the root name that is common to the three files, e.g.,
db3tbl, db3lst, db3dat would be the three files making up dh&BSSdatabase.

path name
All three files of the selecteBSS database must reside in the same directory of the file system; the
path name of that directory is required.

endpointD
In order to acquire streaming data issued&yStreamingApp the bssrecvsession thread must open
the BP endpoint to which that data is directdebr this purpose, thi of that endpoint is needed.

bssrecvoffers the following menu options:

1. OpemBSSRecever in playback mode
bssrecvprompts the user for the three parameter values notea,ahen opens the indicat®ES
database for replay of the data in that database.

2. StartBSSreceiving thread
bssrecvprompts the user for the three parameter values noteg,dhen starts a background session
thread to acquire data into the indicated datab&seh bundle that is acquired is passed to a display
function that prints a single line consisting of N conseeuti’ characters, where N is computed as
the data number at the start of thentlles payload data, modulo 15(Note that the databaserist
open for replay at this time.

3. RunBSSrecevser thread
bssrecvprompts the user for the three parameter values note,dhen starts a background session
thread to acquire data into the indicated database (displaying the data as described for opéign 2 abo
and also opens the database for replay.

4. Close current playback session
bssrecvcloses the indicateBiSSdatabase, terminating replay access.

5. StopBSSreceiving thread
bssrecv terminates the current background session thread. Replay accessB®StHatabase, if
currently open, isiot terminated.

6. StopBSSRecever
bssrecv terminates the current background session thread. Replay accessB®StHatabase, if
currently open, is also terminated.

7. Replay session
bssrecvprompts the user for the start and end times bounding the receptioralintettvis to be
replayed, then displays all data within that interval in both #odwand reerse time order The
display function performed for this purpose is the same one thateisised during real-time

perl v5.18.2 2016-09-07 1

BSSRECV(1) BS®xecutables

acquisition of streaming data.

8. Exit
bssrecvterminates.

EXIT STATUS
" 0”
bssrecvhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
bssStreamingApl), bss(3)

perl v5.18.2 2016-09-07

BSSRECV(1)

BSSRDMIN(1) BSSPexecutables BSSFDMIN(L)

NAME

bsspadmin - Bundle Streaming Service Protocol (BSSP) administration interface

SYNOPSIS

bsspadmin[commands_filenanje]

DESCRIPTION

bsspadminconfigures, starts, manages, and sgfSPoperations for the locadN node.

It operates in response BsSPconfiguration commands found in the flemmands_filenamé provided:;

if not, bsspadminprints a simple prompt (;) so that the user may type commands directly into standard
input. If commands_filenamis a period (.), the &fct is the same as if a command file containing the
single command 'X’ were passedliespadmin — that is, thedON node’sbsspclockask and link service
adapter tasks are stopped.

The format of commands farommands_filenamean be queried fronbsspadmin with the 'h’ or '?’
commands at the prompt. The commands are documentsdpny5).

EXIT STATUS

0 Successful completion &SSPadministration.

EXAMPLES

FILES

bsspadmin
Enter interactie BSSPconfiguration command entry mode.

bsspadmin hostl.bssp
Execute all configuration commandshiostl.bsspthen terminate immediately.

bsspadmin .
Stop allBSSPoperations on the local node.

Seebssprdb) for details of th&SSPconfiguration commands.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

Note: al ION administration utilities expect source file input to be lineasil text that are NL-delimited.
If you edit the bssprc file on aiWdons machine, be sure ise dos2unix to cowvert it to Unix text
format before presenting it tosspadmin Otherwisebsspadminwill detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

bsspadmin cahattach tolON.
There is naSDR data store fobsspadmirto use. You should runionadmin(1) first, to set up aBDR
data store fofON.

Cant open command file...
Thecommands_filenangpecified in the command line dodsaxist.

Various errors that dohcausebsspadminto fail but are noted in thimn.log log file may be caused by
improperly formatted commandsvgh at the prompt or in thecommands_filenaméle. Pleasesee
bssprd5) for details.

Report bugs to <ion—bugs@@no.eecs.ohiou.edu>

SEE ALSO

bsspra5)

perl v5.18.2 2016-09-07 1

UDPBSO(1) BSSRxecutables UDPBSO(1)

NAME
udpbso — UDP-based best-effort link service output task for BSSP

SYNOPSIS
udpbso{remote_engine_hostnanm@}[: remote_port_nbrtxbps remote_engine_nbr

DESCRIPTION

udpbsois a backgrounddaemon’ task that gtractsBSSPsegments from the queue of segments bound for
the indicated remotBSSPengine, encapsulates themUubP datagrams, and sends those datagrams to the

indicateduDP port on the indicated host. If not specified, port number defaults to 6001.

UDP congestion can be controlled by setting udpbsate of UDP datagram transmissiotxbps
(transmission rate in bits per second) to the value that is supported by the underlying network.

Each ‘span’ of BSSPdata interchange between the loBalSPengine and a neighborirBSSP engine
requires its own best-effort and reliable link service output tasks. All link service output tasksnaredspa
automatically bybsspadminin response to the 's’ command that starts operation a$is€protocol, and
they are all terminated b¥sspadminin response to an 'X’TOP command.

EXIT STATUS

“ o
udpbso terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and Ussspadminto restart
udpbso.

“qr
udpbsoterminated abnormallyor reasons noted in then.log file. Investigate and soke the problem
identified in the log file, then udsspadminto restarudpbso.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

udpbso cart'initialize BSSP.
bsspadminhas not yet initialize@SSPprotocol operations.

No such engine in database.
remote_engine_nbis invalid, or the applicable span has not yet been added tB3hedatabase by
bsspadmin

BE-BSO task is already started for this engine.
Redundant initiation afidpbso.

BE-BSO cart openUDP socket
Operating system erroCheck errtext, correct problem, and restatpbso.

BE-BSO cart bind UDP socket
Operating system erroCheck errtext, correct problem, and restaipbso.

Segment is too big fayDP BSO.
Configuration error: segments that are too largeufoP transmission (i.e., lger than 65535 bytes)
are being enqueued fadpbso. Usebsspadminto change maximum segment size for this span.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ABSO
bsspadmirfl), tcpbsa(1), udpbsi(1)

perl v5.18.2 2016-09-07 1

BPCP(1) CFDRexecutables BPCP(1)

NAME
bpcp — A remote coputility for delay tolerant networks utilizing NASA JRLInterplanetary Oerlay

Network (ION)

SYNOPSIS
bpcp [-dgr | —-v] [-L bundle_lifetimg [-C custody_on/off [-S class_of_servide [hostZ]filel ...

[host2]file2

DESCRIPTION
bpcp copies files between hosts utilizinhSA JPLs Interplanetary Overlay Netwk (ION) to provide a
delay tolerant neterk. File copies from local to remote, remote to local, or remote to remote are permitted.
bpcp depends onON to do aly authentication or encryption of file transfers. Allveogence layers \er
which bpcp runsMUST be reliable.

The options are permitted as follows:

—-d Debug output. Repeat for increased verbosity.
-q Quiet. Do not output status messages.

-r Recursve.

-V Display version information.

-L bundle_lifetime
Bundle lifetime in seconds. Default is 86400 seconds (1 day).

—C BP_custody
Acceptable values a@N/OFF,YES/NO,1/0Default iSON.

—Sclass_of_service
Bundle Protocol Class of Service for this transfewilable options are:

0 Bulk Priority
1 Sandard Priority
2 Expedited Priority

Default is Standard Priority.

bpcp utilizes CFDPto preform the actual file transfers. This hases® important implications. FirstpN’s

CFDP implementation requires that reliable gemgence layers be used to transfer the data. Second, file
permissions are not transferred. Files will be madewgable on cop Third, symbolic links are ignored

for local to remote transfers and their target is copied for remote transfers. Fourth, all hosts must be
specified usingON’s IPN haming scheme.

In order to preform remote to local transfers or remote to remote trargfeps must be running on the
remote hosts. Hower, bpcp shouldNOT be run simultaneously withpcpd or cfdptest

EXIT STATUS
“ Q"
bpcp terminated normally.
“qr
bpcp terminated abnormallyCheck console and then.log file for error messages.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
bpcpd(1), ion(3), cfdptes(1)

perl v5.18.2 2016-09-07 1

BPCPD(1) CFDRxecutables BPCPD(1)

NAME

bpcpd — ION Delay Tolerant Networking remote file galaemon
SYNOPSIS

bpcpd [-d | -V]
DESCRIPTION

bpcpd is the daemon fobpcp. Together these programs gofiles between hosts utilizingASA JPLS
Interplanetary Overlay NetworkdN) to provide a delay tolerant network.

The options are permitted as follows:
-d Debug output. Repeat for increased verbosity.
-V Display version information.

bpcpd must be running in order to cpfiles from this host to another host (i.e. remote to local). Copies in
the other direction (local to remote) do not requimecpd. Further, bpcpd should NOT be run
simultaneously withbpcp or cfdptest

EXIT STATUS
“ o
bpcpd terminated normally.
“qr
bpcpd terminated abnormallfCheck console and then.log file for error messages.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion-bugs@km@no.eecs.ohiou.edu>

SEE ALSO
bpcp(1), ion (3), cfdptes(1)

perl v5.18.2 2016-09-07 1

BPUTA(1) CFDPexecutables BPUA(1)

NAME

bputa — BP-based CFDP UT-layer adapter
SYNOPSIS

bputa
DESCRIPTION

bputa is a background “daemdrt'ask that sends and reaes CFDPPDUSs encapsulated BTN bundles.

The task is spawned automatically dfg@padmin in response to thes” command that starts operation of
the CFDPprotocol; the text of the command that is used tovephe task must be provided as a parameter
to the 8’ command. The link service input task is terminateafoypadmin in response to an 'X’'YTOP
command.

EXIT STATUS

“ o
bputa terminated normallyfor reasons noted in thin.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and ufdpadmin to restart
bputa.

“qr
bputa terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then usédpadmin to restarbputa.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithrelog log file:

CFDPcant attach toBP.
bpadmin has not yet initialize@P protocol operations.

CFDPcant open own endpoint.
Most likely another bputa task is already running. tfspadmin to stopCFDPand restart.

CFDPcant get Bundle ProtocabAP.
Most likely aBP configuration problem. Udepadmin to stopBP and restart.

bputa cart atach toCFDP.
cfdpadmin has not yet initialize@€FDP protocol operations.

bputa cart' dequeue outboundFDP PDUY terminating.
Possible system erroCheck ion.log for additional diagnostic messages.

bputa cart' sendPDU in bundle; terminating.
Possible system erroCheck ion.log for additional diagnostic messages.

bputa cart' trackPDU; terminating.
Possible system erroCheck ion.log for additional diagnostic messages.

bputa bundle reception failed.
Possible system error; reception thread terminates. Check ion.log for additional diagnostic messages.

bputa cart'receve bundleADU.
Possible system error; reception thread terminates. Check ion.log for additional diagnostic messages.

bputa cart' handle bundle delery.
Possible system error; reception thread terminates. Check ion.log for additional diagnostic messages.

bputa cart' handle inboundPDU.
Possible system error; reception thread terminates. Check ion.log for additional diagnostic messages.

perl v5.18.2 2016-09-07 1

BPUTA(1) CFDPexecutables BPUA(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
cfdpadmin(1), bpadmin(1)

perl v5.18.2 2016-09-07

CFDRADMIN(1) CFDP executables CFDRDMIN(1)

NAME

cfdpadmin - IONs CCSDS File Delrery Protocol (CFDP) administration interface

SYNOPSIS

cfdpadmin [commands_filenanje]

DESCRIPTION

cfdpadmin configures, starts, manages, and stfsPoperations for the locaDN node.

It operates in response @FDP configuration commands found in the filemmands_filenamé# provided;

if not, cfdpadmin prints a simple prompt (;) so that the user may type commands directly into standard
input. If commands_filenamis a period (.), the &fct is the same as if a command file containing the
single command ’x’ were passed d¢fdpadmin — that is, thelON node’scfdpclocktask anduT layer
service task (nominallgputg) are stopped.

The format of commands farommands_filenamean be queried fronefdpadmin with the 'h’ or ?’
commands at the prompt. The commands are documentédpiic(5).

EXIT STATUS

“ 0”
Successful completion afFDPadministration.

EXAMPLES

FILES

cfdpadmin
Enter interactie CFDP configuration command entry mode.

cfdpadmin hostl.cfdprc
Execute all configuration commandshiost1.cfdprethen terminate immediately.

cfdpadmin .
Stop allCFDPoperations on the local node.

Seecfdprec(5) for details of the€FDPconfiguration commands.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

Note: al ION administration utilities expect source file input to be lineassIl text that are NL-delimited.
If you edit the cfdprc file on a Wdows machine, be sure tse dos2unix to cowert it to Unix text
format before presenting it tofdpadmin. Otherwisecfdpadmin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

cfdpadmin cart’attach tolON.
There is naSDR data store focfdpadminto use. You should runionadmin(l) first, to set up aSDR
data store folON.

Cant open command file...
Thecommands_filenanmgpecified in the command line dogsxist.

Various errors that dohcausecfdpadmin to fail but are noted in thimn.log log file may be caused by
improperly formatted commandsvgn at the prompt or in thecommands_filenaméle. Pleasesee
cfdprc(5) for details.

Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO

cfdprc(5)

perl v5.18.2 2016-09-07 1

CFDPCLOCK(1) CFDRxecutables CFDPCLOCK(1)

NAME
cfdpclock — CFDP daemon task for managing schedwent®

SYNOPSIS
cfdpclock

DESCRIPTION
cfdpclock is a background‘daemon’ task that periodically performs scheduledDP actiities. It is
spavned automatically bgfdpadmin in response to the 's’ command that starts operation o€EDP
protocol, and it is terminated lzfdpadmin in response to an ’X'TOP command.

Once per secondfdpclock takes the following action:

First it scans all inbound file ded#ry units (FDUs). For each one whose check timeout deadline has
passed, it increments the check timeout count and resets the check timeout déadleaeh one
whose check timeout count exceeds the limit configured for this nodeplteinthe Check Limit
Reached fault handling procedure.

Then it scans all outbound FDU&or each one that has been Canceled, it cancelsxahePDU
bundles and sets transmission progress to the size of the file, simulating the completion of
transmission. ltestroys each outboumU whose transmission is completed.

EXIT STATUS
" OH
cfdpclock terminated, for reasons noted in ibe.log file. If this termination was not commanded,
investigate and sol/the problem identified in the log file and wfdpadmin to restarcfdpclock.

“qr
cfdpclock was wnable to attach tGFDP protocol operations, probably becaa$gpadmin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithrelog log file:

cfdpclock cart initialize CFDP.
cfdpadmin has not yet initialize@FDPprotocol operations.

Cant dispatch gents.
An unrecaerable database error was encountergdpclock terminates.

Cant manage links.
An unrecaerable database error was encounterddpclock terminates.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
cfdpadmin(1)

perl v5.18.2 2016-09-07 1

CFDPTEST(1) CFDRxecutables CFDPTEST(1)

NAME
cfdptest — CFDP test shell for ION

SYNOPSIS
cfdptest[commands_filenanje

DESCRIPTION
cfdptest provides a mechanism for testir@FDP file transmission.It can be used in either scripted or
interactve node. Allbundles containingeFDP PDUs are sent with custody transfer requested and with all
bundle status reporting disabled.

When scripted witttcommands_filenamefdptest operates in response @DP management commands
contained in the provided commands file. Each line xtf itethe file is interpreted as a single command
comprising seeral tokens: a one-character command code and, in most cases, one or more command
arguments of one or more characterBhe commands configure and initia@=DP file transmission
operations.

If no file is specifiedcfdptestinstead offers the user an interaeti'shell” for command entrycfdptest
prints a prompt string (“:’) to stdout, accepts strings of text from stdin, and interprets each string as a
command.

The supportedfdptestcommands (whether interagi a scripted) are as follows:

? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

h An alternate form of thbelp command.

Z [<number of seconds to pause>]
The pause command. Whercfdptest is running in interactie mode, this command causes the
console input processing thread to pause the indicated number of secoadfiridefo 1) before
processing the next command. This is provided for use in test scripting.

d <destinationCFDPentity ID number>
The destination command. Thiscommand establishes theFDP entity to which the next file
transmission operation will be directe@FDP entity numbers inON are, by cowention, the same as
BP node numbers.

f <source file path name>
The from command. Thisccommand identifies the file that will be transmitted when the fike
transmission operation is commanded.

t <destination file path name>
Theto command. Thixommand preides the name for the file that will be created at the viegi
entity when the next file transmission operation is commanded.

| <lifetime in seconds>
The time-to-live command. Thiscommand establishes the time-teelifor all subsequently issued
bundles containingFDPPDUs. Ifnot specified, the default value 86400 (1 day) is used.

p <priority>
The priority command. Thiommand establishes the priority (class of service) for all subsequently
issued bundles containit@FDPPDUs. \alid values are 0, 1, and 2. If not specified, priority is 1.

o <ordinal>
The ordinal command. Thisommand establishes therdinal” (sub-priority within priority 2) for
all subsequently issued bundles containtkpP PDUs. \alid values are 0-254. If not specified,
ordinal is 0.

m <mode>
Themodecommand. Thigommand establishes the transmission mobest-effort’ or assured) for
all subsequently issued bundles containi®pP PDUs. \alid values are 0 (assured, reliable, with
reliability provided by a reliableDTN corvergence layer protocol), 1 (best-effort, unreliable), and 2

perl v5.18.2 2016-09-07 1

CFDPTEST(1) CFDRxecutables CFDPTEST(1)

(assured, reliable,ub with reliability provided byBP custody transfer). If not specified, transmission
mode is 0.

a<lateny in seconds>
The closure latency command. Thiscommand establishes the transaction closure hatéorcall
subsequent file transmission operatiolghen it is set to zero, the file transmission is “open loop’
and theCFDPtransaction at the sending entity finishes wheretbeis sent. Otherwise, the regwig
CFDP entity is being asked to send ‘&inished” PDU back to the sendin@FDP entity when the
transaction finishes at the receiving entijormally the transaction finishes at the sending entity only
when that FinishedPDU is receved. However, when closuie latency seconds elapse follong
transmission of theOF PDUprior to receipt of the FinisheRDU, the transaction finishes immediately
with a Check Timer fault.

n{0|1}
The segment metadatacommand. Thigommand controls the insertion of sample segment metadata
— astring representation of the current time in every file data sgmentPDU. Avalue of 1 enables
segment metadata insertion, while a value of 0 disables it.

g <srrflags>
The srrflags command. Thicommand establishes tiB® status reporting that will be requested for
all subsequently issued bundles contair@r@PPDUSs. srrflagsmust be a status reporting flags string
as defined fobptrace(1): a sequence of status report flags, separated by commas, with no embedded
whitespace. Eac$tatus report flag must be one of the following; ctvfwd, dlv, del.

C <criticality>
Thecriticality command. Thigommand establishes the criticality for all subsequently issuredids
containingCFDPPDUs. \4lid values are 0 (not critical) and 1 (critical). If not specified, criticality is
0.

r <action code nbr> <first path name> <second path name>
The filestore requestcommand. Thicommand adds a filestore request to the metadata that will be
issued when the next file transmission operation is commanded. Action code numbers are:

0 = aeate file

1 = delete file
2 =rename file
3 = gopend file

4 = replace file
5 = areate directory
6 = remove drectory
7 = dery file
8 = dery directory
U '<message text>’
Theuser messageommand. Thicommand adds a user message to the metadata that will be issued
when the next file transmission operation is commanded.

& The send command. Thiscommand initiates file transmission as configured by the most recent
precedingd, f, t, and a commands.

| Thegetcommand. Thixommand causes a request for file transmission to the local node, subject to
the parameters provided by the most recent precddingnd a commands, to be sent to the entity
identified by the most recent precedthgommand.

Thecancelcommand. Thisommand cancels the most recently initiated file transmission.

% Thesuspendcommand. Thisommand suspends the most recently initiated file transmission.
$ Theresumecommand. Thigommand resumes the most recently initiated file transmission.
Thereport command. Thisommand reports on the most recently initiated file transmission.

perl v5.18.2 2016-09-07 2

CFDPTEST(1) CFDRxecutables CFDPTEST(1)

g Thequit command. &rminates the cfdptest program.

cfdptestin interactve node also spawns @-DP event handling thread. Thevent thread recees CFDP
service indications and simply prints lines of text to stdout to announce them.

NOTE that whencfdptestruns in scripted mode it doest spavn an @ent handling thread, which meK it
possible for thecFDPevents queue to gm indefinitely unless some other task consumes and reports on the
evants. Onesimple solution is to run an interaaicfdptest task in background, simply to keep there
gueue cleared, while scripted non-intenaxtifdptesttasks are run in the foreground.

EXIT STATUS
“ OH
cfdptest has terminated Any problems encountered during operation will be noted iridhdog log
file.
FILES

See abwe for details on validommands_filenanmmmands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produceddigptestare written to théON log file ion.log

Cant open command file...
The file identified byrommands_filenandoesnt exist.

cfdptest cart’initialize CFDP.
cfdpadmin has not yet initialize@€FDPoperations.
Cant put FDU.
The attempt to initiate file transmissioailéd. Seethe ION log for additional diagnostic messages
from theCFDPlibrary.
Faled gettingCFDPevent.
The attempt to retn@ aCFDP service indicationdiled. Seehe ION log for additional diagnostic
messages from th@~DPlibrary.
BUGS
Report bugs to <ion—bugs@Igano.eecs.ohiou.edu>
SEE ALSO
cfdpadmin(1), cfdp(3)

perl v5.18.2 2016-09-07 3

DTPCADMIN(1) DTPCexecutables DTPCADMIN(L)

NAME

dtpcadmin - Delay-Tolerant Payload Conditioning (DTPC) administration interface

SYNOPSIS

dtpcadmin [commands_filenanje]

DESCRIPTION

dtpcadmin configures, starts, manages, and smPRC operations for the locaDN node.

It operates in response DI PC configuration commands found in the flemmands_filenam# provided:;

if not, dtpcadmin prints a simple prompt (;) so that the user may type commands directly into standard
input. If commands_filenamis a period (.), the &fct is the same as if a command file containing the
single command 'x’ were passeddfpcadmin — that is, theON node’sdtpcclocktask anddtpcdtask are
stopped.

The format of commands farommands_filenamean be queried frondtpcadmin with the 'h’ or '?’
commands at the prompt. The commands are documendéacie(5).

EXIT STATUS

0 Successful completion @fTPCadministration.

EXAMPLES

FILES

dtpcadmin
Enter interactie DTPC configuration command entry mode.

dtpcadmin hostl.dtpc
Execute all configuration commandshiost1.dtpcthen terminate immediately.

dtpcadmin .
Stop allIDTPC operations on the local node.

Seedtpcre(5) for details of th®TPC configuration commands.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

Note: al ION administration utilities expect source file input to be lineasil text that are NL-delimited.
If you edit the dtpcrc file on a Mtlows machine, be sure tese dos2unix to cowert it to Unix text
format before presenting it tdtpcadmin. Otherwisedtpcadmin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

dtpcadmin car’attach tolON.
There is naSDR data store fodtpcadminto use. You should runionadmin(1) first, to set up aBDR
data store fofON.

Cant open command file...
Thecommands_filenangpecified in the command line dodsaxist.

Various errors that dohcausedtpcadmin to fail but are noted in thimn.log log file may be caused by
improperly formatted commandsvgh at the prompt or in thecommands_filenaméle. Pleasesee
dtpcre(5) for detalils.

Report bugs to <ion—bugs@ano.eecs.ohiou.edu>

SEE ALSO

dtpcrc(5)

perl v5.18.2 2016-09-07 1

DTPCCLOCK(1) DTPGexecutables DTPCCLOCK(1)

NAME
dtpcclock — DTPC daemon task for managing schedwents

SYNOPSIS
dtpcclock

DESCRIPTION
dtpcclock is a background‘daemon’ task that periodically performs schedulb@PC actiities. It is
spavned automatically byltpcadmin in response to the 's’” command that starts operation ob1trec
protocol, and it is terminated lgpcadmin in response to an '’X'TOP command.

Once per secondipcclock takes the following action:
First it executes alDTPCevents scheduled to occur atyaime up to the current moment:

DTPC ADUs for which an expected pos# aknowledgment has not yet ared ae
retransmitted.

Receved DTPCADUs whose time toVie has elapsed are deleted.

Thendtpcclock increases the ages of BIFPC ADUs pending transmission and initiates transmission
of each sucADU whose age ne equals or exceeds its aggetion time limit.

EXIT STATUS
0 dtpcclock terminated, for reasons noted in fba.log file. If this termination was not commanded,
investigate and sol/the problem identified in the log file and wipcadmin to restardtpcclock.

1 dtpcclock was unable to attach tDTPC protocol operations, probably becaaecadmin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitivelog log file:

dtpcclock cart'initialize DTPC.
dtpcadmin has not yet initialize@®TPC protocol operations.

Cant send finished adu.
An unrecaerable database error was encountedtgcclock terminates.

Cant stop aggregdion for adu.
An unrecaoerable database error was encounteidtgcclock terminates.

Could not scan outbound Adus
An unrecoerable database error was encountemdtgcclock terminates.

BUGS
Report bugs to <ion—bugs@k@no.eecs.ohiou.edu>

SEE ALSO
dtpcadmin(1)

perl v5.18.2 2016-09-07 1

DTPCD(1) DTPCexecutables DTPCD(1)

NAME

dtpcd — DTPC daemon task for receiving and processing DTPC ADUs in bundles
SYNOPSIS

dtpcd
DESCRIPTION

dtpcd is a backgrounddaemon’ task that manages the reception and processimy @€ protocol data
units. Itreceies the payloads of bundles destined for tifgn'’~scheme endpoint whose node number is
the number of the local node and whose service number BT#@_RECV_SVC_NBR129 as of the time
of this writeng).

DTPC protocol data units are of tatypes: application data units (ADUs, i.e., aggt®ns of application
data items) and ackméedgments. Eaclkcknavledgment is interpreted as authorization to release the
buffer space occupied by the nagléscal copy of the acknwledgedADU. EachADU is parsed into its
constituent application data items, which are therveteldl to the applicationsnaiting them, and when
required eDTPCend-to-end acknowledgmePbU is returned to th®TPC PDUsender.

EXIT STATUS
0 dtpcd terminated normallyfor reasons noted in thn.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and wdt@cadmin to restart
dtpcd.

1 dtpcd terminated abnormallyfor reasons noted in then.log file. Investigate and sole the problem
identified in the log file, then uskpcadmin to restardtpcd.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

DTPCcant open own 'send’ endpoint.
Bundle protocol agent has not been started. i@e@).

dtpcd cart attach toDTPC.
dtpcadmin has not yet initialize®TPC protocol operations.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
dtpcadmin(1), ion(3)

perl v5.18.2 2016-09-07 1

DTPCRECEIVE(1) DTP@xecutables DTPCRECEIVE(1)

NAME

dtpcreceie — Delay—Tolerant Payload Conditioning reception test program
SYNOPSIS

dtpcreceive topic_ID
DESCRIPTION

dtpcreceive usesDTPC to acquire application data items on topapic_ID sent bydtpcsend Upon
termination it prints the total number of application data itemsvetend the mean rate of application
data transmission.

Use CTRL-C to terminate the program.

EXIT STATUS
0 dtpcreceive has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
dtpcsendl), dtpc(3)

perl v5.18.2 2016-09-07 1

DTPCSEND(1) DTP@xecutables DTPCSEND(1)

NAME

dtpcsend - Delay-Tolerant Payload Conditioning transmission test program
SYNOPSIS

dtpcsendnbr_of _cycles rate payload_size topic_ID profile_ID destination_endpoint
DESCRIPTION

dtpcsend usesDTPC to sendnbr_of_cyclesapplication data items gfayload_sizebytes each on topic
topic_IDto destination_endpoinising transmission profilgrofile_ID atrate bits per second.

rate must be between 1000 and 200 million bits per second.

payload_sizenust be between 2 and 1 million bytéo use application data item sizes chosen at random
from the range 1 to 65536, specifstyload_sizes 1.

NOTE thatdtpcsendinvokes an dision function that remes from the outboun®TPC aggreyae ADU all
records that are of the same size as the first record in thapagare This means that specifying gn
payload size other than 1 that is less than the configufed aggreation size limit will causeDTPC to
issue ADUs only when the aggetion time limit is exceeded, and each si¢iu will always contain only
a sngle record.

Use CTRL-C to terminate the program.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
dtpcreceivél), dtpc(3)

perl v5.18.2 2016-09-07 1

FILE2SDR(1) IClexecutables FILE2SDR(1)

NAME
file2sdr — SDR data ingestion test program

SYNOPSIS
file2sdr configFlags fileName

DESCRIPTION
file2sdr stress-testSDR data ingestion by repeatedly writing abktdines of the file namefileNameto one
of a series of non-volatile lirkl lists created in a teSDR data store named "testsdnfigFlag$. By
incorporating the data store configuration into the name (&#&stsdr14") we makit relatively easy to
perform comparate testing onSDR data stores that are identical aside from their configuration settings.

The operation ofile2sdr is cyclical: a nes linked list is created each time the program finishes copying the
file's text lines and startsver agan. If you use “C to terminatile2sdr and then restart it, the program
resumes operation at the point where it left off.

After writing each line to the current linked ligte2sdr gives a £maphore to indicate that the list isano
non-empty This is mainly for the benefit of the complementary test progdn2file(1).

At the end of eachyclefile2sdr appends a finaétOFline to the current linked list, containing thetté***
End of the file ***”, and prints a brief performance report:

Processing I<lineCount> lines per second.
EXIT STATUS
“ o
file2sdr has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages producedfitg2sdr are written to théON log file ion.log.

Cant use sdr.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant create semaphore.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

SDRtransaction failed.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant open input file
Operating system erroCheck errtext, correct problem, and rerun.

Cant reopen input file
Operating system erroCheck errtext, correct problem, and rerun.

Cant read from input file
Operating system erroCheck errtext, correct problem, and rerun.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
sdr2file(1), sdr(3)

perl v5.18.2 2016-09-07 1

FILE2SM(1) IClexecutables FILE2SM(1)

NAME
file2sm - shared—-memory linked list data ingestion test program

SYNOPSIS
file2smfileName

DESCRIPTION
file2sm stress-tests shared-memory &dklist data ingestion by repeatedly writing all text lines of the file
namedileNameto a shared-memory linked list that is the root objectri partition named “file2sm”.

After writing each line to the linked lisfile2sm gives a £maphore to indicate that the list issnaon-
empty This is mainly for the benefit of the complementary test progragfile(1).

The operation ofile2smis cyclical. Aftercopying all text lines of the source file to the linked lite2sm
appends afEOF line to the linked list, containing the text** End of the file ***”, and prints a brief
performance report:

Processing I<lineCount> lines per second.
Then it reopens the source file and starts appending tisetditelines to the linked list again.
EXIT STATUS
“ o
file2smhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Cant attach to shared memory
Operating system erroCheck errtext, correct problem, and rerun.

Cant manage shared memory.
PSM error. Check for earlier diagnostic messages describing the cause of the error; correct problem
and rerun.

Cant create shared memory list.
smlist error Check for earlier diagnostic messages describing the cause of the error; correct problem
and rerun.

Cant create semaphore.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Cant open input file
Operating system erroCheck errtext, correct problem, and rerun.

Cant reopen input file
Operating system erroCheck errtext, correct problem, and rerun.

Cant read from input file
Operating system erroCheck errtext, correct problem, and rerun.

Ran out of memory.
Nominal behgior. sm2fileis not etracting data from the linked list quickly enough tovers it from
growing to consume all memory allocated to the test partition.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
sm2filg(1), smlist(3), psm(3)

perl v5.18.2 2016-09-07 1

IONADMIN(1) ICI executables IOMDMIN(1)

NAME

ionadmin — ION node administration interface
SYNOPSIS

ionadmin [commands_filenanje]
DESCRIPTION

ionadmin configures, starts, manages, and stopgdNenode on the local computer.

It configures the node and sets (and reports on) global operational setting<Dfti §hx@tocol stack on the

local computer in response ON configuration commands found aommands_filenamé provided; if

not, ionadmin prints a simple prompt (:) so that the user may type commands directly into standard input.
If commands_filenamis a period (.), the effect is the same as if a command file containing the single
command "X’ were passed imnadmin — that is, thaON node’srfxclocktask is stopped.

The format of commands faommands_filenan@n be queried frononadmin by entering the command
'h’ or '?’ at the prompt. The commands are documentédrirc (5).

Note thationadminalways computes a congestion forecast immediately befatag Theresult of this

forecast — maximunprojected occupamcof the DTN protocol traffic allocation inON’s SDR database

— is retained for application fle control purposes: if maximum projected occupeisadhe entire protocol

traffic allocation, then a message to thifeeff is logged and no nebundle origination by anapplication

will be accepted until a subsequent forecast that predicts no congestion is conipategbstion forecasts

are constrained blyorizontimes, which can be established by commands issueda&dmin One way to
re-enable data origination temporarily while long-term traffic imbalances are being addressed is to declare a
congestion forecast horizon in the near future, before congestatd wccur if no adjustments were
made.)

EXIT STATUS
" Oll
Successful completion &N node administration.
EXAMPLES

ionadmin
Enter interactie ION configuration command entry mode.

ionadmin hostl.ion
Execute all configuration commandshiostl.ion then terminate immediately.

FILES
Status and diagnostic messages fiomadmin and from other software that utilizes th@N node are
nominally written to a log file in the currentovking directory within whicionadmin was run. Thelog
file is typically namedon.log.

See alsdonconfig(5) andionrc(5).

ENVIRONMENT
Environment \ariables ION_NODE_LIST_DIR and ION_NODE_WDNAME can be used to enable the
operation of multipleON nodes on a single workstation comput8ee section 2.1.3 of tHeN Design and
Operations Guide for details.

DIAGNOSTICS
Note: al ION administration utilities expect source file input to be lineasll text that are NL-delimited.
If you edit the ionrc file on a Wdows machine, be sure tse dos2unix to cowert it to Unix text f ormat
before presenting it tioonadmin. Otherwiseionadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the log file:

Cant open command file...
Thecommands_filenangpecified in the command line dogwxist.

perl v5.18.2 2016-09-07 1

IONADMIN(1) ICI executables IOMDMIN(1)

ionadminSDR definition failed.
A node initialization command waxeeuted, but arsDR database already exists for the indicated
node. ltis likely that anlON node is already running on this computer or that destruction of a
previously started the pvousION node was incomplete-or mostION installations, incomplete node
destruction can be repaired by (a) killing @N processes that are still running and then (b) using
ipcrm to remave dl SVr4 IPC objects owned byON.

ionadmin cart'get SDR parms.
A node initialization command waxeeuted, it theion_config_filenamgassed to that command
contains improperly formatted commands. Pleaséosmenfig(5) for further details.

Various errors that dohtauseionadmin to fail but are noted in the log file may be caused by improperly
formatted commands\gn at he prompt or in theommands_filenamédlease se@nrc (5) for details.

BUGS
If the ion_config_filenamearameter passed to a node initialization command refers to a&istene
filename, therionadmin uses default values are used rather than reporting an error in the command line
argument.

Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
ionrc (5), ionconfig(5)

perl v5.18.2 2016-09-07 2

IONSECADMIN(1) ICl executables IONSECADMIN(1)

NAME

ionsecadmin — ION security poji@dministration interface

SYNOPSIS

ionsecadmin[commands_filenanje

DESCRIPTION

ionsecadminconfigures and manages ko security poliy database on the local computer.

It configures and manages th@N security poliy database on the local computer in responseto
configuration commands found esommands_filenaméf provided; if not,ionsecadminprints a simple
prompt (;) so that the user may type commands directly into standard input.

The format of commands facommands_filenamean be queried fronionsecadmin by entering the
command 'h’ or '?’ at the prompt. The commands are documeniedsecrq>5).

EXIT STATUS

“ o
Successful completion @®N security poligy administration.

EXAMPLES

FILES

ionsecadmin
Enter interactie ION security polig administration command entry mode.

ionsecadmin hostl.ionsecrc
Execute all configuration commandshiostl.ionsecrcthen terminate immediately.

Status and diagnostic messages fionsecadminand from other softare that utilizes théON node are
nominally written to a log file in the current working directory within whichsecadminwas run. The
log file is typically namedbn.log.

See alsaonsecrq5).

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

Note: al ION administration utilities expect source file input to be lineasll text that are NL-delimited.
If you edit the ionrc file on a Wdows machine, be sure tse dos2unix to cowert it to Unix text f ormat
before presenting it taonsecadmin Otherwise ionsecadmin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the log file:

Cant open command file...
Thecommands_filenangpecified in the command line dogwxist.

Various errors that dot’causeionsecadminto fail but are noted in the log file may be caused by
improperly formatted commandsvgh at he prompt or in theommands_filenameease se@nsecrd5)
for details.

Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO

ionsecrd5)

perl v5.18.2 2016-09-07 1

OWLTSIM(1) ICI executables @VLTSIM(L)

NAME
owltsim — one-way light time transmission delay simulator

SYNOPSIS
owltsim config_filenamé-v]

DESCRIPTION
owltsim delays deliery of data between pairs N nodes by specified lengths of time, simulating the
signal propagation delay imposed by distance between the nodes.

Its operation is configured by delay simulation configuration lines in the file identifiednig_filename

A pair of threads is created for each line in the file: one thatvesagbP datagrams on a specified port and
gueues them in a linked list, and a second that latervestgpeued datagrams from the lgk list and
sends them on to a specifiedP port on a specified network host.

Each configuration line must be of the following form:
to from my_port# dest_host dest_port# owlt modulus

to identifies the receiving node.
This parameter is purely informational, intended to emakitsim’s printed messages more helpful to
the user.

fromidentifies the sending node.
A value of ¥ may be used to indicate “all nodes’Again, this parameter is purely informational,
intended to makewltsim’s printed messages more helpful to the user.

my_port#identifiesowltsim’s receiving port for this traffic.
dest_hosis a hostname identifying the computer to wioelitsim will transmit this traffic.
dest_port#dentifies the port to whichwitsim will transmit this traffic.
owlt specifies the number of seconds to wait before forwarding eachiacdatagram.
moduluscontrols the artificial random data loss imposed on this traffanlitgim.
A value of '0’ specifies “no random data ldssAny other modulus value N causesivitsim to
randomly drop (i.e., not transmit upon expiration of the delay interval) one ougrgfe packets.

The optionalv (“verbose’) parameter causesnltsim to print a message wheree it receves, sends, or
drops (due to artificial random data loss) a datagram.

Note that error conditions may cause one delay simulation (a pair of threads) to terminate without
terminating ag others.

owltsim is designed to run indefinitelyfo terminate the program, just use control-C to kill it.

EXIT STATUS
“0” Nominal termination.
“1” Termination due to an error condition, as noted in printed messages.

EXAMPLES
Here is a sample owltsim configuration file:

2 7 502 ptl07.jpl.nasa.go5001 75 0
7 2 507 ptl02.jpl.nasa.go5001 75 16

This file indicates thavwitsim will receive an port 5502 thelON traffic from node 2 that is destined for
node 7, which will recek it at port 5001 on the computer named ptl07.jpl.nasg.@é seconds of delay
(simulating a distance of 75 light seconds) will be imposed on this transmissiaty aatid owltsim will
not simulate anrandom data loss.

In the reverse directionpwitsim will receive an port 5507 thadON traffic from node 7 that is destined for
node 2, which will recek it a port 5001 on the computer named ptl02.jpl.nasa.gov; 75 seconds of delay
will again be imposed on this transmission\attj and owltsim will randomly discard (i.e., not transmit
upon expiration of the transmission delay interval) one datagram owsrgflé receied at his port.

perl v5.18.2 2016-09-07 1

OWLTSIM(1) ICI executables @VLTSIM(L)

FILES
Not applicable.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be printed to stdout:

owltsim cant open configuration file
The program terminates.

owltsim failed on fscanf
Failure on reading the configuration file. The program terminates.

owltsim stopped malformed config file litiee_number
Falure on parsing the configuration file. The program terminates.

owltsim cant spawn receier thread
The program terminates.

owltsim out of memory.
The program terminates.

owltsim cant open reception socket
The program terminates.

owltsim cant initialize reception socket
The program terminates.

owltsim cant open transmission socket
The program terminates.

owltsim cant initialize transmission socket
The program terminates.

owltsim cant spawn timer thread
The program terminates.

owltsim cant acquire datagram
Datagram transmissiomifed. Thiscauses the threads for théeated delay simulation to terminate,
without terminating apother threads.

owltsim failed on send
Datagram transmissiorifed. Thiscauses the threads for the affected delay simulation to terminate,
without terminating apother threads.

at time owltsim LOST a dg d length length from sending nodedestined forreceiving nodedue to
ECONNREFUSED.
This is an informational message. Due to an apparagtib Internet protocol implementation,
transmission of a datagram on a connette# soclet occasionallydils. owltsim does not attempt to
retransmit the affected datagram.

BUGS
Report bugs to <ion—bugs@ano.eecs.ohiou.edu>

SEE ALSO
udplsi(1), udplso(1)

perl v5.18.2 2016-09-07 2

OWLTTB(1) ICl executables QVLTTB(1)

NAME
owlttb — one—way light time transmission delay simulator

SYNOPSIS
owlttb own_uplink_port# own_downlink_port# dest_uplink_IP_address dest_uplink_port#
dest_downlink_IP_address dest_downlink_port# owlt_[s&¢.

DESCRIPTION
owlttb delays deliery of data between alTTI and a NetAcquire box (or two, one for uplink and one for
downlink) by a specified length of time, simulating the signal prapag delay imposed by distance
between the nodes.

Its operation is configured by the command-line parameters, except that the delay interval itself may be
changed while the program is runningwlttb offers a command prompt (:), and when & nalue of one-
way light time is entered at this prompt thewdelay interval takes effect immediately.

own_uplink_port#dentifies the port oowlttb accepts theNTTI's TCP connection for uplink trditc (i.e.,
data destined for the NetAcquire box).

own_downlink_port#dentifies the port owlttb accepts thedTTI's TCP connection for downlink trét
(i.e., data issued by the NetAcquire box).

dest_uplink_IP_address thelP address (a dotted string) identifying the NetAcquire box to whidktb
will transmit uplink traffic.

dest_uplink_port#dentifies theTCP port to whichowittb will connect in order to transmit uplink traffic to
NetAcquire.

dest_downlink_IP_address theIP address (a dotted string) identifying the NetAcquire box from which
owlttb will receive downlink traffic.

dest_downlink_port#dentifies theTCP port to whichowlttb will connect in order to rece¢ downlink
traffic from NetAcquire.

owlt specifies the number of seconds to wait before forwarding eachiaesgment of TCPtraffic.

The optional-v (“verbose’) parameter causesnttb to print a message wheree it recevves, sends, or
discards (due to absence of a connected downlink client) a segnT&m toéffic.

owlttb is designed to run indefinitelyTo terminate the program, just use control-C to Kill it or eritgt at
the prompt.

EXIT STATUS
“0” Nominal termination.
“1” Termination due to an error condition, as noted in printed messages.

EXAMPLES
Here is a sample owlttb command:

owlttb 2901 2902 137.7.8.19 10001 137.7.8.19 10002 75

This command indicates thawlttb will accept an uplink traffic connection on port 2901, forwarding the
receved uplink traffic to port 10001 on the NetAcquire box at 137.7.8.19, and it will accepivalid&
traffic connection on port 2902, dedring over that connection all downlink traffic that it reees from
connecting to port 10002 on the NetAcquire box at 137.7.85%econds of delay (simulating a distance
of 75 light seconds) will be imposed on this transmission activity.

FILES
Not applicable.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be printed to stdout:

owlttb cant spawn uplink thread
The program terminates.

perl v5.18.2 2016-09-07 1

OWLTTB(1) ICl executables QVLTTB(1)

owlttb cant spawn uplink sender thread
The program terminates.

owlttb cant spawn downlink thread
The program terminates.

owlttb cant spawn downlink receier thread
The program terminates.

owlttb cant spawn downlink sender thread
The program terminates.

owlttb fgets failed
The program terminates.

owlttb out of memory.
The program terminates.

owlttb lost uplink client.
This is an informational message. TMETI may reconnect at griime.

owlttb lost downlink client
This is an informational message. THETI may reconnect at griime.

owlttb cant openTCPsocket to NetAcquire
The program terminates.

owlttb cant connectTCP socket to NetAcquire
The program terminates.

owlttb write() error on socket
The program terminates if it was writing to NetAcquire; otherwise it simply recognizes that the client
NTTI has disconnected.

owlttb read() error on socket
The program terminates.

owlttb cant open uplink dialup socket
The program terminates.

owlttb cant initialize uplink dialup socket
The program terminates.

owlttb cant open downlink dialup socket
The program terminates.

owlttb cant initialize downlink dialup socket
The program terminates.

owlttb accept()failed
The program terminates.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 2

PSMSHELL(1) IClexecutables PSMSHELL(1)

NAME

psmshell - PSM memory management test shell
SYNOPSIS

psmshellpartition_size
DESCRIPTION

psmshellallocates a region gdartition_sizebytes of system memarplaces it undePSM management,
and offers the user an interaeti‘shell” f or testing variou®SMmanagement functions.

psmshell prints a prompt string (“:) to stdout, accepts a command from stoieguees the command
(possibly printing a diagnostic message), then prints another prompt string and so on.

The locations of objects allocated from the PSM-managgidrreof memory are referred to asells” in
psmshell operations. That is, when an object is to be allocated, a cell number in the range 0-99 must be
specified as the notional “handl&br that object, for use in future commands.

The following commands are supported:

h Thehelp command. Causesmshellto print a summary ofvailable commands. Same effect as the
? command.

? Anotherhelp command. Causgsmshellto print a summary ofvailable commands. Same effect as
theh command.

m cell_nbr size
The malloc command. Allocates large-pool object of the indicated size and associates that object
with cell_nbr.

z cell_nbr size
The zalloc command. Allocatea small-pool object of the indicated size and associates that object
with cell_nbr.

p cell_nbr
The print command. Printthe address (i.e., thefsét within the managed block of memory) of the
object associated wittell_nbr.

f cell_nbr
The free command. Freethe object associated wittell_nbr, returning the space formerly occupied
by that object to the appropriate free block list.

u Theusagecommand. Printa partition usage report, as pggsm_repor¢3).

g The quit command. Freeshe allocated system memory in the managed block and terminates
psmshell

EXIT STATUS
“ o
psmshellhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
IPC initialization failed.
ION system error Investigate, correct problem, and try again.

psmshell: cart’alocate space; quitting.
Insufficient aailable system memory for selected partition size.

psmshell: cart’alocate test variables; quitting.
Insufficient aalable system memory for selected partition size.

perl v5.18.2 2016-09-07 1

PSMSHELL(1) IClexecutables PSMSHELL(1)

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
psm(3)

perl v5.18.2 2016-09-07 2

PSMWAT CH(1) ICl executables PSMATCH(1)

NAME

psmwatch — PSM memory partition activity monitor
SYNOPSIS

psmwatchshared_memory &y nemory_size partition_name interval cofinerbose]
DESCRIPTION

For countinterations,psmwatch sleepsinterval seconds and thenviokes the psm_print_trace(function
(seepsm(3)) to report orPSMdynamic memory management activity in the PSM-managed shared memory
partition identified byshared_memory ey during that interal. If the optionalverbose parameter is
specified, the printeBSMactivity trace will be verbose as describegsm(3).

To prevent confusion, the specifiademory_sizendpartition_nameare compared to those declared when
this shared memory partition was initially managed; ifytldon’t match, psmwatch immediately
terminates.

If interval is zero,psmwatch merely prints a current usage summary for the indicated shared-memory
partition and terminates.

psmwatchis helpful for detecting and diagnosing memory ledkar. debugging theéON protocol stack:

shared_memory ely
Normally “65281", but might be werridden by the alue of wmkey in the .ionconfig file used to
configure the node under study.

memory_size
As given by the \alue of wmkey in the .ionconfig file used to configure the node under stifdy
this value is not stated in the .ionconfig file, the default value is “5000000".

partition_name
Always “ionwm”.
EXIT STATUS
" 0“
psmwatchhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

Cant attach to psm.
ION system error One possible cause is tHa&N has not yet been initialized on the local computer;
runionadmin(1) to correct this.

Cant start trace.
InsufficientlON working memory to contain trace information. Reinitialig®& with more memory.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
psm(3), sdrwatch(1)

perl v5.18.2 2016-09-07 1

RFXCLOCK(1) IClexecutables RFXCLOCK(1)

NAME
rfxclock — ION daemon task for managing schedulsshts

SYNOPSIS
rfxclock

DESCRIPTION
rfxclock is a backgrounddaemon’ task that periodically applies scheduled changes in node corityecti
and range to théON nodes database. lis spawned automatically kignadmin in response to thes”
command that starts operation of thé&l node infrastructure, and it is terminatedibyadmin in response
to an X’ (STOP command.

Once per secondixclock takes the following action:

For each neighboring node that has been refusing custody of bundles sent to it todvdddrie some
destination node, to which no suchnblle has been sent for at least N seconds (where N is twice the
one-way light time from the local node to this neighbar)clock turns on aprobelsDueflag
authorizing transmission of the next such bundle in hopes of learning that this neighvoiBent
accept custody.

Thenrfxclock purges the database of all range and contact information that is no longer applicable,
based on the stop times of the records.

Finally, rfxclock applies to the database all range and contact information that is currently applicable,
i.e., those records whose start times are before the current time and whose stop times are in the future.

EXIT STATUS
" 0“
rfxclock terminated, for reasons noted in tio@.log file. If this termination was not commanded,
investigate and sok/the problem identified in the log file and useadmin to restartfxclock.
“qr
rfxclock was wnable to attach to the loc@N node, probably becaugesadmin has not yet been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:

rfxclock cant attach tolON.
ionadmin has not yet initialized theN database.

Cant apply ranges.
An unrecwerable database error was encounteréxtlock terminates.

Cant apply contacts.
An unrecwoerable database error was encounteméxtlock terminates.

Cant purge ranges.
An unrecwoerable database error was encounteréxtlock terminates.

Cant purge contacts.
An unrecoerable database error was encountemxtlock terminates.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
ionadmin(1)

perl v5.18.2 2016-09-07 1

SDR2FILE(1) IClexecutables SDR2FILE(1)

NAME
sdr2file — SDR data extraction test program

SYNOPSIS
sdr2file configFlags

DESCRIPTION
sdr2file stress-testSDR data extraction by retrieving and deleting all text file lines inserted into anest
data store named "testsdnfigFlags by the complementary test progrdite2sdr(1).

The operation ofdr2file echoes the cyclical operation fie2sdr: each linked list created bfjle2sdr is
used to create in the currenorking directory a copof file2sdr's original source text file. The name of
each file written bydr2file is file_copy_cycleNbr wherecycleNbridentifies the linked list from which the
file’s text lines were obtained.

sdr2file may catch up with the data ingestion activity fid2sdr, in which case it blocks (taking the
file2sdr test semaphore) until the linked list it is currently draining is no longer empty.

EXIT STATUS
" 0”
sdr2file has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Cant use sdr.
ION system error Check for diagnostics in theN log file ion.log.

Cant create semaphore.
ION system error Check for diagnostics in theN log file ion.log.

SDRtransaction failed.
ION system error Check for diagnostics in theN log file ion.log.

Cant open output file
Operating system erroCheck errtext, correct problem, and rerun.

cant write to output file
Operating system erroCheck errtext, correct problem, and rerun.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
file2sdr(1), sdr(3)

perl v5.18.2 2016-09-07 1

SDRMEND(1) IClexecutables SDRMEND(1)

NAME

sdrmend — SDR corruption repair utility
SYNOPSIS

sdrmend sdr_name config_flags heap_words heay gath _namgrestartCmd restartLatengy
DESCRIPTION

The sdrmend program simply imokes the sdr_reload_profile(Jfunction (seesdr(3)) to effect necessary
repairs in a potentially corru@DR, e.g., due to the demise of a program that hag@zRtransaction in
progress at the moment it crashed.

Note thatsdrmend need not be run to repda®N's data store in thevent of a hardware reboot: restarting
ION will automatically reload the data staegrofile. sdrmendis needed only when it is desired to repair
the data store without requiring &N software to terminate and restart.

EXIT STATUS
" 0“
sdrmend has terminated successfully.
" 1”
sdrmend has terminated unsuccessfullgee diagnostic messages in ttve.log log file for details.
FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.
DIAGNOSTICS
The following diagnostics may be issued toitirelog log file:
Cant initialize theSDR system.
Probable operations errd®N appears not to be initialized, in which case there is no point in running
sdrmend.
Cant reload profile foISDR.
ION system error See earlier diagnostic messages postetbridog for details. In this eent it is

unlikely thatsdrmend can be run successfullsnd it is also unlikely that it would ke ay dfect if it
did run successfully.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
sdr(3), ionadmin(1)

perl v5.18.2 2016-09-07 1

SDRWATCH(1) ICl executables SDR/ATCH(1)

NAME

sdrwatch — SDR non-volatile data store activity monitor
SYNOPSIS

sdrwatch sdr_name interval coutitverbose]
DESCRIPTION

For countinterations,sdrwatch sleepsinterval seconds and thenviokes the sdr_print_trace()function
(seesdr(3)) to report onSDR data storage management activity in $R data store identified by
sdr_nameduring that interal. If the optionalverbose parameter is specified, the printedR actiity trace
will be verbose as describedsdr(3).

If interval is zero,sdrwatch merely prints a current usage summary for the indicated data store and
terminates.

sdrwatch is helpful for detecting and diagnosing storage space learsdelbugging thelON protocol
stack,sdr_names normally ‘ion’’ but might be gerridden by the value of sdrName in the .ionconfig file
used to configure the node under study.

EXIT STATUS
“ o
sdrwatch has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

Cant attach to sdr.
ION system error One possible cause is tHaN has not yet been initialized on the local computer;
runionadmin(1) to correct this.

Cant start trace.
InsufficientlON working memory to contain trace information. Reinitiali@& with more memory.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
sdr(3), psmwatch{1)

perl v5.18.2 2016-09-07 1

SM2FILE(1) IClexecutables SM2FILE(1)

NAME

sm2file — shared—memory linked list data extraction test program

SYNOPSIS

sm2file

DESCRIPTION

sm2file stress-tests shared-memory linked list data extraction by retrieving and deleting all text file lines
inserted into a shared-memory linked list that is the root objecP8f/gartition named “file2sm”.

The operation ofm2file echoes the cyclical operationfdé2sn the EOFlines inserted into the linked list
by file2sm punctuate the writing of files that are copiedileRsnis original source tet file. The name of
each file written bysm2file is file_copy_cycleNbr wherecycleNbris, in effect, the count oEOF lines
encountered in the linked list up to the point at which the writing of this fjanbe

sm2filemay catch up with the data ingestion wityi of file2sm, in which case it blocks (taking tHige2sm
test semaphore) until the linked list is no longer empty.

EXIT STATUS

FILES

[0”
smZ2file has terminated.

No configuration files are needed.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

cant attach to shared memory
Operating system erroCheck errtext, correct problem, and rerun.

Cant manage shared memory.
PSMerror Check for earlier diagnostics describing the cause of the error; correct problem and rerun.

Cant create shared memory list.
PSMerror Check for earlier diagnostics describing the cause of the error; correct problem and rerun.

Cant create semaphore.
ION system error Check for earlier diagnostics describing the cause of the error; correct problem and
rerun.

Cant open output file
Operating system erroCheck errtext, correct problem, and rerun.

cant write to output file
Operating system erroCheck errtext, correct problem, and rerun.

Report bugs to <ion—-bugs@Igano.eecs.ohiou.edu>

SEE ALSO

file2sm(1), smlist(3), psm(3)

perl v5.18.2 2016-09-07 1

SMLISTSH(1) IClexecutables SMLISTSH(1)

NAME

smlistsh — shared—memory linked list test shell

SYNOPSIS

smlistshpartition_size

DESCRIPTION
smlistsh attaches to a gioon of system memory (allocating it if necessaayd placing it undeiPSM
management as necessary) and offers the user an imerattell” for testing various shared-memory
linked list management functions.

smlistsh prints a prompt string (“: ”) to stdout, accepts a command from stdieguees the command
(possibly printing a diagnostic message), then prints another prompt string and so on.

The following commands are supported:

h

The help command. Causesnlistshto print a summary ofvailable commands. Same effect as the
? command.

Anotherhelp command. Causesnlistshto print a summary ofvailable commands. Same effect as
theh command.

Thekey command. Computeand prints an unused shared-memaey, kor possible use in attaching
to a shared-memory region.

+ key_value size

The attach command. Attachesmlistsh to a region of shared memorkey_valueidentifies an
existing shared-memory region, in theest that you vant to attach to an existing shared-memory
region (possibly created by anothanlistsh process running on the same computdi). ceate and
attach to a ne shared-memory region that other processes can attach tokegevalueas returned
by thekey command and supply trsézeof the nev regon. If you want to create and attach to ane
shared-memory region that is for strictlyyate use, use -1 aek and supply thesize of the nev
region.

Thedetachcommand. Detachesnlistshfrom the region of shared memory it is currently using, b
does not free anmemory.

The new command. Creates nrew shared-memory list to operate on, within the currently attached
shared-memory ggon. Printsthe address of the list.

slist_address

The share command. Selectan «isting shared-memory list to operate on, within the currently
attached shared-memory region.

aelement_value

The append command. Appenda rew list element, containinglement_valueto the list on which
smlistshis currently operating.

p element_value

w

The prepend command. Prependsrew list element, containinglement_valueto the list on which
smlistshis currently operating.

Thewalk command. Printthe addresses and contents of all elements of the list on arhiitshis
currently operating.

f element_value

The find command. Findghe list element that contairedement_valuewithin the list on which
smlistshis currently operating, and prints the address of that list element.

d element_address

r

perl v5.18.2

Thedeletecommand. Deletethe list element located atement_address
Thereport command. Printa partition usage report, as pgsm_repor{3).

2016-09-07 1

SMLISTSH(1) IClexecutables SMLISTSH(1)

g The quit command. Detachesmlistsh from the rgion of shared memory it is currently using
(without freeing ap memory) and terminatesmlistsh

EXIT STATUS
" 0”
smlistshhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
No diagnostics apply.
BUGS
Report bugs to <ion-bugs@lgano.eecs.ohiou.edu>

SEE ALSO
smlist(3)

perl v5.18.2 2016-09-07 2

SMRBTSH(1) IClexecutables SMRBTSH(1)

NAME

smrbtsh — shared—-memory red—black tree test shell
SYNOPSIS

smrbtsh [command_file_nanhe
DESCRIPTION

smrbtsh allocates a region of shared system memaeitaches to that ggon, places it undePSM
management, creates a temporagst” red-black tree in that memory region, aneoaites a series of
shared-memory red-black tree commands tkercese various tree access and management functions.

If command_file_namis provided, then the commands in the indicated file asewded and the program
then terminates.Upon termination, the shared memory region allocatedntobtsh is detached and
destroyed.

Otherwise smrbtsh offers the user an interaati “shell” f or testing the smrbt functions in a eersational
manner:smrbtsh prints a prompt string (“:’) to stdout, accepts a command from stdixecates the
command (possibly printing a diagnostic message), then prints another prompt string andUgpmron.
execution of the 'q’ command, the program terminates.

The following commands are supported:

h Thehelp command. Causesnrbtsh to print a summary ofvailable commands. Same effect as the
? command.

? Anotherhelp command. Causesnrbtsh to print a summary of\ailable commands. Same effect as
theh command.

s[seed_valug
The seedcommand. Seedandom dataalue generatomwhich is used to generate node values when
ther command is usedlf seed_valugs omitted, uses current time (as returnediime(1)) as seed
value.

r [couni
The random command. Insertsount new nodes into the red-black tree, using randomly selected
unsigned long integers as the data values of the noo@stdefaults to 1 if omitted.

i data_value
Theinsert command. Inserta sngle nav node into the red-black tree, usidgta_valueas the data
value of the node.

f data_value
The find command. Findshe rbt node whose value @&ata_value within the red-black tree, and
prints the address of that nodk.the node is not found, prints address zero and prints the address of
the successor node in the tree.

d data_value
Thedeletecommand. Deletethe rbt node whose data valuelata_value

p Theprint command. Printthe red-black tree, using indentation to indicate descent along paths of the
tree.

Note: this function is supported only if themrbt library was lilt with compilation flag
-DSMRBT_DEBUG=1.

k The check command. Examinethe red-black tree, noting the first violation of red-black structure
rules, if ary.

Note: this function is supported only if themrbt library was Hlilt with compilation flag
-DSMRBT_DEBUG=1.

I Thelist command. Listgll nodes in the red-black tree invessal ordernoting ary nodes whose data
values are not in ascending numerical order.

perl v5.18.2 2016-09-07 1

SMRBTSH(1) IClexecutables SMRBTSH(1)

g The quit command. Detachesmrbtsh from the rgion of shared memory it is currently using,
destroys that shared memory region, and termirsateltsh.

EXIT STATUS
" 0”
smrbtsh has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
No diagnostics apply.
BUGS
Report bugs to <ion-bugs@lgano.eecs.ohiou.edu>

SEE ALSO
smrbt(3)

perl v5.18.2 2016-09-07 2

DCCPLSI(1) [TP executables DCCPLSI(1)

NAME

dccplsi — DCCP-based LTP link service input task
SYNOPSIS

dccplsi{local_hostnam¢ @}|: local_port_nbt
DESCRIPTION

dccplsi is a background‘daemon’ task that recees DCCP datagrams via &CCP soclet bound to
local_hostnamendlocal_port_nbr extractsLTP seggments from those datagrams, and passes them to the
local LTP engine. Hoshame ‘@’ signifies that the host name returnedhmstnamél) is to be used as

the sockes host name. If not specified, port number defaults to 1113.

The link service input task is spawned automaticalljtgydmin in response to the 's’ command that starts
operation of th&TP protocol; the text of the command that is used to spawn the task must be provided as a
parameter to the 's’ commandhe link service input task is terminated ltgadmin in response to an 'x’
(STOP command.
EXIT STATUS
“ o
dccplsi terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and Uggadmin to restart
dccplsi.
“qr
dccplsiterminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then usgadmin to restardccplsi.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithrelog log file:

dccplsi cartinitialize LTP.
[tpadmin has not yet initializedTP protocol operations.

LSl task is already started.
Redundant initiation adiccplsi.

LS| cant openDCCPsocket. This probably meab€CPis not supported on your system.
Operating system errofhis probably means that you are not using an operating system that supports
DCCP. Make aure that you are using a current Linux kernel and thaDtb€P modules are being
compiled. Check errtext, correct problem, and resi@oplsi.

LSI cant initialize socket.
Operating system erroCheck errtext, correct problem, and restitplsi.

LSI cant create listener thread.
Operating system erroCheck errtext, correct problem, and restatplsi.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
Itpadmin(1), dccplsa(1), owltsim(1)

perl v5.18.2 2016-09-07 1

DCCPLSO(1) TP executables DCCPLSO(1)

NAME

dccplso - DCCP-based LTP link service output task
SYNOPSIS

dccplso{remote_engine_hostnam@}[: remote_port_nbrremote_engine_nbr
DESCRIPTION

dcceplsois a backgrounddaemon’ task that gtractsLTP segments from the queue ofgseents bound for
the indicated remoteTP engine, encapsulates themOgCP datagrams, and sends those datagrams to the
indicatedDCCPport on the indicated host. If not specified, port number defaults to 1113.

Each ‘span’ of LTP data interchange between the locEP engine and a neighboringP engine requires
its own link service output task, suchdaplsa All link service output tasks are spawned automatically
by Itpadmin in response to thes” command that starts operation of theP protocol, and the are all
terminated bytpadmin in response to an 'XTOP command.

EXIT STATUS

“ o
dccplso terminated normallyfor reasons noted in thien.log file. If this termination \as not
commanded, westigate and sok the problem identified in the log file and Uggadmin to restart
dccplsa

" 1”
dccplsoterminated abnormallyor reasons noted in then.logfile. Investigate and sok the problem
identified in the log file, then usgwadmin to restardccplsa

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toitrelog log file:

dccplso cart'initialize LTP.
Itpadmin has not yet initializedTP protocol operations.

No such engine in database.
remote_engine_nbis invalid, or the applicable span has not yet been added torthelatabase by
[tpadmin.

LSOtask is already started for this engine.
Redundant initiation adficcplsa

LSO cant create idle thread.
Operating system erroCheck errtext, correct problem, and restitplsa

LSO cant openDCCPsocket. This probably meaB£CPis not supported on your system.
Operating system errofhis probably means that you are not using an operating system that supports
DCCP. Make aure that you are using a current Linux kernel and thaDtheP modules are being
compiled. Check errtext, correct problem, and resi@rplsa

LSO cant connectDCCPsocket.
Remote hos$ dccplsiisn't listening or has terminated. Restdetplsi on the remote host and then
restartdccplsa

Segment is too big faCCP LSO.
Configuration error: segments that are togdaior DCCPtransmission (i.e., larger than 65535 bytes)
are being enqueued fdccplsa Useltpadmin to change maximum segment size for this span.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

DCCPLSO(1) TP executables DCCPLSO(1)

SEE ALSO
Itpadmin(1), ltpmeter(1), dccplsi(1), owltsim(1)

perl v5.18.2 2016-09-07 2

LTPADMIN(1) LTP executables TPADMIN(1)

NAME

Itpadmin — ION Licklider Transmission Protocol (LTP) administration interface
SYNOPSIS

[tpadmin [commands_filenanje]
DESCRIPTION

[tpadmin configures, starts, manages, and stajsoperations for the locadN node.

It operates in response ItOP configuration commands found in the flemmands_filenamé provided,; if

not, Itpadmin prints a simple prompt (:) so that the user may type commands directly into standard input.
If commands_filenamis a period (.), the effect is the same as if a command file containing the single
command X’ were passed ttpadmin — that is, thelON node’sltpclock task, Itpmetertasks, and link
service adapter tasks are stopped.

The format of commands fatommands_filenamean be queried fronitpadmin with the 'h’ or '?’
commands at the prompt. The commands are documeritecci(b).

EXIT STATUS
“0” Successful completion aff P administration.

EXAMPLES
[tpadmin
Enter interactie LTP configuration command entry mode.

Itpadmin hostl.ltp
Execute all configuration commandshiostl.Itp then terminate immediately.

Itpadmin .
Stop allLTP operations on the local node.

FILES
Seeltprc (5) for details of th&TP configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: al ION administration utilities expect source file input to be lineasll text that are NL-delimited.
If you edit the Itprc file on a Wdows machine, be sure tse dos2unix to cowvert it to Unix text f ormat
before presenting it titpadmin. Otherwiseltpadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

Itpadmin cart attach tolON.
There is noSDR data store fottpadminto use. You should runionadmin(1) first, to set up asDR
data store fofON.

Cant open command file...
Thecommands_filenangpecified in the command line dodsxist.

Various errors that doh’causeltpadmin to fail but are noted in thmn.log log file may be caused by
improperly formatted commandsvgn at the prompt or in theommands_filenanfde. Pleaseseeltprc (5)
for details.

BUGS
Report bugs to <ion—-bugs@@no.eecs.ohiou.edu>

SEE ALSO
Itpmeter(1), Itprc (5)

perl v5.18.2 2016-09-07 1

LTPCLOCK(1) ITP executables [PCLOCK(1)

NAME
Itpclock — LTP daemon task for managing scheduletits

SYNOPSIS
Itpclock

DESCRIPTION
ltpclock is a backgrounddaemon’ task that periodically performs schedulad actvities. Itis spavned
automatically byltpadmin in response to the 's’ command that starts operation aftthg@rotocol, and it
is terminated bytpadmin in response to an 'X'TOP command.

Once per seconttpclock takes the following action:

First it manages the current state of all linksp@ns’). In particular it checks the age of the currently
buffered session block for each span and, if that ageeels the spasi‘configured aggrgstion time
limit, gives the “buffer full’” semaphore for that span to initiate bloclg®sentation and transmission
by Itpmeter.

In so doing, it also infers link state changd@mK cues”) from data rate changes as noted inRR&X
database byfxclock:

If the rate of transmission to a neighbor was zero butwsnum-zero, then transmission to that
neighbor is unbloadd. Theapplicable ‘buffer empty’ semaphore is gen if no outbound block

is being constructed (enabling start of avrteansmission session) and theegments ready’
semaphore is gén if the outbound segment queue is non-empty (enabling transmission of
segments by the link service output task).

If the rate of transmission to a neighbor was non-zero butwszam, then transmission to that
neighbor is blockd — i.e.the semaphores triggering transmission will no longer e gi

If the imputed rate of transmission from a neighbor was non-zero butigemno, then all timers
affecting segment retransmission to that neighbor are suspended. This has the effeadaoige
the interval of each affected timer by the length of time that the timers remain suspended.

If the imputed rate of transmission from a neighbor was zero butvisioio-zero, then all timers
affecting segment retransmission to that neighbor are resumed.

Thenltpclock retransmits all unacknowledged checkpoint segments, report segments, and cancellation
segments whose computed timeout interval® leapired.
EXIT STATUS

“ OH
Itpclock terminated, for reasons noted in tilo@.log file. If this termination was not commanded,
investigate and sok/the problem identified in the log file and ugg&admin to restaritpclock.

“qr
Itpclock was unable to attach toTP protocol operations, probably becaltgadmin has not yet been
run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

Itpclock cant initialize LTP.
Itpadmin has not yet initializedTP protocol operations.

Cant dispatch gents.
An unrecwoerable database error was encountetgztlock terminates.

perl v5.18.2 2016-09-07 1

LTPCLOCK(1) ITP executables [PCLOCK(1)

Cant manage links.
An unrecoerable database error was encountetgatlock terminates.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
[tpadmin(1), Itpmeter(1), rfxclock(1)

perl v5.18.2 2016-09-07 2

LTPCOUNTER(L) TP executables [PCOUNTER(1)

NAME

Itpcounter — LTP reception test program
SYNOPSIS

Itpcounter client_ID [max_nbr_of_bytéds
DESCRIPTION

ltpcounter usesLTP to receve rvice data units flagged with client service numtlexnt_ID from a
remote Itpdri ver client service processWhen the total number of bytes of client service data it has
receved exceedsmax_nbr_of bytesit terminates and prints reception and cancellation statistics.
max_nbr_of_byteis omitted, the default limit is 2 billion bytes.

While receiving datdfpcounter prints a 'v’' character&ry 5 seconds to indicate that it is stillvali
EXIT STATUS

“ o
Itpcounter has terminated Any problems encountered during operation will be noted indhdog
log file.

" 1”
Itpcounter was wnable to start, because it could not attach toLttreprotocol on the local node or
could not open access to client sengtentld.

In the former case, rdtpadmin to startLTP and try again.

In the latter case, some other client service task has already opened access to clienlicetieicdf
no such task is currently running (e.g., it crashed while holding the client service opéipadisin
to stop and restart th& P protocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages producedtpgounter are written to théON log file ion.log

Itpcounter cart'initialize LTP.
[tpadmin has not yet initializedTP protocol operations.

[tpcounter cart’open client access.
Another task has opened access to service diemtld and has not yet relinquished it.

Cant getLTP notice.
LTP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion-bugs@lgano.eecs.ohiou.edu>

SEE ALSO
Itpadmin(1), Itpdriver (1), Itp (3)

perl v5.18.2 2016-09-07 1

LTPDRIVER(1) ITP executables IPDRIVER(1)

NAME
Itpdriver — LTP transmission test program

SYNOPSIS
Itpdri ver remoteEngineNDbr clientld nbrOfCycles greenLergibtalLength

DESCRIPTION
Itpdri ver usesLTP to sendnbrOfCyclesservice data units of length indicated tbyalLength of which the
trailing greenLengthbytes are sent unreliabljo the Itpcounter client service process for client service
numberclientld attached to the remoterP engine identified byemoteEngineNbr If omitted, length
defaults to 60000.If lengthis 1, the sizes of the transmitted service data units will be randomly selected
multiples of 1024 in the range 1024 to 62464.

Wheneer the size of the transmitted service data unit is less than or eqgraktd_engththe entireSDU is
sent unreliably.

When all copies of the file kia keen sentltpdri ver prints a performance report.

EXIT STATUS
" 0”
Itpdri ver has terminatedAny problems encountered during operation will be noted indhgog log
file.
“qr
Itpdri ver was unable to start, because it could not attach td_tteprotocol on the local nodeRun
[tpadmin to startLTP, then try again.

FILES
The service data units transmitted lgydri ver are sequences of text obtained from a file in the current
working directory named “ItpdvierAdufile”, which Itpdri ver creates automatically.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages producedtpyri ver are written to théON log file ion.log.

Itpdriver can't initialize LTP.
Itpadmin has not yet initializedTP protocol operations.

Cant createADU file
Operating system erroCheck errtext, correct problem, and rerun.

Error writing toADU file
Operating system erroCheck errtext, correct problem, and rerun.

Itpdriver can't create file ref.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Itpdriver can't createzCO.
ION system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

ltpdriver can’t send message.
LTP span to the remote engine has been stopped.

Itp_send failed.
LTP system error Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion—-bugs@ano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

LTPDRIVER(1) ITP executables IPDRIVER(1)

SEE ALSO
Itpadmin(1), ltpcounter(1), Itp (3)

perl v5.18.2 2016-09-07 2

LTPMETER(1) [TP executables IPMETER(1)

NAME

Itpmeter — LTP daemon task for aggaeng and segmenting transmission blocks
SYNOPSIS

Itpmeter remote_engine_nbr
DESCRIPTION

ltpmeter is a backgrounddaemon’ task that manages the presentationT# segments to link service
output tasks. Eachispan’ of LTP data interchange between the locaP engine and a neighboring P
engine requires itswm Itpmeter task. All ltpmeter tasks are spawned automatically lgyadmin in
response to thes” command that starts operation of P protocol, and the are all terminated by
Itpadmin in response to an 'X'TOP command.

Itpmeter waits until its spars aurrent transmission block (the data to be transmitted during the
transmission session that is currently being constructed) is ready for transmission, then divides the data in

the spars Hock huffer into segments and enqueues thggrsets for transmission by the spalink service

output task (giving the genents semaphore to unblock the link service output task as necessary), then

reinitializes the spas’dock kuffer and starts another session (giving theffer empty’ semaphore to
unblock the client service task- nominally ltpclo, the LTP corvergence layer output task for Bundle
Protocol — asecessary).

Itpmeter determines that the current transmission block is ready for transmissiaaitmgwntil either (a)
the aggrgate size of all service data units in the bleckiffer exceeds the aggaion size limit for this
span or (b) the length of time that the first service data unit in the blbcKer has been veaiting

transmission exceeds the aggaen time limit for this span. Thebuffer full’” semaphore is gen when

ION (either thdtp_send()function or thdtpclock daemon) determines that one of these conditions is true;

Itpmeter simply waits for this semaphore to beej.

The initiation of a n& session may also be blastt: the total number of transmission sessions that the local

LTP engine may hae qoen at a single time is limited (thislisP flow control), and while the engine is at

this limit no nev sessions can be startedvailability of a session from the session pool is signaled by the

“ sessiori’semaphore, which is gén whenever a ®ssion is completed or canceled.
EXIT STATUS

“ o
Itpmeter terminated normallyfor reasons noted in thien.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and Uggadmin to restart
Itpmeter.

“qr
Itpmeter terminated abnormallyfor reasons noted in thien.log file. Investigate and sol the
problem identified in the log file, then uggadmin to restaritpmeter.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

Itpmeter cart'initialize LTP.
Itpadmin has not yet initializedTP protocol operations.

No such engine in database.
remote_engine_nbis invalid, or the applicable span has not yet been added tortheatabase by
Itpadmin.

ltpmeter task is already started for this engine.
Redundant initiation dtpmeter.

perl v5.18.2 2016-09-07 1

LTPMETER(1) TP eecutables

Itpmeter cart start nev session.

An unrecwoerable database error was encountettgaineter terminates.

Cant take hufClosedSemaphore.

An unrecwaerable database error was encountetgzmeter terminates.

Cant create extents list.

An unrecaerable database error was encountetgameter terminates.

Cant post ExportSessionStart notice.

An unrecaerable database error was encountetgaineter terminates.

Cant finish session.

An unrecwoerable database error was encountetgaineter terminates.

BUGS
Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO
[tpadmin(1), Itpclock(1)

perl v5.18.2 2016-09-07

IPMETER(1)

UDPLSI(1) LTP executables UDPLSI(1)

NAME

udplsi — UDP-based LTP link service input task

SYNOPSIS

udplsi {local_hostnamé¢ @}[: local_port_nbt

DESCRIPTION

udplsi is a background‘daemon’ task that recees UDP datagrams via &JDP soclet bound to
local_hostnamendlocal_port_nbr extractsLTP seggments from those datagrams, and passes them to the
local LTP engine. Hoshame ‘@’ signifies that the host name returnedhmstnamél) is to be used as

the sockes host name. If not specified, port number defaults to 1113.

The link service input task is spawned automaticalljtfydmin in response to the 's’ command that starts
operation of theTP protocol; the text of the command that is used to spawn the task must be provided as a
parameter to the 's’ commandhe link service input task is terminated ltgadmin in response to an 'x’

(STOP command.

EXIT STATUS

FILES

“ o
udplsi terminated normallyfor reasons noted in thi®n.log file. If this termination \&s not
commanded, westigate and sok the problem identified in the log file and Uggadmin to restart
udplsi.

“qr
udplsi terminated abnormallyor reasons noted in then.log file. Investigate and sole the problem
identified in the log file, then uspadmin to restarudplsi.

No configuration files are needed.

ENVIRONMENT

No environment variables apply.

DIAGNOSTICS

BUGS

The following diagnostics may be issued toithelog log file:

udplsi cant initialize LTP.
[tpadmin has not yet initializedTP protocol operations.

LSl task is already started.
Redundant initiation afidplsi.

LSI cant openUDP socket
Operating system erroCheck errtext, correct problem, and restatplsi.

LSI cant initialize socket
Operating system erroCheck errtext, correct problem, and restatplsi.

LSI cant create recefer thread
Operating system erroCheck errtext, correct problem, and restatplsi.

Report bugs to <ion-bugs@Igano.eecs.ohiou.edu>

SEE ALSO

[tpadmin(1), udplso(1), owltsim(1)

perl v5.18.2 2016-09-07 1

UDPLSO(1) [TP executables UDPLSO(1)

NAME
udplso — UDP-based LTP link service output task

SYNOPSIS
udplso{remote_engine_hostnarh@}[: remote_port_nbr[txbpg remote_engine_nbr

DESCRIPTION

udplsois a backgrounddaemon’ task that etractsLTP segments from the queue of segments bound for
the indicated remotETP engine, encapsulates themuUbP datagrams, and sends those datagrams to the

indicateduDP port on the indicated host. If not specified, port number defaults to 1113.

UDP congestion can be controlled by setting udpgls@te of UDP datagram transmissiotxbps
(transmission rate in bits per second) to the value that is supported by the underlying network.

Each ‘span’ of LTP data interchange between the locEP engine and a neighboringP engine requires

its awn link service output task, suchadplso. All link service output tasks are spawned automatically by

Itpadmin in response to the 's’ command that starts operation of_TiReprotocol, and the are all
terminated bytpadmin in response to an 'XTOP command.

EXIT STATUS

“ o
udplso terminated normallyfor reasons noted in then.log file. If this termination was not
commanded, westigate and sok the problem identified in the log file and Uggadmin to restart
udplso.

“qr
udplso terminated abnormallyor reasons noted in then.log file. Investigate and sok the problem
identified in the log file, then uspadmin to restarudplso.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued toithelog log file:

udplso cart'initialize LTP.
Itpadmin has not yet initializedTP protocol operations.

No such engine in database.
remote_engine_nbis invalid, or the applicable span has not yet been added tortheatabase by
Itpadmin.

LSOtask is already started for this engine.
Redundant initiation afidplso.

LSO cant openUDP socket
Operating system erroCheck errtext, correct problem, and restatplso.

LSO cant connectUDP socket
Operating system erroCheck errtext, correct problem, and restatplso.

Segment is too big fayDP LSO.
Configuration error: segments that are too largeufoP transmission (i.e., lger than 65535 bytes)
are being enqueued fadplso. Useltpadmin to change maximum segment size for this span.

BUGS
Report bugs to <ion-bugs@k@no.eecs.ohiou.edu>

SEE ALSO
[tpadmin(1), Itpmeter(1), udplsi(1), owltsim(1)

perl v5.18.2 2016-09-07 1

ams::doc::pod3::ams(3) AMigbrary functions ams::doc::pod3

NAME
ams — CCSDS Asynchronous Message Service(AMS) communications library

SYNOPSIS
#include "ams.h"

typedef void (*AmsMsgHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int continuumNbr,
int unitNbr,
int moduleNbr,
int subjectNbr,
int contentLength,
char *content,
int context,
AmsMsgType msgType,
int priority,
unsigned char flowLabel);

typedef void (*AmsRegistrationHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr,
int roleNbr);

typedef void (*AmsUnregistrationHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr);

typedef void (*AmslnvitationHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr,
int domainRoleNbr,
int domainContinuumNbr,
int domainUnitNbr,
int subjectNbr,
int priority,
unsigned char flowLabel,
AmsSequence sequence,
AmsDiligence diligence);

typedef void (*AmsDisinvitationHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr,
int domainRoleNbr,
int domainContinuumNobr,
int domainUnitNbr,

perl v5.18.2 2016-09-07

;:ams(3)

ams::doc::pod3::ams(3)

perl v5.18.2

typedef void

typedef void

typedef void

typedef void

typedef struct

{
AmsMsgHandler
void
AmsRegistrationHandler
void
AmsUnregistrationHandler
void
AmslnvitationHandler
void
AmsDisinvitationHandler
void
AmsSubscriptionHandler
void
AmsUnsubscriptionHandler
void
AmsUserEventHandler
void

AMigbrary functions

int subjectNbr);

(*AmsSubscriptionHandler)(AmsModule module,

void *userData,
AmsEvent *eventRef,

int unitNbr,

int moduleNbr,

int domainRoleNbr,

int domainContinuumNbr,
int domainUnitNbr,

int subjectNbr,

int priority,

unsigned char flowLabel,
AmsSequence sequence,
AmsDiligence diligence);

(*AmsUnsubscriptionHandler)(AmsModule module,

void *userData,
AmsEvent *eventRef,

int unitNbr,

int moduleNbr,

int domainRoleNbr,

int domainContinuumNbr,
int domainUnitNbr,

int subjectNbr);

(*AmsUserEventHandler)(AmsModule module,

void *userData,
AmsEvent *eventRef,
int code,

int dataLength,

char *data);

(*AmsMgtErrHandler)(void *userData,

AmsEvent *eventRef);

msgHandler;
*msgHandlerUserData;
registrationHandler;
*registrationHandlerUserData;
unregistrationHandler;
*unregistrationHandlerUserData;
invitationHandler;
*invitationHandlerUserData,;
disinvitationHandler;
*disinvitationHandlerUserData;
subscriptionHandler;
*subscriptionHandlerUserData;
unsubscriptionHandler;
*unsubscriptionHandlerUserData;
userEventHandler;
*userEventHandlerUserData;

2016-09-07

ams::doc::pod3

;:ams(3)

ams::doc::pod3::ams(3) AMigbrary functions ams::doc::pod3::ams(3)

AmsMgtErrHandler errHandler;
void *errHandlerUserData;
} AmsEventMgt;

typedef enum
{
AmsArrivalOrder = 0,
AmsTransmissionOrder
} AmsSequence;

typedef enum

{
AmsBestEffort = 0,
AmsAssured

} AmsDiligence;

typedef enum

{
AmsRegistrationState,
AmslnvitationState,
AmsSubscriptionState

} AmsStateType;

typedef enum

{
AmsStateBegins = 1,
AmsStateEnds

} AmsChangeType;

typedef enum

{
AmsMsgUnary = 0,
AmsMsgQuery,
AmsMsgReply,
AmsMsgNone

} AmsMsgType;

[see description for available functions]

DESCRIPTION
The ams library provides functions enabling application software tAMseto send and reoe lrief
messages, up to 65000 bytes in length. It conform$® Blue Book, including support for Remote/s
(RAMS).

In the ION implementation ofRAMS, the ‘RAMS network protocol’ may be either thedTN Bundle
Protocol RFC 5050 or — mainly for testing purposes— the User Datagram ProtocdRC 76§. BP is

the de&ult. WhenBP is used as thRAMS network protocol, endpoints are by default assumed to conform
to the ‘ipn’’ endpoint identifier scheme withode number set to theAMS continuum number and
service numberset to theAMS ventur e number.

Note thatRAMS functionality is enabled by instantiatingramsgate daemon, which is simply aaMS
application program that acts as a gatebetween the localAMS message space and ®eMS network.

AMS differs from othellON packages in that there is no utilization of non-volatile storage (aside from the
BP functionality in RAMS, if applicable). Since there is no noolatile AMS database, there is mMS
administration program and there are no library functions for attaching to or detaching from such a
database AMS is instantiated by commencing operation of AsS real-time daemoamsd onceamsdis

perl v5.18.2 2016-09-07 3

ams::doc::pod3::ams(3) AMigbrary functions ams::doc::pod3::ams(3)

running,AMS application programs‘thodules’) can be startedAll management oAMS operational state
is performed automatically in real time.

However, amsd and theAMS application programs all require access to a common store of configuration
data at startup in order to load their Management Information Bases. This configuration data must reside in
a readable file, which may tekdther of two forms: a file ofXML statements conforming to the scheme
described in themsxml(5) man page, or a file of simple but less powerful configuration statements as
described in thamsrg(5) man page.The amsxml alternatve requires that thexpat XML parsing system

be installed; themsrc alternatve was deeloped to simplify deployment &fMS in ervironments in which

expat is not readily supportedSelection of the configuration file format is a compile-time decision,
implemented by setting (or not setting) the ~-DNOEXRompiler option.

The path name of the applicable configuration file may be passed as a command-line paramestgr to
and as a @istration function parameter byyaAMS application program. Note, though, thamsgateand

the AMS test and utility programs included i@N always assume that the configuration file resides in the
current working directory and that it is namédhib.amsrc’ if AMS was huilt with —DNOEXFAT,
“amsmib.xml otherwise.

The transport services that are madailable to AMS communicating entities are declared by the
transportServiceLoaders array in the libams.c sourceThés array is fixed at compile time. The order of
preference of the transport services in the array is hard-codethebinclusion or omission of inddual
transport services is controlled by setting compiler options. ‘THp™ transport service— nominally the
most preferred because it imposes the least processing and transmviagiead — isncluded by setting
the -DUDPTS option. The'dgr’ service is included by setting the ~-DDGRTS option. Tiveng”
(VxWorks message queue) service, supported only on VxWorks, is included by setting\iM&Q+85
option. The" tcp” transport service— selected only when its quality of service is requiredis included

by setting the -DTCPTS option.

The operating state of amsingle AMS application program is managed in an opagque AmsModule object.
This object is returned when the applicatiogihe AMS operations (that is, registers) and must beigenl
as an argument to mosms functions.

int ams_rgister(char *mibSource, char *tsorgdethar *applicationName, char *authorityName, char
*unitName, char *roleName, AmsModule *module)
Reagisters the application within a cell (identified tayitNamé of a message space that is that portion
of the venture identified bwpplicationNameand authorityNamethat runs within the locahMS
continuum. roleNameidentifies the role that this application will perform in thisnture. The
operating state of the registered application is returnetbiule

The application modulg’identifying parameters are validated against the configuration information in
the applicable Management Information Base, which is automatically loaded from the file whose
pathname is provided imibSource If mibSourceis the zero-length string (") then the deht
configuration file name is used as notedvabdf mibSources NULL then a rudimentary hard-coded
defaultMIB, useful for basic testing purposes, is loaded. Thiau&fB defines a single venture for
application ‘amsdemd’ and authority ‘test”, using only the ‘tigr” transport service, with the
configuration server residing on the local host machine; subjext’and roles “shell”’, *‘log”,

“ pitch”, and “catch’ are defined.

Thetsorderamgument is normallp]ULL. If non-NULL it must be a NULL-terminated string aSCli

numeric digits '0’ through '9’ identifying an alterned#i ransport service preference order that
overides the standard transport service preference order defined by the hard-coded array of
transportServiceLoaders in the libams.c source file. Each character d$otider string must
represent the indeposition of one of the transport services within the arf@yr example, if services

“udp’, ‘'dgr’, *‘vmq’’, and ‘tcp” are all aailable in the arraya tsorder string of ‘32" would

indicate that this application will only communicate using the tcp and vmq services; services 0 (udp)
and 1 (dgr) will not be used, and tcp is preferred to vmq when both are candidate services for
transmission of a géen message.

Returns 0 on success. Oryaanror, sestsmoduleto NULL and returns —1.

perl v5.18.2 2016-09-07 4

ams::doc::pod3::ams(3) AMigbrary functions ams::doc::pod3::ams(3)

int ams_unregister(AmsModule module)
Reverses the operation aims_unegster(), destroyingmodule Returns 0 on success, —1 oryamor.

int ams_invite(AmsModule module, int roleNlmt continuumNAhrint unitNbr, int subjectNbrint priority,
unsigned char flowLabel, AmsSequence sequence, AmsDiligence diligence)
Announces this moduke’agreement to rece@ messages on the subject identifiedshipjectNbr

The invitation is extended only to modulegjistered in the role identified byleNbr (where 0
indicates “all roles”), operating in the continuum identifed dnyntinuumNbr(where 0 indicatesdll

continua’), and reistered within the unit identified bynitNbr (where O indicates theemtures root
unit) or ary of that units subunits. Thesg@arameters define the “domdiof the invitation.

Such messages should be sent at the priority indicataatidugty with flow label as indicated by
flowLabeland with quality of service as indicated bgquenceand diligence priority must be an
integer in the range 1-15, where priority 1 indicates the greatgengr How labels are passed
through to transport services and are opaqueMs itself; in the absence of definedvildabels, a
value of 0 is typically used. These parameters define the “class of seofitee invitation.

Returns 0 on success, —1 oty &ror.

int ams_disinvite(AmsModule module, int roleNbt continuumN£byrint unitNbr, int subjectNbr)
Rescinds the intation characterized by the indicated subject and domain. Returns 0 on success, -1
on ary error.

int ams_subscribe(AmsModule module, int roleNiot continuumNbr int unitNbg int subjectNhr int

priority, unsigned char flowLabel, AmsSequence sequence, AmsDiligence diligence)
Announces this modulke’subscription to messages on the indicated subject, constrained by the
indicated domain, and transmitted subject to the indicated class of service. Note that subscriptions
differ from invitations in that reception of these messages isectiolicited, not just permitted.

Returns 0 on success, —1 oty &ror.

int ams_unsubscribe(AmsModule module, int roleNititrcontinuumNbrint unitNbr, int subjectNbr)
Cancels the subscription characterized by the indicated subject and domain. Returns 0 on success, -1
on ary error.

int ams_publish(AmsModule module, int subjectNbnt priority, unsigned char flowLabel, int
contentLength, char *content, int context)
PublishescontentLengttbytes of data starting abntentas the content of a message that is sent to all
modules whose subscriptionsdobjectNbrare characterized by a domain that includes this module.
priority andflowLabe] if non-zero, oerride class of service as requested in the subscriptmorgext
is an opaque “hint'to the receiving modules; its use is application-specific.

Returns 0 on success, —1 oty &ror.

int ams_send(AmsModule module, int continuumNimt unitNbr, int moduleNby int subjectNbyr int

priority, unsigned char flowLabel, int contentLength, char *content, int context)
SendscontentLengttbytes of data starting abntentas the content of a message that is transmitted
privately to the module in the continuum identified tgntinuumNbr(where 0 indicates “the local
continuum’) that is identified byunitNbrandmoduleNbr— provided thatmoduleis in the domain of
one of that modulg’invitations onsubjectNbr priority andflowLabe] if non-zero, werride class of
service as requested in theitation. contextis an opaquehint’’ to the receiving module; its use is
application-specific.

Returns 0 on success, —1 oty &tor.

int ams_query(AmsModule module, int continuumNimt unitNbr, int moduleNby int subjectNbyr int

priority, unsigned char flowLabel, int contentLength, char *content, int context, int term, AmsEvent)*e
Sends a message exactly is describegefos ams_send()out additionally suspends the dediy and
processing of newly recgd messages until either (a) @eply” message sent in response to this
message is recad or (b) the time interval indicated kigrm, in seconds, gpires. Thesvent (reply or
timeout) that ends the suspension of processing is providaern(as if fromams_get_eventyhen

perl v5.18.2 2016-09-07 5

ams::doc::pod3::ams(3) AMigbrary functions ams::doc::pod3::ams(3)

the function returns.

If termis AMS_BLOCKING then the timeout inteal is indefinite; only reception of a reply message
enables the function to returtf termis AMS_POLL then the function returns immediatelithout
waiting for a reply message.

Returns 0 on success, —1 oy &tor.

int ams_reply(AmsModule module, AmsEvent msg, int subjectMibpriority, unsigned char flwLabel,

int contentLength, char *content)
Sends a message exactly is describedeafy ams_send()except that the destination of the message
is the sender of the message identifiedrisgand the ‘tontext” value included in the message is the
contet that was provided imsg This message is identified as‘eply”’ message that will end the
processing suspension resulting from transmissiomgyif that message was issued by means of
ams_query(yather tharams_send()

Returns 0 on success, —1 oy &tor.

int ams_announce(AmsModule module, int rolgNbit continuumNbrint unitNbr, int subjectNbr int

priority, unsigned char flowLabel, int contentLength, char *content, int context)
Sends a message exactly is describedalfir ams_send()except that one cgpof the message is
sent to gery module in the domain of this function (role, continuum, unit) whose invitation for
messages on this subject is itself characterized by a domain that includes the the sending module,
rather than to gnspecific module.

Returns 0 on success, —1 oty &ror.

int ams_get \ent(AmsModule module, int term, AmsEventveat)
Returns ineventthe next eent in the queue oAMS events pending deliery to this module.If the
evalt queue is empty at the time this function is called, processing is suspended until eitieat &n e
queued or the time interval indicated teym, in seconds, ®pires. Seeams_query(above for the
semantics oferm When the function returns on expirationtefm an event of typeTIMEOUT_EVT
is returned inevent Otherwise the eent will be of type AMS_MSG_EVT (indicating arrval of a
message),NOTICE_EVT (indicating a change in the configuration of the message space), or
USER_DEFINED_EVT(indicating that application code posted aang).

The nature of the vent returned byams_get event(tan be determined by passimyent to
ams_get_event_typeéls described belo Event type can then be used to determine whether the
information content of thevent must be obtained by callirgms_parse_msg(ams_parse_notice()
orams_parse_user_event()

In ary case, the memory occupied byentmust be released after theset object is no longer needed.
Theams_recycle_eventfiinction is irvoked for this purpose.

Returns 0 on success, —1 oty &vor.

int ams_get went_type(AmsEventwent)
Returns the\ent type ofevent or =1 on ay error.

int ams_parse_msg(AmsEvenest, int *continuumNbyint *unitNbr, int *moduleNbr int *subjectNbyint
*contentLength, char **content, int *context, AmsMsgType *msgType, int *pripritgsigned char
*flowLabel);
Extracts all releant information pertaining to theMS message encapsulatedement populating the
indicated fields. Must only be called when tlverg type ofeventis known to beAMS_MSG_EVT.

Returns 0 on success, —1 oy &tor.

int ams_parse_notice(AmsEventest, AmsStateType *state, AmsChangp& *change, int *unitNhrint
*moduleNbr int *roleNbr, int *domainContinuumNhbrint *domainUnitNbr int *subjectNby int *priority,
unsigned char *flowLabel, AmsSequence *sequence, AmsDiligence *diligence)
Extracts all releant information pertaining to thamMs configuration change notice encapsulated in
ewent, populating the releant fields. Must only be called when theest type ofeventis known to be

perl v5.18.2 2016-09-07 6

ams::doc::pod3::ams(3) AMigbrary functions ams::doc::pod3::ams(3)

NOTICE_EVT.

Note that different fields will be populated depending on the nature of the notieinstatewill be

set to AmsRegistrationState, AmsinvitationState, or AmsSubscription state depending on whether the
notice pertains to a change in modulgistration, a change in invitations, or a change in subscriptions.
changewill be set to AmsStateBegins or AmsStateEnds depending on whether the notice pertains to
the initiation or termination of a registration, invitation, or subscription.

Returns 0 on success, —1 oy &ror.

int ams_post_uservent(AmsModule module, int userBatCode, int userEventDatalLength, char
*userEventData, int priority)
Posts a “user went” whose content is thaiserEventDataLengttbytes of data starting at
userEventData userEventCodéds an application-specific value that is opaqueAtS. priority
determines thevent’'s position in the queue ofvents pending deliery to this module; it may be gn
integer in the range 0-15, where 0 indicates the greatgshgr (Note that userwents can be
delivered ahead of all message receptivents if necessary.)

Returns 0 on success, —1 oty &ror.

int ams_parse_usewvent(AmsEvent gent, int *code, int *dataLength, char **data)
Extracts all releant information pertaining to the useveat encapsulated ievent populating the
indicated fields. Must only be called when thees type of ewent is known to be
USER_DEFINED_EVT.

Returns 0 on success, —1 oty &ror.

int ams_recycle vent(AmsEvent gent)
Releases all memory occupieddment Returns O on success, —1 oryamor.

int ams_set \vent_mgr(AmsModule module, AmsEventMgt *rules)
Starts a background thread that processest® queued for this module, handling eaglnein the
manner indicated bgules Returns 0 on success, —1 oryaror.

void ams_remee_event_mgr(AmsModule module)
Terminates the background thread established to progests@ueued for this module. Returns 0 on
success, —1 on grerror.

int ams_get_module_nbr(AmsModule module)
Returns the module number assigned to this module upon registration, or yleoman

int ams_get_unit_nbr(AmsModule module)
Returns the unit number assigned to the unit within which this module registered, or -ylemoran

Lyst ams_list_ msgspaces(AmsModule module)
Returns a dynamically allocated linked list of all message spaces identifiedMBti@ this module,
or —1 on ag error. Seelyst(3) for operations that can be performed on the returned linked list.

int ams_get_continuum_nbr()
Returns the continuum number assigned to the continuum within which this module operates, or -1 on

ary error.
int ams_rams_net_is_tree(AmsModule module)
Returns 1 if th&RAMS net for the venture in which this module is registered is configured as a tree, O if
thatRAMS net is configured as a mesh, —1 oy amor.
int ams_continuum_is_neighbor(int continuumNbr)
Returns 1 ifcontinuumNbridentifies a continuum whosRAMS gaeways are immediate neighbors
(within the applicableRAMS networks) of theRAMS gaeways in the local continuum. Returns 0
otherwise.
char *ams_get_role_name(AmsModule module, int unithttrmoduleNbr)
Returns the name of the role in which the module identifiednitNbr andmoduleNbrregistered, or
NULL on ary error.

perl v5.18.2 2016-09-07 7

ams::doc::pod3::ams(3) AMigbrary functions ams::doc::pod3::ams(3)

int ams_subunit_of(AmsModule module, int argUnitNht refUnitNbr)
Returns 1 ifargUnitNbr identifies a unit that is wholly contained within the unit identified by
refUnitNbr, in the venture within which this module igistered. Return8 atherwise.

int ams_lookup_unit_nbr(AmsModule module, char *unitName)
Returns the number assigned to the unit identifiedifiyName in the venture within which this
module is registered, or —1 onyagrror.

int ams_lookup_role_nbr(AmsModule module, char *roleName)
Returns the number assigned to the role identifiedoName in the venture within which this
module is registered, or —1 onyearror.

int ams_lookup_subject_nbr(AmsModule module, char *subjectName)
Returns the number assigned to the subject identifietitipctNamein the venture within which this
module is registered, or —1 onyagrror.

int ams_lookup_continuum_nbr(AmsModule module, char *continuumName)
Returns the number of the continuum identifieccbgtinuumNameor —1 on ay eror.

char *ams_lookup_unit_name(AmsModule module, int unitNbr)
Returns the name of the unit identified bgitNbr, in the venture within which this module is
registered, or =1 on grerror.

char *ams_lookup_role_name(AmsModule module, int roleNbr)
Returns the name of the role identified fmyeNbr, in the venture within which this module is
registered, or —1 on grerror.

char *ams_lookup_subject_name(AmsModule module, int subjectNbr)
Returns the name of the subject identifiedshpjectNby in the venture within which this module is
registered, or =1 on grerror.

char *ams_lookup_continuum_name(AmsModule module, int continuumNbr)
Returns the name of the continuum identifieccbgtinuumNbyor —1 on ay eror.

SEE ALSO
amsd1), ramsgatd1), amsxm(5), amsrc(5)

perl v5.18.2 2016-09-07 8

bp::doc::pod3::bp(3) BRbrary functions bp::doc::pod3::bp(3)

NAME
bp — Bundle Protocol communications library

SYNOPSIS
#include "bp.h"

[see description for available functions]

DESCRIPTION
The bp library provides functions enabling application safesto use Bundle Protocol to send and xecei
information wer a celay-tolerant netark. It conforms to the Bundle Protocol specification as documented
in InternetRFC 5050.

int bp_attach()
Attaches the application ®P functionality on the local computeReturns 0 on success, —1 oryan
error.

Note that alllON libraries and applications dvamemory dynamicallyas reeded, from a shared pool
of ION working memory The size of the pool is established wih@N node functionality is initialized
by ionadmin(1). Thisis a precondition for initializin@P functionality by runnindppadmin(1), which

in turn is required in order fdop_attach(}to succeed.

Sdr bp_get_sdr()
Returns handle for th6DR data store used faP, to enable creation and interrogation afmdle
payloads (application data units).

void bp_detach()
Terminates all access &P functionality on the local computer.

int bp_open(char *eid, BpSAP *ionsapPtr)
Opens the applicatios’access to th&P endpoint identified byid, so hat the application can tak
delivery of bundles destined for the indicated endpoifttis SAP can also be used for sendingnbles
whose source is the indicated endpoint; all bundles sent vigARsvill be subject to immediate
destruction upon transmission, i.e., no bundle addresses will be returnga $snd()for use in
tracking, suspending/resuming, or cancelling transmission of thesdlels. Onsuccess, places a
value in *ionsapPtrthat can be supplied to future bp functiomocations and returns 0. Returns -1
on ary error.

int bp_open_source(char *eid, BpSAP *ionsapétain)
Opens the applicatiom’acess to th&P endpoint identified byid, so hat the application can send
bundles whose source is the indicated endpoint. If and only if the valdetaifhis non-zero, citing
this SAPin an irvocation ofbp_send(will cause the address of the newly issueddde to be returned
for use in tracking, suspending/resuming, or cancelling transmission of uh@leb USE THIS
FEATURE WITH GREA T CARE: such a bndle will continue to occypstorage resources until it is
explicitly released by an irocation ofbp_release(pr until its time to We expires, so bundle detention
increases the risk of resourcéhaustion. (Ifthe value ofdetainis zero, all bundles sent via ttga\P
will be subject to immediate destruction upon transmission.) On success, plates im*ionsapPtr
that can be supplied to future bp functionoeations and returns 0. Returns —1 o amor.

int bp_send(BpSAP sap, char *destEid, char *reportToEid, int lifespan, int classOfService,
BpCustodySwitch custodySwitch, unsigned char srrFlags, int ackRequested, BpExtendedCOS
*extendedCOS, Object adu, Object *newBundle)
Sends a bundle to the endpoint identifieddegtEid from the source endpoint as provided to the
bp_open()call that returnedap Whensapis NULL, the transmitted dndle is anonymous, i.e., the
source of the bundle is not identified. This igde but anonymous bundles cannot be uniquely
identified; custody transfer and status reporting therefore cannot be requested for yanoason
bundle.

reportToEididentifies the endpoint to which yastatus reports pertaining to this bundle will be sent; if
NULL, defaults to the source endpoint.

perl v5.18.2 2016-09-07 1

bp::doc::pod3::bp(3) BRbrary functions bp::doc::pod3::bp(3)

lifespanis the maximum number of seconds that thedbe can remain in-transit (undedied) in the
network prior to automatic deletion.

classOfService is simply priority for nev: BP_BULK_PRIORITY BP_STD_PRIORITY, or
BP_EXPEDITED_PRIORITY. If class-of-service flags are defined in a futuersion of Bundle
Protocol, those flags would i@R'd with priority.

custodySwitclndicates whether or not custody transfer is requested for this bundle and, if so, whether
or not the source node itself is required to be the initial custodidre valid values are
SourceCustodyRequired, SourceCustodyOptional, NoCustodyReqiNmd.that custody transfer is
possible only for bndles that are uniquely identified, so it cannot be requested for bundles for which
BP_MINIMUM_LATENCY is requested, sinceP_MINIMUM_LATENCY may result in the production

of multiple identical copies of the samentle. Similarly custody transfer should ver be requested

for a “loopback’ bundle, i.e., one whose destination node is the same as the source node:uéx recei
bundle will be identical to the source bundle, both residing in the same node, so no custody acceptance
signal can be applied to the source bundle and the source bundle will remain in storageTatil its
expires.

srrFlags if non-zero, is the logicabR of the status reporting behaviors requested for thislle:
BP_RECEIVED_RPT BP_CUSTODY_RPT BP_FORNARDED_RPT BP_DELIVERED_RPT,
BP_DELETED RPT.

ackRequestes a Boolean parameter indicating whether or not the recipient application should be
notified that the source application requests some sort of application-specific end-to-end
acknowledgment upon receipt of the bundle.

exendedCOSIf not NULL, is used to populate the Extended Class Of Service block foruhiieo

The blocks ordinal value is used to provide fine-grained ordering with@xpedited’ traffic: ordinal
values from 0 (the defult) to 254 (used to designate the most urgent traffic) are valid, with 255
resered for custody signals. The value of the bleckags is the logicalOR of the applicable
extended class-of-service flags:

BP_MINIMUM_LATENCY designates the bundle asritical’” for the purposes of Contact Graph
Routing.

BP_BEST_EFFORTsignifies that non-reliable ceergence-layer protocols, avalable, may be
used to transmit theundle. Notablythe hundle may be sent agfeen’ data rather tharired”
data when issued viaP.

BP_FLOW_LABEL_PRESENTsignifies whether or not the value fhdwLabelin exendedCOS
must be encoded into tiCOSblock when the bundle is transmitted.

aduis the “application data unitthat will be comeyed as the payload of thewmdundle. adu must
be a ‘zero-copy object” (ZCO). To ensure orderly access to transmissianfdr space for all
applications,adu must be created by \oking ionCreateZco() which may be configured either to
block so long as insfifient ZCO storage space ivalable for creation of the request&dO or to fail
immediately if insufficienZCO storage space ivalable.

The function returns 1 on success, 0 on user,effoon any s/stem errar If O is returned, then an
invalid argument value was passedi send()a message to this effect will fia keen written to the
log file. If 1 is returned, then either the destination of the bundle ‘diasnone’ (the bit hucket) or
the ADU has been accepted and queued for transmissionundieb Inthe latter case, if and only if
sapwas a eference to a BpSAP returned by awomation ofbp_open_source¢hat had a non-zero
value in thedetain parameterthen newBundlemust be non-NULL and the address of thevige
created bundle within the©ON database is placed mewBundle This address can be used to track,
suspend/resume, or cancel transmission of the bundle.

int bp_track(Object bundle, Object trackingElt)
AddstrackingEltto the list of ‘tracking” references itundle trackingEltmust be the address of an
SDRIist element— whose data is the address of this sammedle — withinsome list of indles that

perl v5.18.2 2016-09-07 2

bp::doc::pod3::bp(3) BRbrary functions bp::doc::pod3::bp(3)

is privately managed by the applicatiolJpon destruction of the bundle this list element will
automatically be deleted, thus removing thmdie from the applicatiog’privately managed list of
bundles. Thisenables the application teép track of bundles that it is operating on without risk of
inadvertently de-referencing the address of a nonexistent bundle.

void bp_untrack(Object bundle, Object trackingElt)
Remores trackingElt from the list of ‘tracking” references irbundle if it is in that list. Does not
deletetrackingEltitself.

int bp_memo(Object bundle, unsigned int interval)
Implements custodial retransmissionhis function inserts a “custody-acceptance teeeént into the
timeline. Theevent causes the indicated bundle to be re-&oded if it is still in the database (i.e., it
has not yet been accepted by another custodian) as of the time computed by adding the indicated
interval to the current time.

int bp_suspend(Object bundle)
Suspends transmission lafindle Has no effect if bndle is “critical’’ (i.e., has got extended class of
serviceBP_MINIMUM_LATENCY flag set) or if the bundle is already suspended. Otherwigerses
the enqueuing of theubdle to its selected transmission outduct and places it iflithed’ queue
until the suspension is lifted by calling bp_resume. Returns 0 on success, -yleo@an

int bp_resume(Object bundle)
Terminates suspension of transmissiorbafdle Has no effect if bundle isctitical’’ (i.e., has got
extended class of servi@&P_MINIMUM_LATENCY flag set) or is not suspende@therwise, remaes
the bundle from théelimbo’ queue and queues it for route re-computation and re-queuing. Returns O
on success, —1 onaerror.

int bp_cancel(Object bundle)
Cancels transmission dbfundle If the indicated bundle is currently queued for farding,
transmission, or retransmission, it is resebfrom the relgant queue and destroyed exactly as if its
Time To Live had epired. Return® on siccess, —1 on grerror.

int bp_release(Object bundle)
Releases a detained bundle for destruction when all retention constramteéa remwoed. Aftera
detained bundle has been released, the application can no longer track, suspend/resume, or cancel its
transmission. Returrkon siccess, —1 on grerror.

int bp_receie(BpSAP sap, BpDelery *dlvBuffer, int timeoutSeconds)
Receves a lundle, or reports on some failure of bundle reception activity.

The ‘result” field of the divBufer structure will be used to indicate the outcome of the data reception
activity.

If at least one bundle destined for the endpoint for whichShisis opened has not yet been deied
to the SAP, then the payload of the oldest such bundle will be returnediviBuffer->adu and
divBuffer>result will be set to BpRyloadPresent. lthere is no suchumdle,bp_receive(plocks for
up totimeoutSecondshile waiting for one to arve.

If timeoutSeconds BP_POLL (i.e., zero) and noumdle is avaiting delivery, or if timeoutSeconds
greater than zero but no bundle \asi before timeoutSecondbave dapsed, therdlivBuffer->result
will be set to BpReceptionhedOut. IftimeoutSeconds BP_BLOCKING(i.e., —1) therbp_receive()
blocks until either a bundle ares or the function is interrupted by anviscation ofbp_interrupt()

divBuffer>result will be set to BpReceptioninterrupted in theet that the calling process reesd
and handled some signal other tts88ALRM while waiting for a bundle.

divBuffer>result will be set to BpEndpointStopped in theest that the operation of the indicated
endpoint has been terminated.

The application data unit dedéred in the data defery structure, if ap, will be a “zero-copy object”
reference. Useco reception functions (seeo(3)) to read the content of the application data unit.

perl v5.18.2 2016-09-07 3

bp::doc::pod3::bp(3) BRbrary functions bp::doc::pod3::bp(3)

Be sure to calbp_release_delivery@fter every successful mocation ofbp_receive()
The function returns 0 on success, —1 oneror.

void bp_interrupt(BpSAP sap)
Interrupts abp_receive(invocation that is currently bloekl. Thisfunction is designed to be called
from a signal handler; for this purposapmay need to be obtained from a static variable.

void bp_release_dekry(BpDelivery *divBuffer, int releaseAdu)
Releases resources allocated to the indicatededelireleaseAdus a Boolean parameter: if non-zero,
the ADU zCO reference irdlvBuffer (if any) is destroyed, causing tE€O itself to be destroyed if no
other references to it remain.

void bp_close(BpSAP sap)
Terminates the applicatiosi’'access to théP endpoint identified by theid cited by the indicated
service access point. The application relinquishes its ability o dalivery of bundles destined for
the indicated endpoint and to send bundles whose source is the indicated endpoint.

SEE ALSO
bpadmin(1), Igsend1), Igagent(1), bpextension&3), bprc(5), Igfile (5)

perl v5.18.2 2016-09-07 4

bp::doc::pod3::bpaensions(3) BMibrary functions bp::doc::pod3::bpextensions(3)

bpextensions - interface for adding extensions to Bundle Protocol

SYNOPSIS

#include "bpextensions.c"

DESCRIPTION

ION’s interface for extending the Bundle Protocol enables the definitioxtefral functions that insert

exensionblocks into outbound bundles (either before or after the payload block), parse and record

extension blocks in inbound bundles, and modify extension blocksyatdints in bundle processingll
extension-block handling is statically linked intoN at build time, It the addition of an extensionvee
requires that gnstandardON source code be modified.

Standard structures for recording extension bloeksboth in transient storage [memory] duringnille
acquisition (AcgExtBlock) and in persistent storage [t database] during subsequentintle
processing (ExtensionBlock}— are defined in théoei.h header file. In each case, theemsion block
structure comprises a blotkpecode, block processitags possibly a list ofEID referencesan aray of
bytes(the serialized form of the block, for transmission), lgregth of that arrayoptionally an &tension-
specific opaquebjectwhose structure is designed to characterize the block in a mannsraimagnient
for the extension processing functions, andsikeof that object.

The definition of each extension is asserted in an ExtensionDef structure, also as defineéliinlteader
file. EachExtensionDef must supply:

The name of thextension. (Useih some diagnostic messages.)

The extensiors Hock type code.

A pointer to aroffer function.

A pointer to a function to be called whémwarding a bundle containing this sort of block.

A pointer to a function to be called whiaking custody of a bundle containing this sort of block.

A pointer to a function to be called whenqueuingfor transmission aundle containing this sort of
block.

A pointer to a function to be called when awagence-layer adaptetequeuesa kundle containing
this sort of block, before serializing it.

A pointer to a function to be called immediately before avemence-layer adaptdransmits a
bundle containing this sort of block, after the bundle has been serialized.

A pointer to areleasefunction.
A pointer to acopy function.
A pointer to aracquire function.
A pointer to adecrypt function.
A pointer to gparsefunction.
A pointer to acheckfunction.
A pointer to arecord function.
A pointer to aclear function.
All extension definitions must be coded into an array of ExtensionDef structures edemsibnDefs

An array of ExtensionSpec structures nareednsionSpecs also required. Each ExtensionSpecvjites

the specification for producing an outbound extension block: block definition (identified by block type

number), three discriminator tags whose semantics are block-type-specific, and axigaineéndicating

whether the x@ension block is to be inserted before or after the Payload block. The order of appearance of

extension specifications in the extensionSpecs array determines the order inxidnsioa blocks will be

perl v5.18.2 2016-09-07 1

bp::doc::pod3::bpaensions(3) BMibrary functions bp::doc::pod3::bpextensions(3)

inserted into locally sourced bundles.

The standard extensionDefs array which is empty— is in the noextensions.prototype source file.
The procedure for extending the Bundle Protoctobiv is as follows:

1. Specify—-DBP_EXTENDED in the Madfile’'s compiler command line whenubding the libbpRe
library module.

2. Createa copy of the prototype extensions file, namégpéextensions.¢’ in a directory that is made
visible to the Makefiles libbpP.c compilation command line (by a -1 parameter).

3. Inthe ‘external function declaratiorisirea of ‘bpextensions.¢’ add ‘extern” function declarations
identifying the functions that will implement your extension (or extensions).

4. Addone or more ExtensionDef structure initialization lines to the extensionDefsrafeagncing those
declared functions.

5. Addone or more ExtensionSpec structure initialization lines to xtensionSpecs arrayeferencing
those extension definitions.

6. Develop the implementations of thetension implementation functions in one or more seurce code
files.

7. Addthe object file or files for the meextension implementation source file (or files) to the bféu’'s
command line for linking libbpP.so.

The function pointers supplied in each ExtensionDef must conform to theifudlepecifications.NOTE
that ary function that modifies theytesmember of an ExtensionBlock or AckExtBlochust set the
correspondindengthto the nev length of thebytesarray if changed.

int (*BpExtBIkOfferFn)(ExtensionBlock *blk, Bundle *bundle)

Populates all fields of the indicated ExtensionBlock structure for inclusion in the indicated outbound

bundle. This function is automatically called when aweéoundle is locally sourced or upon
acquisition of a remotely sourced bundle that does not contain an extension block of thihgype.
values of the extension block are typicalkpected to be a function of the state of the bundle, but this
is extension-specific. Ift is not appropriate to f#r an extension block of this type as part of this
bundle, then thesize length object and bytesmembers ofblk must all be set to zerolf it is

appropriate to offer such a block but no internal object representing the state of the block is needed,

the object and size members ofblk must be set to zeroThe type blkProcFlags and dataLength
members oblk must be populated by the implementation of tb#er’’ function, but thdengthand
bytesmembers are typically populated by calling Brelibrary functionserializeExtBIk() which must
be passed the block to be serialized (vythe blkProcFlagsand dataLengthalready set), a Lyst of
EID references (tw list elements— offsets — pelEID reference, if applicable; otherwis&JLL),
and a pointer to thextension-specific block data. The blogkytesarray andbject(if present) must
occupy space allocated from tHeN database heap. Return zero on success, —1yosystem failure.

int (*BpExtBIkProcessFn)(ExtensionBlock *blk, Bundle *bundle, void *context)
Performs some extension-specific transformation of the data encapsulblietdased on the state of
bundle The transformation to be performed will typically vary depending on whether the identified
function is the one that is automaticallyaked upon forwarding the tndle, upon taking custody of
the bundle, upon enqueuing the bundle for transmission, uponvirgmthe bundle from the
transmission queue, or upon transmitting the serializewllb. Thecontextargument may supply
useful supplemental information; in particyldre context provided to th@N_DEQUEUEfunction will
comprise the name of the protocol for the duct from which thelle has been dequeued, together
with the EID of the neighboring node endpoint to which the bundle will be directly transmitted when
serialized. Theblock-specific data ilk is located withinbytesimmediately after the header of the
extension block; the length of the bloskieader is the difference betwekmgth and datalLength
Whenever the blocks blkProcFlags EID extensions, and/or block-specific data are altered, the
serializeExtBlk()function should be called again to recalculate the size ofxtemson block and
rebuild thebytesarray Return zero on success, —1 oty apstem failure.

perl v5.18.2 2016-09-07 2

bp::doc::pod3::bpaensions(3) BMibrary functions bp::doc::pod3::bpextensions(3)

void (*BpExtBIkReleaseFn)(ExtensionBlock *blk)
Releases alON database space occupied by dbgectmember obolk. This function is automatically
called when a bundle is destenl. Notethat incorrect implementation of this function may result in a
database space leak.

int (*BpExtBIkCopyFn)(ExtensionBlock *newblk, ExtensionBlock *oldblk)
Copies theobjectmember ofoldblk to ION database heap space and places the address ofwhat ne
non-\latile object in theobject member ofnewblk aso setssize in newblk This function is
automatically called when twcopies of a bundle are needed, e.g., in tremtethat it must both be
delivered to a local client and alsowerded to another node. Return zero on success, —1yn an
system failure.

int (*BpAcqExtBIkAcquireFn)(AcgExtBlock *acqgblk, AcqWorkArea *work)
Populates the indicated AcgExtBlock structure wsike and object for retention as part of the
indicated inbound Undle. (Thetype blkProcFlags EID references (if ay), dataLengthlength and
bytesvalues of the structure are pre-populated with datatmaated from the serializedibdle.) This
function is only to be provided for extension blocks that avernencrypted; a extension block that
may be encrypted shouldveaa BpAcqEXxtBIkParseFn callback instead. The function is automatically
called when an extension block of this type is encountered in the course of parsing and acquiring a
bundle for local delrery and/or forvarding. Ifno internal object representing the state of the block is
needed, thebjectmember ofacgblkmust be set tolULL and thesizemember must be set to zers.
an objectis needed for this block, it must ocgugpace that is allocated from®N working memory
usingMTAKE and itssizemust be indicated iblk. Return zero if the block is malformed (this will
cause the bundle to be discarded), 1 if the block is successfully parsed, ylspstem failure.

int (*BpAcqExtBlkDecryptFn)(AcqExtBlock *acqgblk, AcqWorkArea *work)
Decrypts some other extension block that has been acquitedob yet parsed, nominally using
encapsulated ciphersuite informatioReturn zero if the block is malformed (this will cause the
bundle to be discarded), 1 if no error in decryption was encountered, —¥ eystam failure.

int *BpAcqExtBlkParseFn)(AcgExtBlock *acqblk, AcqWorkArea *work)
Populates the indicated AcgExtBlock structure wsike and object for retention as part of the
indicated inbound Undle. (Thetype blkProcFlags EID references (if &), dataLength length and
bytesvalues of the structure are pre-populated with datatmaated from the serializedihdle.) This
function is provided for extension blocks that may be encrypted; a extension block thavedmene
encrypted should e a BpAcqExtBlkAcquireFn callback instead. The function is automatically
called when an extension block of this type is encountered in the course of parsing and acquiring a
bundle for local delrery and/or forvarding. Ifno internal object representing the state of the block is
needed, thebjectmember ofacgblkmust be set ttNULL and thesizemember must be set to zerib.
anobjectis needed for this block, it must ocgugpace that is allocated from®N working memory
usingMTAKE and itssizemust be indicated iblk. Return zero if the block is malformed (this will
cause the bundle to be discarded), 1 if the block is successfully parsed, ylspstem failure.

int (*BpAcqExtBIkCheckFn)(AcgExtBlock *acgblk, AcqWorkArea *work)
Examines the bundle imorkto determine whether or not it is authentic, in the cdrdéthe indicated
extension block. Return 1 if the block is determined to be inauthentic (this will causentiie ko be
discarded), zero if no inauthenticity is detected, —1 gregstem failure.

int (*BpExtBlkRecordFn)(ExtensionBlock *blk, AcgExtBlock *acqblk)
Copies theobjectmember ofacqblkto ION database heap space and places the address of that non-
volatile object in theobjectmember ohlk; also setssizein blk. This function is automatically called
when an acquired bundle is accepted for &ding and/or deliery. Return zero on success, -1 on
ary system failure.

void (*BpAcgExtBIkClearFn)(AcgExtBlock *acgblk)
UsesMRELEASE to release allON working memory occupied by thebjectmember ofacgblk This
function is automatically called when acquisition ofuamdile is completed, whether or not thendle
is accepted. Note that incorrect implementation of this function may result in a working memory leak.

perl v5.18.2 2016-09-07 3

bp::doc::pod3::bpaensions(3) BMibrary functions bp::doc::pod3::bpextensions(3)

UTILITY FUNCTIONS FOR EXTENSION PROCESSING
void discardExtensionBlock(AcgExtBlock *blk)
Deletes this block from the bundle acquisitioorkvarea prior to the recording of the bundle in the
ION database.

void scratchExtensionBlock(ExtensionBlock *blk)
Deletes this block from the bundle after the bundle has been recordeddn! tligtabase.

Object findExtensionBlock(Bundle *bundle, unsigned int type, unsigned int listidx)
On success, returns the address of the ExtensionBldmbnifie for the indicatedypeandlistidx. If
no such extension block exists, returns zero.

int serializeExtBIk(ExtensionBlock *blk, Lyst eidReferences, char *blockData)
Constructs an RFC5050-conformant serialized representation of this extension block in blk—>bytes.
Returns 0 on success, —1 on an urveable system error.

void suppressExtensionBlock(ExtensionBlock *blk)
Causedlk to be omitted when the bundle to which it is attached is serialized for transmi$isn.
suppression remains in effect until it iveesed byrestoreExtensionBlock()

void restoreExtensionBlock(ExtensionBlock *blk)
Reverses the effect dfuppressExtensionBlockénabling the block to be included when the bundle to
which it is attached is serialized.
SEE ALSO
bp(3)

perl v5.18.2 2016-09-07 4

bss::doc::pod3::bss(3) B3irary functions bss::doc::pod3::bss(3)

NAME
bss - Bundle Streaming Service library

SYNOPSIS
#include "bss.h"

typedef int (*RTBHandler)(time_t time, unsigned long count, char *buffer, int bufLength);

[see description for available functions]

DESCRIPTION
The BSSlibrary supports the streaming of datezerndelay-tolerant netarking OTN) bundles. Theantent
of the library is to enable applications that pass streaming dataetedeitransmission time order (i.e.,
without time regressions) to an application-specitisplay” function — notionallyfor immediate real-
time display — but to storeall receved data (including out-of-order data) in a yate database for
playback under user control. The reception and real-time display of in-order data is performed by a
background thread, leaving the applicatiomgin (foreground) thread free to respond to user commands
controlling playback or other application-specific functions.

The application-specific'display” function irvoked by the background thread must conform to the
RTBHandler type definition. It must return O on success, -1 gneamr that should terminate the
background threadOnly on return from this function will the background thread proceed to acquire the
nextBSSpayload.

All data acquired by thessbackground thread is written toBsS database comprising three files: table,
list, and data.The name of the database is the root name that is common to the three fildb3¢hd.,
db3lst, db3.dat would be the three files making up 3 BSSdatabase. Althree files of the select&£S
database must reside in the same directory of the file system.

Several replay naigation functions in th@&sSsSlibrary require that the application provide aigation state
structure of type bssNas cfined in the bss.h header file. The application is not reponsible for populating
this structure; i drictly for the prvate use of th&SSlibrary.

int bssOpen(char *bssName, char *path, char *eid)
Opens access toBsSdatabase, to enable data playbasksNamédentifies the specifiBSSdatabase
that is to be openedpath identifies the directory in which the database resiadgdis ignored. On
ary failure, returns —1. On success, returns zero.

int bssStart(char *bssName, char *path, char *eid, char *huffebufLen, RTBHandler handler)
Starts aBSSdata acquisition background thregassNamedentifies theBSSdatabase into which data
will be acquired. pathidentifies the directory in which that database resiéédis used to open the
BP endpoint at which the deklred BSSbundle payload contents will be acquirebuffer identifies a
data acquisition differ, which must be provided by the application, d&uflenindicates the length of
that buffer; receied bundle payloads in excess of this length will be discarded.

handleridentifies the display function to which each in-ordendie payload will be passedhetime

and count parameters passed to this function identify the wvedebundle, indicating the undle’s
creation timestamp time (in seconds) and courdgkrev Thebuffer andbufLengthparameters indicate
the location into which theumdles payload was acquired and the length of the acquired payload.
handlermust return —1 on gnunrecoserable system errpf aherwise. Areturn value of —1 from
handlerwill terminate theBSSdata acquisition background thread.

On ary failure, returns —1. On success, returns zero.

int bssRun(char *bssName, char *path, char *eid, char *huffebufLen, RTBHandler handler)
A corvenience function that performs babssOpen(andbssStart() On any failure, returns —1.0n
success, returns zero.

void bssClose()
Terminates data playback access to the most recently opSszthtabase.

perl v5.18.2 2016-09-07 1

bss::doc::pod3::bss(3) B3irary functions bss::doc::pod3::bss(3)

void bssStop()
Terminates the most recently initiatB$Sdata acquisition background thread.

void bssEXxit()
A convenience function that performs bdiksClose(andbssStop()

long bssRead(bssMaay, char *data, int dataLen)
Copies the data at the current playback position in the database, as indicaseflibtp dats; if the
length of the data is in excessdzftalLenthen an error condition is asserted (i.e., —1 is returnddje
that bssRead(rannot be successfully called umtév has been populated, nominally by a preceding
call tobssSeek(bssNext()or bssPe\). Returns the length of data read, or -1 oy @mor.

long bssSeek(bssManav, time_t time, time_t *curTime, unsigned long *count)
Sets the current playback position in the databaseaunto the data receed in the bundle with the
earliest creation time that was greater than or equdaihte Populatesnav and also returns the
creation time andundleID count of that bundle isurTimeandcount Returns the length of data at
this location, or —1 on arerror.

long bssSeek read(bssNanav, time_t time, time_t *curime, unsigned long *count, char *data, int
datalen)
A convenience function that perforntssSeek(@pllowed by an immediatessRead(jo return the data
at the nev playback position. Returns the length of data read, or —1 perear.

long bssNext(bssNatnav, ime_t *curTime, unsigned long *count)
Sets the playback position in the databaseaiv to the data receed in the bundle with the earliest
creation time andD count greater than that of tharigle at the current playback positioRopulates
nav and also returns the creation time anchdie ID count of that bundle iurTime and count
Returns the length of data at this location (if any), =2 on reaching end of list, or - @ncan

long bssNext_read(bssManav, time_t *curTime, unsigned long *count, char *data, int dataLen)
A convenience function that perforntssNext(followed by an immediatessRead(jo return the data
at the ne playback position. Returns the length of data read, —2 on reaching end of list, or 44 on an
error.

long bssPrev(bssNé& nav, time_t *curTime, unsigned long *count)
Sets the playback position in the databasaaw to the data receed in the bundle with the latest
creation time andD count earlier than that of the bundle at the current playback posRiopulates
nav and also returns the creation time anahdie ID count of that bhndle incurTime and count
Returns the length of data at this location (if any), =2 on reaching end of list, or - @ncan

long bssPrev_read(bssiWanav, time_t *curTime, unsigned long *count, char *data, int dataLen)
A convenience function that perforntssPey) followed by an immediatessRead(jo return the data
at the nw playback position. Returns the length of data read, —2 on reaching end of list, or 41 on an
error.
SEE ALSO
bp(3)

perl v5.18.2 2016-09-07 2

bssp::doc::pod3::bssp(3) BS8irary functions bssp::doc::pod3::bssp(3)

NAME
bssp — Bundle Streaming Service Protocol (BSSP) communications library

SYNOPSIS
#include "bssp.h"

typedef enum

{
BsspNoNotice = 0,
BsspXmitSuccess,
BsspXmitFailure,
BsspRecvSuccess

} BsspNoticeType;

[see description for available functions]

DESCRIPTION
The bssp library provides functions enabling application software toB8S® to send and reces
streaming data in bundles.

BSSPis designed to forward streaming data in original transmission order wghemassible but to
retransmit data as necessary to ensure that the entire streegifaisieafor playback eentually. To this

end, BSSP uses not one Ut two underlying “link service” channels: (a) an unreliable “bestfats”
channel, for data items that are successfully vedeipon initial transmissionwer every extent of the end-
to-end path, and (b) dréliable” channel, for data items that were lost at some point, had to be
retransmitted, and therefore arewnout of order The BSS library at the destination node supports
immediate ‘real-time” display of all data receed on he “best eforts” channel in transmission order
together with database retention of all datentually receved on he “reliable’ channel.

The BSSPnotion ofenginelD corresponds closely to the Internet notion of a host, amdNrengine 1Ds
are normally indistinguishable from node numbers including the node numbers in Bundle Protocol endpoint
IDs conforming to the “ipri'scheme.

The BSSPnotion ofclient ID corresponds closely to the Internet notion‘pfdtocol number’as used in
the Internet Protocol. It enables data from multiple applicatienglients — tobe multiplexed over a
single reliable link.However, for ION operations we normally u&sSSPexclusively for the transmission of
Bundle Protocol data, identified by cligbt= 1.

int bssp_attach()
Attaches the application ®SSPfunctionality on the Icoal computeReturns 0 on success, —1 oryan
error.

void bssp_detach()
Terminates all access &sSPfunctionality on the local computer.

int bssp_engine_is_started()
Returns 1 if the locadSSPengine has been started and not yet stopped, 0 otherwise.

int bssp_send(wast destinationEngineld, unsigned int clientld, Object clientServiceData, int inOrder
BsspSessionld *sessionld)
Sends a client service data unit to the application that is waiting for data tagged with the indicated
clientld as receied at he remoteBSSPengine identified bgestinationEngineld

clientServiceDatanust be a‘zero-copy object” reference as returned lignCreateZco() Note that
BSSPwill privately male and destry its ovn reference to the client service data object; the application
is free to destpits reference at grtime.

inOrder is a Boolean value indicating whether or not the service data item that is being §ent is
order’, i.e., was originally transmitted after all items thavdnareviously been sent to this destination
by this localBSSPengine: 0 if no (meaning that the item must be transmitted usingrehable”
channel), 1 if yes (meaning that the item must be transmitted using the “best affaisiel.

perl v5.18.2 2016-09-07 1

bssp::doc::pod3::bssp(3) BS8irary functions bssp::doc::pod3::bssp(3)

On success, the function populatssssionldwith the source engin® and the “session numbeér’
assigned to transmission of this client service data unit and returnsTdercession number may be
used to link futureBSSPprocessing eents to the affected client service datsssp_send(jeturns -1
on ary error.

int bssp_open(unsigned int clientld)

Establishes the applicatiané&clusive acess to receed srvice data units tagged with the indicated
BSSPclient service datéiD. At any time, only a single application task is permitted to nexeaervice
data units for ansingle client service dat®.

Returns 0 on success, —1 ory &mor (e.g., the indicated client service is already being held open by
some other application task).

int bssp_get_notice(unsigned int clientld, BsspNoticeType *type, BsspSessionld *sessionld, unsigned char
*reasonCode, unsigned int *dataLength, Object *data)

Receves motices ofBSSPprocessing wents pertaining to the flo of service data units tagged with the
indicated client servicéD. The nature of eachvent is indicated by'type. Additional parameters
characterizing thevent are returned itsessionld*reasonCode*datalength and *data as releant.

The value returned ifrdata is always a zero-cop object; use the zco_* functions defined ‘zcb.h”
to retrieve the content of that object.

When the notice is an BsspRecvSuccesszte returned in*data contains the content of a single
BSSPblock.

The cancellation of an export session results irvetgliof a BsspXmitFailure noticeln this case, the
ZCOreturned in *data is a service data @O that had previously been passedhssp_send()

bssp_get_notice@lways blocks indefinitely until aBSSPprocessingeent is delvered.

Returns zero on success, —1 oy emor.

void bssp_interrupt(unsigned int clientld)

Interrupts anbssp_get notice()nvocation. Thisfunction is designed to be called from a signal
handler; for this purposelientid may need to be obtained from a static variable.

void bssp_release_data(Object data)

Releases the resources allocated to Hatd, which must be aeceived client service data unitCO.

void bssp_close(unsigned int clientld)

SEE ALSO

Terminates the applicatios’'exclusive access to receed service data units tagged with the indicated
client service dati.

bsspadmirfl), bssprg5), zco(3)

perl v5.18.2

2016-09-07 2

cfdp::doc::pod3::cfdp(3) CFDHbrary functions cfdp::doc::pod3::cfdp(3)

NAME
cfdp

SYNOPSIS

perl v5.18.2

— CCSDS File Delery Protocol (CFDP) communications library

#include "cfdp.h"

typedef enum

{
CksumTypeUnknown = -1,
ModularChecksum = 0,
CRC32=1

} CfdpCksumType;

typedef int (*CfdpReaderFn)(int fd, unsigned int *checksum, CfdpCksumType ckType);
typedef int (*CfdpMetadataFn)(uvast fileOffset, unsigned int recordOffset, unsigned int length, int sourceFileF

typedef enum

{
CfdpCreateFile = 0,
CfdpDeleteFile,
CfdpRenamefFile,
CfdpAppendFile,
CfdpReplaceFile,
CfdpCreateDirectory,
CfdpRemoveDirectory,
CfdpDenyFile,
CfdpDenyDirectory

} CfdpAction;

typedef enum

{
CfdpNoEvent = 0,
CfdpTransactionind,
CfdpEofSentind,
CfdpTransactionFinishedind,
CfdpMetadataRecvind,
CfdpFileSegmentRecvind,
CfdpEofRecvind,
CfdpSuspendedind,
CfdpResumedind,
CfdpReportind,
CfdpFaultind,
CfdpAbandonedind

} CfdpEventType;

typedef struct

{
char *sourceFileName;
char *destFileName;

MetadataList messagesToUser;
MetadataList filestoreRequests;
CfdpHandler *faultHandlers;

int unacknowledged,;
unsigned int flowLabelLength;
2016-09-07 1

cfdp::doc::pod3::cfdp(3) CFDHbrary functions cfdp::doc::pod3::cfdp(3)

unsigned char *flowLabel,
int recordBoundsRespected,;
int closureRequested,;

} CfdpProxyTask;

typedef struct

{
char *directoryName;
char *destFileName;

} CfdpDirListTask;

[see description for available functions]

DESCRIPTION
The cfdp library provides functions enabling application software taCEB®to send and rece files. It
conforms to the Class 1 (Unackwvledged) service class defined in thEDP Blue Book and includes
implementations of seral standardCFDPuser operations.

In thelON implementation ofCFDP,the CFDP notion ofentity ID is taken to be identical to ti&P (CBHE)
notion of DTN node number.

CFDPentity and transaction numbers may be up to 64 bits in lerfgghportability to 32-bit machines,
these numbers are stored in @rDPstate machine as structures of type CfdpNumber.

To amplify the interface betweelFDPthe user application without risking storage leaks, the CFDP-ION
API uses Metadatal.ist object® MetadatalList is a specially formatt@®R list of user messages, filestore
requests, or filestore respons&uring the time that a Metadatalist is pending processing vi&F®

API, but is not yet (or is no longer) reachable fromya@buU object, a pointer to the list is appended to one
of the lists of MetadatalList objects in tlkEDP non-wlatile database. This assures that anplanned
termination of theCFDP daemons wn't leave ay SDR lists unreachable— and therefore un-rgclable

— due to the absence of references to those IlRisstartingCFDP automatically purges snunused
MetadataLists from th&€FDP database. Théuser datd’variable of the MetadatalList itself is used to
implement this feature: while the list is reachable only from the database root, its user data variable points
to the database root list from which it is referenced; while the list is attached to a RikyD@étiit, its user
data is null.

By default, CFDP transmits the data in a source file in segments of fixed size. The user application can
override this beheaor at the time transmission of a file is requested, by supplying a file reader callback
function that reads the file— one byte at a time— until it detects the end of arécord” that has
application significance. Each tin@FDP calls the reader function, the function must return the length of
one such record (which must be no greater than 65535).

WhenCFDPis used to transmit a file, a 32-bit checksum must béged in the “EOF” PDU to enable the

recever of the file to assure that it was not corrupted in trandihen an application-specific file reader
function is supplied, that function is responsible for updating the computed checksum as it reads each byte
of the file; aCFDPlibrary function is provided for this purpos@&wo types of file checksums are supported:

a dmple modular checksum or a 32-kiRC. The checksum type must be passed through t@EDP
checksum computation function, so it must be provided by (and thus to) the file reader function.

Per-sgment metadata may be provided by the user applicaliomnable this, upon formation of each file

data sgment,CFDP will invoke the useiprovided persggment metadata composition callback function (if

ary), a function conforming to the CfdpMetadataFn type definitibhe callback will be passed thefgmt

of the segment within the file, thegseents dfset within the current record (as applicable), the length of

the sgment, an open file descriptor for the source file (in case the data must be read in order to construct
the metadata), and a 63—byigfbr in which to place the memetadata. Theallback function must return

the length of metadata to attach to the file dagasaitPDU (may be zero) or -1 in thevent of a general

system failure.

The return alue for eachCFDP “ request’ function (put, cancel, suspend, resume, report) is a reference

perl v5.18.2 2016-09-07 2

cfdp::doc::pod3::cfdp(3) CFDHbrary functions cfdp::doc::pod3::cfdp(3)

number that enablesVents” obtained by callingcfdp_get_event(Jo be matched to the requests that
caused themEvents with reference number set to zero aents that were caused by autonomaeEDP
activity, e.g., the reception of a file data segment.

int cfdp_attach()
Attaches the application @FDPfunctionality on the local computeReturns 0 on success, —1 oryan
error.

int cfdp_entity _is_started()
Returns 1 if the locatFDPentity has been started and not yet stopped, 0 otherwise.

void cfdp_detach()
Terminates all access -DPfunctionality on the local computer.

void cfdp_compress_number(CfdpNumber *toNlwast from)
Corverts an unsignediast number into a CfdpNumber structure, e.g., for use wheoking the
cfdp_put()function.

void cfdp_decompress_number(uvast toNEfdpNumber *from)
Corverts a numeric value in a CfdpNumber structure to an unsigastdnteger.

void cfdp_update_checksum(unsigned char octet, uvast *offset, unsigned int *checksum, Cfdp@ksumT
ckType)
For use by an application-specific file reader -callback function, which must pass to
cfdp_update_checksunifle \alue of each byte (octet) it readsffsetmust beoctets displacement in
bytes from the start of the file. Tlebecksunpointer is provided to the reader functiondDP.

MetadataListfdp_create_usrmsg_list()
Creates a non-volatile liekl list, suitable for containing messages-to-user that are to be presented to

cfdp_put()

int cfdp_add_usrmsg(Metadatalist list, unsigned char *text, int length)
Appends the indicated message-to-usdisto

int cfdp_get_usrmsg(MetadataList list, unsigned char *textBuf, int *length)
Remaes from list the first of the remaining messages-to-user contained in the list anetsigd text
and length. When the last message in the list isateli, destroys the list.

void cfdp_destroy_usrmsg_list(MetadataL.ist *list)
Remaores and destroys all messages-to-usdishand destroys the list.

MetadataListfdp_create_fsreq_list()
Creates a non-volatile linked list, suitable for containing filestore requests that are to be presented to

cfdp_put()

int cfdp_add_fsreq(MetadatalList list, CfdpAction action, char *firstFileName, char *seconfdFlleName)
Appends the indicated filestore requesdtsb

int cfdp_get _fsreq(MetadataList list, CfdpAction *action, char *firstFileNameBuf, char
*secondFileNameBuf)
Remaores from list the first of the remaining filestore requests contained in the list angrdals
action code and file names. When the last request in the listierddl|idestroys the list.

void cfdp_destroy_fsreq_list(MetadataList *list)
Remaores and destroys all filestore requestdigt and destroys the list.

int cfdp_get fsresp(MetadatalList list, CfdpAction *action, int *status, char *firstFileNameBuf, char
*secondFileNameBuf, char *messageBuf)
Remaes from list the first of the remaining filestore responses contained in the list anersiéts
action code, status, file names, and messigeen the last response in the list is dkd, destrgs
the list.

perl v5.18.2 2016-09-07 3

cfdp::doc::pod3::cfdp(3) CFDHbrary functions cfdp::doc::pod3::cfdp(3)

void cfdp_destroy_fsresp_list(MetadatalList *list)
Remaores and destroys all filestore responsedishand destroys the list.

int cfdp_read_space_packets(int fd, unsigned int *checksum)
This is a standardréader’ function that segments the source fileG@sDSspace packet boundaries.
Multiple small packets may be aggseied into a single file data segment.

int cfdp_read_text_lines(int fd, unsigned int *checksum)
This is a standard “readéfunction that segments a source file of text lines on line boundaries.

int cfdp_put(CfdpNumber *destinationEntityNbunsigned int utBrmsLength, unsigned char *atfns,
char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpMetadataFn metadataFn,
CfdpHandler *faultHandlers, unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int
closureLateng, MetadataList messageddser Metadatalist filestoreRequests, Cfdgisactionld
*transactionld)
Sends the file identified bgourceFileNamdo the CFDP entity identified bydestinationEntityNhr
destinationFileNamés used to indicate the name by which the file will be catalogued upwod atri
its final destination; iNULL, the destination file name defits tosourceFileName If sourceFileName
is NULL, it is assumed that the application is requesting transmission of metadata only (as discussed
belov) anddestinationFileNamés ignored. Note that botsourceFileNamenddestinationFileName
are interpreted as path names, i.e., directory paths may be indicated in either or both. The syntax of
path names is opaque@&DP, the syntax obourceFileNamenust conform to the path naming syntax
of the source entityg’ file system and the syntax déstinationFileNameanust conform to the path
naming syntax of the destination entitfile system.

The byte array identified bytParms if non-NULL, is interpreted as transmission control information
that is to be passed on to th& layer The nominalUT layer forlON’s CFDP being Bundle Protocol,
the utParmsarray is normally a pointer to a structure of type BpUtParms; sdapthmn page for a
discussion of the parameters in that structure.

closureLatencys the length of time following transmission of th@F PDUwithin which a responding
Transaction FinishPDU is expected. Ifno FinishPDU is requested, this parameter value should be
zero.

messgesToUserand filestoreRequestsvhere non-zero, must be the addresses of ntatie linked

lists (that is, linked lists itON’s SDR database) of CfdpMsgToUser and CfdpFilestoreRequest objects
identifying metadata that are intended to accomyhe transmitted file Note that this metadata may
accompan a file of zero length (as whesourceFileNamés NULL as noted ab@) — atransmission

of metadata only.

On success, the function populatgsansactionID with the source entityD and the transaction
number assigned to this transmission and returns the request number identifyitputthiseguest.

The transactiotD may be used to suspend, resume, cancel, or request a report on the progress of this
transmission.cfdp_put(returns —1 on anerror.

int cfdp_cancel(CfdpTransactionld *transactionld)
Cancels transmission or reception of the indicated transaction. Note that, sinceONhe
implementation o£FDPis Unacknavledged, cancellation of a file transmission mayehlitle effect.
Returns request number on success, —1 gre@ar.

int cfdp_suspend(CfdpTransactionld *transactionld)
Suspends transmission of the indicated transaction. Note that, sincatimplementation oCFDP
is Unacknowledged, suspension of a file transmission mag litte effect. Returngequest number
on success, —1 onyaerror.

int cfdp_resume(CfdpTransactionld *transactionid)
Resumes transmission of the indicated transactimte that, since theON implementation oCFDP
is Unacknowledged, resumption of a file transmission mag litle effect. Returngequest number
on success, —1 on @aerror.

perl v5.18.2 2016-09-07 4

cfdp::doc::pod3::cfdp(3) CFDHbrary functions cfdp::doc::pod3::cfdp(3)

int cfdp_report(CfdpTransactionld *transactionld)
Requests issuance of a report on the transmission or reception progress of the indicated transaction.
The report takes the form of a character string that is returned in a @fipBiructure; use
cfdp_get_event(Jo receve the eent (which may be matched to the request by request number).
Returns request number on success, 0 if transaction is unknown, =L @roan

int cfdp_get_eent(CfdpEventYpe *type, time_t *time, int *reqNhrCfdpTransactionld *transactionld,
char *sourceFileNameBuf, char *destFileNameBuf, uvast *fileSize, MetadataList *messdgesUivast
*offset, unsigned int *length, CfdpCondition *condition,ast *progress, CfdpFileStatus *fileStatus,
CfdpDelveryCode *delveryCode, CfdpTransactionld *originatingTransactionld, char *statusReportBuf,
MetadatalList *filestoreResponses);

Populates return value fields with data from the oldestPevent not yet deliered to the application.

cfdp_get_event@iways blocks indefinitely until a@FDP processing went is delvered or the function
is interrupted by an irocation ofcfdp_interrupt()

On application errgrreturns zero but sets errno EBINVAL. Returns -1 on system failure, zero
otherwise.

void cfdp_interrupt()
Interrupts arcfdp_get_eventfhvocation. Thisfunction is designed to be called from a signal handler.

int cfdp_rput(CfdpNumber *respondentEntityNlnsigned int utBrmsLength, unsigned char *atfhs,
char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpHaraldtHahdlers,
unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int closureyatbtetadatal.ist
messagesToUseMetadatalist filestoreRequests, CfdpNumber *beneficiaryEntity idpProxyTask
*proxyTask, CfdpTransactionld *transactionld)
Sends to the indicated respondent entitypaoxy’ request to perform a file transmissioihe
transmission is to be subject to the configuration valugsoixyTaskand the destination of the file is
to be the entity identified byeneficiaryEntityNhr

int cfdp_rput_cancel(CfdpNumber *respondentEntityNbnsigned int utParmsLength, unsigned char
*utParms, char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpHandler
*faultHandlers, unsigned int fidabelLength, unsigned char *flowLabel, unsigned int closureLgtenc
MetadataList messagesllser MetadataList filestoreRequests, CfdpTransactionld *maun3actionlid,
CfdpTransactionld *transactionld)

Sends to the indicated respondent entity a request to cancel dppary’ file transmission request

as identified byputTransactionld which is the value dfransactionldthat was returned by that earlier

proxy transmission request.

int cfdp_get(CfdpNumber *respondentEntityNlinsigned int utBrmsLength, unsigned char *atfns,
char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpHaraldHahdlers,
unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int closureiatbtatadatalist
messagesToUser MetadataList filestoreRequests, CfdpProxyTask *proxyTask, Cémfysactionld
*transactionld)
Same ascfdp_rput except thatbeneficiaryEntityNbris omitted; the local entity is the implicit
beneficiary of the request.

int cfdp_ris(CfdpNumber *respondentEntityNhumsigned int utBrmsLength, unsigned char *atfns,
char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpHaraldHahdlers,
unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int closureiatbtatadataList
messagesToUserMetadataList filestoreRequests, CfdpDirListTask *dirListTask, Cfdp3actionld
*transactionld)
Sends to the indicated respondent entity a request to prepare a directory ligéngatshsting in a
file, and send it to the local entitfhe request is subject to the configuration valuebrinstTask

int cfdp_preview(CfdpTransactionld *transactionld, uvast offset, unsigned int length, char *buffer);
This function is provided to enable the application to get aaramvlook at the content of a file that
CFDP has not yet fully receed. Readdengthbytes starting apffsetbytes from the start of the file
that is the destination file of the transaction identifiedrbgpsactionlD into buffer. On user error

perl v5.18.2 2016-09-07 5

cfdp::doc::pod3::cfdp(3) CFDHbrary functions cfdp::doc::pod3::cfdp(3)

(transaction is nonexistent or is outbound, or offset is beyond the end of file) returns 0. On system
failure, returns —1. Otherwise returns number of bytes read.

int cfdp_map(CfdpTransactionld *transactionld, unsigned int *extentCount, CfdpExtent *extentsArray);
This function is preided to enable the application to report on the portions of a partiallyeddde
that hae keen receied and written. Lists the receéd continuous dataxgents in the destination file
of the transaction identified byansactionlD The extents (d§et and length) are returned in the
elements oéxtentsArray the number ofdents returned in the array is the total number of continuous
extents receied 0 far, or exentCount whichever is less. Theotal number of extents rewed so fr
is returned as the nevalue ofexentCount On system failure, returns —1. Otherwise returns O.

SEE ALSO
cfdpadmin(1), cfdprc(5)

perl v5.18.2 2016-09-07 6

dgr::doc::pod3::dgr(3) DGRbrary functions dgr::doc::pod3::dgr(3)

NAME
dgr — Datagram Retransmission system library

SYNOPSIS
#include "dgr.h"

[see description for available functions]

DESCRIPTION
The DGR library is an alternatie implementation of a subset OfP, intended for usewer UDP/IP in the
Internet; unlile ION’s canonical LTP implementation it includes a congestion control mechanism that
interpretsLTP block transmission failure as an indication of network congestion (not data corruption) and
reduces data transmission rate in response.

As such DGR differs from man reliable-UDP systems in ttvmain ways:

It uses adaptive timeout interval computation techniques
borrowed from TCP to try to avoid introducing congestion
into the network.

It borrows the concurrent—session model of transmission

from LTP (and ultimately from CFDP), rather than waiting

for one datagram to be acknowledged before sending the next,
to improve bandwidth utilization.

At this time DGR is interoperable with other implementationsLoP only when each block it reaess is
transmitted in a singleéTP data segment encapsulated in a sing®® datagram. Morecomplex LTP
behavior may be implemented in the future.

int dgr_open(uvast ownEngineld, unsigned in clientSvcld, unsigned sho®ootNbr unsigned int
ownlpAddress, char *memmgrName, Dgr *dBgrRC *rc)
Establishes the applicati@éccess tdGR communication service.

ownEnginelds the sending TP enginelD that will characterize segments issued by DR service
access pointln order to preent erroneous system befiar, neve assign the sameTP enginelD to
ary two interoperatindGR SAPs.

clientSvcldidentifies theLTP client service to which all.TP segments issued by thiBGR service
access point will be directed.

ownPortNbris the port number to use fDGR service. Ifzero, a system-assigng®P port number is
used.

ownlpAddresss the Internet address of the network irdeéf to use foDGR service. Ifzero, this
argument defaults to the address of the interface identified by the local mabbgteiame.

memmgrNameés the name of the memory manager (seammg(3)) to use for dynamic memory
management iDGR. If NULL, defaults to the standard systemalloc() andfree()functions.

dgr is the location in which to store the service access pointer that must be supplied on subsequent
DGR function invocations.

rc is the location in which to store tiésR return code resulting from the attempt to open this service
access point (alays DgrOpened).

On ary failure, returns —1. On success, returns zero.

void dgr_getsockname(Dgr damsigned short *portNbunsigned int *ipAddress)
States the port number arfdaddress of thelDP socket used for thiSGR service access point.

void dgr_close(Dgr dgr)
Reversesdgr_open() releasing resources where possible.

perl v5.18.2 2016-09-07 1

dgr::doc::pod3::dgr(3) DGRbrary functions dgr::doc::pod3::dgr(3)

int dgr_send(Dgr dgrunsigned short toPortNpunsigned int tolpAddress, int notificationFlags, char
*content, int length, DgrRC *rc)
Sends the indicated content, of length as indicated, to the r@@&service access point identified
by toPortNbr and tolpAddress The message will be retransmitted as necessary until either it is
acknowledged obGR determines that it cannot be delied.

notificationFlags if non-zero, is the logicaDR of the notification behaors requested for this
datagram. #ailable behaviors ar®GR_NOTE_FAILED (a notice of datagram deéry failure will
issued if deliery of the datagram fails) anDGR_NOTE_ACKED (a notice of datagram dedry
success will be issued if dedry of the datagram succeeds). Notices are issuedgriaeceive(that
is, the thread that calldgr_receive()on this DGR service access point will rewei these notices
interspersed with inbound datagram contents.

length of content must be greater than zero and may be as great as 6@5@Hngths greater than
8192 may not be supported by the local underlyibg implementation; to minimize the chance of
data loss when transmittinge the internet, length should not exceed 512.

rc is the location in which to store ti&R return code resulting from the attempt to send the content.
On ary failure, returns —1 and sets to DgrRailed. Onsuccess, returns zero.

int dgr_recere(Dgr dgr, unsigned short *fromPortNbunsigned int *fromlpAddress, char *content, int
*length, int *errnbrint timeoutSeconds, DgrRC *rc)
Delivers the oldest undetered DGR event queued for deliry.

DGR events are of tw type: (a) messages reead from a remoteDGR service access point and (b)
notices of previously sent messages @R has determined either V&been or cannot be dedred,
as requested in theotificationFlagsparameters provided to thdgr_send()calls that sent those
messages.

In the former casalgr_receive(will place the content of the inbound messageointent its length in
length and thelP address and port number of the senddramlpAddressand fromPortNbr, and it
will set*rc to DgrDatagramReceid and return zero.

In the latter casealgr_receive()will place the content of the fatted outbound message ircontent
and its length inlength and return zero.If the event being reported is a dedry success, then
DgrDatagramAcknaledged will be placed irirc. Otherwise, DgrDatagramNotAcknowledged will
be placed irfrc and the rebeant errno (if any) will be placed iterrnbr.

The contentbuffer should be at least 65535 bytes in length to enableedelf the content of the
received or celivered/undelerable message.

timeoutSecondscontrols blocking behaor. If timeoutSecondss DGR_BLOCKING (i.e., —1),
dgr_receive()will not return until (a) there is either an inbound message tweder an aitbound
message delery result to report, or (b) the function is interrupted by meandgofinterrupt() If
timeoutSeconds DGR_POLL (i.e., zero),dgr_receive(returns immediately; if there is currently no
inbound message to dadi and no outbound message #ety result to report, the function séts to
DgrTimedOut and returns zerd-or any aher positve value oftimeoutSecondsigr_receive(yeturns
after the indicated number of secondséhdapsed (in which case the returned value*rof is
DgrTimedOut), or when there is a message toveelor a cklivery result to report, or when the
function is interrupted by means adr_interrupt() whichever occurs first. When the function returns
due to interruption bydgr_interrupt() the \alue placed in*rc is Dgrinterrupted instead of
DgrDatagramRecegd.

rc is the location in which to store timsR return code resulting from the attempt to reeebntent.

On ary 1/O error or other unregerable system errpreturns —1. Otherwise w&hys returns zero,
placing DgrFailed irfrc and writing a failure message in theset of an operating error.

perl v5.18.2 2016-09-07 2

dgr::doc::pod3::dgr(3) DGRbrary functions dgr::doc::pod3::dgr(3)

void dgr_interrupt(Dgr dgr)
Interrupts adgr_receive()invocation that is currently bloekl. Designedo be called from a signal
handler; for this purposégr may need to be obtained from a static variable.

SEE ALSO
Itp (3), file2dgr(1), dgr2file(1)

perl v5.18.2 2016-09-07 3

dtpc::doc::pod3::dtpc(3) DTPlibrary functions dtpc::doc::pod3::dtpc(3)

NAME
dtpc — Delay-Tolerant Payload Conditioning (DTPC) communications library

SYNOPSIS
#include "dtpc.h"

[see description for available functions]

DESCRIPTION
The dtpc library provides functions enabling application software to use Delesafit Ryload
Conditioning PTPC) when exchanging informatiornver a celay-tolerant netark. DTPCis an application
service protocol, running in a layer immediately \ab®&undle Protocol, that offers delay-tolerant support
for several end-to-end services to applications that may require them. These services incliele afeli
application data items in transmission (rather than reception) order; detection of reception gaps in the
sequence of transmitted application data items, with end-to-agaiwveeacknonvledgment of the missing
data; end-to-end posig aknowledgment of successfully rewed data; end-to-end retransmission of
missing data, dven dther by n@ative aknovledgment or timer expiration; suppression of duplicate
application data items; agg@ion of small application data items into large bundle payloads, to reduce
bundle protocol werhead; and application-controlled elision of redundant data items in gatggte
payloads, to impnee link utiliization.

int dptc_attach()
Attaches the application @TPC functionality on the local computeReturns 0 on success, —1 oryan
error.

void dptc_detach()
Terminates all access mrPCfunctionality on the local computer.

int dtpc_entity_is_started()
Returns 1 if the locabTPCentity has been started and not yet stopped, 0 otherwise.

int dtpc_open(unsigned int topiclD, DtpcElisionFn elisionFn, DtpcSAP *dtpcsapPtr)
Establishes the application as the sole authorized client for posting and receiving application data
items on topidopiclD within the localBP node. Orsuccess, the service access point for posting and
receving such data items is placed fidtpcsapPtr the elision callback functioelisionFn (if not
NULL) is associated with this topic, and 0 is returned. Returns —1 pereor.

int dtpc_send(unsigned int profilelD, DtpcSAP sap, char *destEid, unsigned int maxRtx, unsigned int
aggrSizeLimit, unsigned int aggrTimeLimit, int lifespan, BpExtendedCO&heledCOS, unsigned char
srrFlags, BpCustodySwitch custodySwitch, char *repufid, int classOfService, Object item, unsigned
int length)

Inserts an application data item into an outboDMEC application data unit destined fdestEid

Transmission of that outboudU will be subject to the profile identified lpyofilelD, as &serted by
dtpcadmin(l), if profilelD is non-zero.In that casemaxRtx agg SizeLimit aggTimeLimit lifespan
exendedCOSsrrFlags custodySwitchreportToEid and classOfServicare ignored.

If profilelD is zero then the profile asserted ditpcadmin(l) that matchesnaxRtx aggSizeLimit
agg TimeLimit, lifespan exendedCOSsrrFlags, custodySwitchreportToEid and classOfServicevill
govern transmission of theDU, unless no such profile has been asserted, in whichdgasesend()
returns 0 indicating user error.

maxRtxis the maximum number of timesyasingle DTPC ADU transmitted subject to the indicated
profile may be retransmitted by tbaPC entity. If maxRtxis zero, then th®TPC transport service
features (in-order deféry, end-to-end acknowledgment, etc.) are disabled for this profile.

aggSizeLimitis the size threshold for concluding aggaiéon of an outboundhDU and requesting
transmission of thaaDU. If aggSizeLimitis zero, then th®TPC transmission optimization features
(aggredion and elision) are disabled for this profile.

agg TimeLimitis the time threshold for concluding aggggon of an outbound\DU and requesting

perl v5.18.2 2016-09-07 1

dtpc::doc::pod3::dtpc(3) DTPlibrary functions dtpc::doc::pod3::dtpc(3)

transmission of thatDU. If aggTimeLimitis zero, then th®TPC transmission optimization features
(aggredion and elision) are disabled for this profile.

lifespan exendedCOgSsrrFlags custodySwitchreportToEid and classOfServicare as defined for
bp_send (sebp(3)).

item must be an object allocated withi@N’s SDR “ heap’, and length must be the length of that
object. Theitem will be inserted into the outboumbu’s list of data items posted for the topic
associated witlsap and the elision callback function declared &ap (if any, and if the applicable
profile does not disable transmission optimization features) willoked immediately after insertion
of the application data item but befoBPC makes al decision on whether or not to initiate
transmission of the outbourdu.

The function returns 1 on success, 0 opaser application errpr-1 on any system error.

int dtpc_receie(DtpcSAP sap, DtpcDelery *divBuffer, int timeoutSeconds)
Receves a $ngle DTPCapplication data item, or reports on some failurBT#Creception activity.

The ‘result” field of the dlvBufer structure will be used to indicate the outcome of the data reception
activity.

If at least one application data item on the topic associatedsafithas not yet been deéred to the
SAP, then the payload of the oldest such item will be returneddivBuffer>item and
divBuffer>result will be set to RyloadPresent. lhere is no such itendtpc_receive(pblocks for up
to timeoutSecondshile waiting for one to arvie.

If timeoutSeconds DTPC_POLL(i.e., zero) and no application data item vw&iéing delivery, or if

timeoutSeconds greater than zeroub no item arwes before timeoutSecondbave dapsed, then
divBuffer->result will be set to ReceptiorimedOut. IftimeoutSeconds DTPC_BLOCKING(i.e., —1)
thenbp_receive(blocks until either an item aweés or te function is interrupted by anviscation of
dtpc_interrupt()

divBuffe>result will be set to Receptioninterrupted in theest that the calling process reeed and
handled some signal other thai6ALRM while waiting for a bundle.

divBuffer>result will be set to DtpcServiceStopped in thgest that DTPC service has been
terminated on the local node.

The application data item dedred in theDTPC delivery structure, if ap, will be an object allocated
within ION’s SDR “ heap’; the length of that object will ligwise be provided in the DtpcDedry
structure.

Be sure to caltitpc_release_delivery@fter every successful wocation ofdtpc_receive()
The function returns 0 on success, —1 onearor.

void dtpc_interrupt(DtpcSAP sap)
Interrupts adtpc_receive()nvocation that is currently bloekl. Thisfunction is designed to be called
from a signal handler; for this purposapmay need to be obtained from a static variable.

void dtpc_release_delkry(DtpcDelivery *dlvBuffer)
Releases resources allocated to the indidat®t delivery.

void dtpc_close(DtpcSAP sap)
Remaores the application as the sole authorized client for posting andviegeipplication data items
on the topic indicated isapwithin the localBP node. Theapplication relinquishes its ability to send
and recaie gplication data items on the indicated topic.

SEE ALSO
dtpcadmin(1), dtpcre(5), bp(3)

perl v5.18.2 2016-09-07 2

ici::doc::pod3::ion(3) IClibrary functions ici::doc::pod3::ion(3)

NAME

ion — Interplanetary Overlay Network common definitions and functions

SYNOPSIS

DESCRIPT
The

#include "ion.h"

[see description for available functions]

ION
Interplanetary Overlay Networko\) software distribution is an implementation of Delagidrant

Networking (DTN) architecture as described in Interri®EC 4838. It is designed to enable ixpensve
insertion of DTN functionality into embedded systems such as robotic spacecraft. The intebi of
deployment in space flight mission systems is to reduce cost and risk in mission communications by
simplifying the construction and operation of automated digital data communicatioarketspanning

space links, planetary surface links, and terrestrial links.

Thel

ON distribution comprises the following software packages:

ici (Interplanetary Communication Infrastructure), a set of general-purpose librarieislimo
common functionality to the other packages.

Itp (Licklider Transmission Protocol), a cabdN protocol that provides transmission reliability based
on delay-tolerant acknowledgments, timeouts, and retransmissions.

dgr (Datagram Retransmission), a library that enables data to be transmitt¢Pweith reliability
comparable to that provided BYCP DGR is an alternatie implementation of.TP, designed for use
within an internet.

bssp(Bundle Streaming Service Protocol), a protocol that supports delay-tolerant data streaming.
BSSP delivers data in transmission order with minimum latertoit possibly with omissions, for
immediate displayand at the same time it dedrs the same data reliably in background so that the
streamed data can be tveund” f or possibly impreed presentation.

bp (Bundle Protocol), a corbTN protocol that provides delay-tolerant forwarding of data through a
network in which continuous end-to-end connectivity ivaneassured, including support for delay-
tolerant dynamic routing. The Bundle Protod@®) specification is defined in InterneFC 5050.

ams (Asynchronous Message Servicejdp (CCSDSFile Delivery Protocol),dtpc (Delay-Tolerant
Payload Conditioning), andbss (Bundle Streaming Service), application-layer services that are not
part of theDTN architecture but utilize underlyir@TN protocols.

Taken together the packages included in tHON software distribution constitute a communication
capability characterized by the following operational features:

Whil

perl v5.18.2

Reliable comeyance of dataer a DTN, i.e., a network in which it might mer be possible for ap
node to hee reliable information about the detailed current state pfosimer node.

Built on this capability reliable distrilution of short messages to multiple recipients (subscribers)
residing in such a network.

Management of traffic through such a network.
Facilities for monitoring the performance of the network.
Robustness against node failure.

Portability across heterogeneous computing platforms.
High speed with lav overhead.

Easy intgration with heterogeneous underlying communication infrastructure, ranging from Internet
to dedicated spacecraft communication links.

e most of the ici package consists of librariesvfafing functionality that may be of general utility in

2016-09-07 1

ici::doc::pod3::ion(3) IClibrary functions ici::doc::pod3::ion(3)

ary complex embedded software system, the functions and macros described &elospecifically
designed to support operationd©f’s delay-tolerant networking protocol stack.

TIMESTAMPBUFSZ
This macro returns the recommended size aiffebthat is intended to contain a timestamp in ION-
standard format:

yyyy/mm/dd-hh:mm:ss

int ionAttach()
Attaches the woking task tolON infrastructure as previously established by runningidhadmin
utility program. Returns zero on success, —1 onegror.

void ionDetach()
Detaches the iroking task fromlON infrastructure. Imparticular releases handle allocated for access
to ION’s non-wlatile databaseNOTE, though, thatonDetach()has no effect when thevioking task
is running in a non-memory-protected environment, such as VxWorks, whéddattsource access
variables are shared by all tasks: no single task could detach without crashing adiittaesks.

void ionProd(uvast fromNode, uvast toNode, unsigned int xmitRate, unsigned int owlt)
This function is designed to be called from an operatingramment command or a fault protection

routine, to enable operation of a node to resume when all of its scheduled contacts are in the past

(making it impossible to use@TN communication contact to assert additional future communication
contacts). Thdunction asserts a single weunidirectional contact conforming to thegaments
provided, including the applicable one-way light time, with start time equal to the current time (at the
moment of gecution of the function) and end time equal to the start time plus 2 hours. The result of
executing the function is written to theN log using standartbN status message logging functions.

NOTE that the ionProd() function must be iwoked twice in order to establish bidirectional
communication.

void ionTerminate()
Shuts down the entir®®N node, terminating all daemons. The state of the node is retained in the
node’sSDRheap.

int ionStartAttendant(RegAttendant *attendant)
Initializes the semaphore mtendantso that it can be used for blockiggO space requisitions by
ionRequestZcoSpace(Returns 0 on success, —1 orya&mor.

void ionPauseAttendant(RegAttendant *attendant)
“Ends’ the semaphore iattendantso that the task that is blagdk on taking it is interrupted and may
respond to an error or shutdown condition.

void ionResumeAttendant(RegAttendant *attendant)
Reinitializes the semaphore mtendantso that it can agn be used for blockingCO space
requisitions.

void ionStopAttendant(RegAttendant *attendant)
Destroys the semaphoreattendant preventing a potential resource leak.

int ionRequestZcoSpace(ZcoAcct acct, vast fileSpaceNeedeaist ‘bulkSpaceNeeded, ast
heapSpaceNeeded, unsigned char coarsePriorigigned char finePriorityRegAttendant *attendant,
ReqTicket *ticket)
Lodges a request for space in the pool identifiechést If the requested space can bevyted
immediatelyit is resered for use by the calling task attitket is set to zero. Otherwise,attendant
is NULL, no space is reserved anchagticket is set to zero. Otherwise, the request has been queued
for service when space becomesilable and*ticke is set to the address of a ticket referencing this
request; the calling task should pend on the semaphatteimdant and upon taking the semaphore it
mustionShred()the ticket and may then consider the requested spaceagdenits use. Return 0 on
success, -1 on grailure.

perl v5.18.2 2016-09-07 2

ici::doc::pod3::ion(3) IClibrary functions ici::doc::pod3::ion(3)

void ionShred(ReqTicket *ticket)
Acknowledges the reservation @GfCO space requested by the call itmRequestZcoSpace(pat
returnedticket. Note that failure to ackmdedge a serviced ticket promptly (within 3 seconds of
receving it) will be interpreted as refusal of the regshZCO space, resulting in that space being
made &ailable for use by other tasks.

Object ionCreateZco(ZcoMedium source, Object location, vast offset, vast length, unsigned char
coarsePriorityunsigned char finePrioritZcoAcct acct, ReqAttendant *attendant)
This function provides ablocking” i mplementation of admission control lidN. Like zco_create()
it constructs a zero-cgpobject (seezco(3)) that contains a single extent of source data residing at
location in source of which the firstoffsetbytes are omitted and thextdengthbytes are included.
But unlike zco_create()ionCreateZco()can be configured to block (rather than return an immediate
error indication) so long as the total amount of spaseimcethat is aailable for nev ZCO formation
is less tharlength ionCreateZco()operates by callingpnRequestZcoSpacefhen pending on the
semaphore imttendantas necessary before creating #@O. ionCreateZco(yeturns when either (a)
space has becomeaiable and thezCO has been created, in which case the location oz@®@is
returned, or (b) the function has failed (in which case ((Object) —1) is returned), or (catghdant
was rull and sufficient space for the firsttent of thezCO was not immediately wailable or else the
function was interrupted bpnPauseAttendantf)efore space for theCO became wailable (in which
case 0 is returned).

vast ionAppendZcoExtent(Object zco, ZcoMedium source, Object location, vast offset, vast length,
unsigned char coarsePriorithsigned char finePrioritfRegAttendant *attendant)

Similar toionCreateZco(except that instead of creating amngCoO it appends an additional extent to

an «isting ZCO. Returns —1 on failure, O on interruption lmnPauseAttendant@r if attendantwas

NULL and sufficient space for the extent was not immediateljahle, lengthon success.

Sdrgetlonsdr()
Returns a pointer to th@DR management object, previously acquired by caliowpttach() or zero
on ary error.

PsmPartitiorgetlonwm()
Returns a pointer to th&N working memory partition, previously acquired by calliogAttach() or
Zero on ap error.

int getlonMemoryMgr()
Returns the memory managiy for operations onON’s working memory partition, préously
acquired by callingonAttach() or —1 on ay ator.

int ionLodked();
Returns 1 if the calling task is the owner of the curBDR transaction. AssurinthatION is locked
while related critical operations are performed is essential tostidaace of race conditions.

uvastgeOwnNodeNbr()
Returns the Bundle Protocol node number identifying this node, as declaredomweas initialized
by ionadmin

time_tgetUTCTime()
Returns the currentTC time, as computed from local clock time and the compmutmirrent ofset
from UTC (due to clock drift,not due to time zone difference; thécdelta) as managed from
ionadmin

int ionClocklsSynchronized()
Returns 1 if the computer on which the logaN node is running has a synchronized clock , i.e., a
clock that reports the currentTC time as a value that differs from the correct time by an iaterv
approximately equal to the currently assertetsedf from UTC due to clock drift; returns zero
otherwise.

If the machines dock is synchronized then its reported values (as returnegethyT CTime() can
safely be used as the creation times of hendles and the expiration time of such a bundle can

perl v5.18.2 2016-09-07 3

ici::doc::pod3::ion(3) IClibrary functions ici::doc::pod3::ion(3)

accurately be computed as the sum of thedles aeation time and time tovie. If not, then the
creation timestamp time of webundles sourced at the lodaiIN node must be zero and the creation
timestamp sequence numbers must increase monotonicalgforeve rolling over to zero.

void writeTimestampLocal(time_t timestamp, char *timestampBuffer)
Expresses the time value imestampas a local timestamp string in ION-standard format, as noted
above, in timestampBuffer

void writeTimestampUTC(time_t timestamp, char *timestampBuffer)
Expresses the time value fimestampas auUTC timestamp string in ION-standard format, as noted
above, in timestampBuffer

time_t readTimestampLocal(char *timestampBuyffene_t referenceTime)
Pases the local timestamp string timestampBuffeand returns the corresponding time value (as
would be returned byime(2)), or zero if the timestamp string cannot be parsed successfiity
timestamp string is normally expected to be an absokjeession of local time in ION-standard
format as noted abe. Howeve, a elative tme expression variant is also supported: if the first
character oftimestampBuffeis '+ then the remainder of the string is interpreted as a count of
seconds; the sum of this value and the time valuefénenceTimés returned.

time_t readTimestampUTC(char *timestampBuftane_t referenceTime)
Same aseadTimestampLocal@xcept that iftimestampBuffeis not a relatie ime expression then it
is interpreted as an absolute expressiodTdf time in ION-standard format as noted a&o

STATUS MESSAGES
ION useswriteMemo() putErrmsg() and putSysErrmsg(}o log seeral different types of standardized
status messages.

Informational messages
These messages are generated to inform the user of the occurrenertoftteat are nominalub
significant, such as the controlled termination of a daemon or the production of a congestion forecast.
Each informational message has the following format:

{yyyy/mm/dd hh:mm:}§i] text

Warning messages
These messages are generated to inform the user of the occurremagthat are off-nominalub
are likely caused by configuration or operational errors rather than softavare.f Eachwarning
message has the following format:

{yyyy/mm/dd hh:mm:}§?] text

Diagnostic messages
These messages are produced by calfiotErrmsg() or putSysErrmsg() They are generated to
inform the user of the occurrence ofets that are éfhominal and might be due to errors in safte.
The location within theON software at which the off-nominal condition was detected is indicated in
the message:

{yyyy/mm/dd hh:mm:}at line nnnof sourcefilenamgext(argument

Note that theargumentportion of the message (including its enclosing parentheses) will bisl@do
only when an argument value seems potentially helpful in fault analysis.

Bundle Status ReporBER) messages
A BSRmessage informs the user of the\airof a BSR,a Bundle Protocol report on the status of some
bundle. BSRsare issued in the course of processing bundles for which one or more status report
request flags are set, andyttaee also issued wherubdles for which custody transfer is requested are
destrged prior to deliery to their destination endpointsA BSR message is generated by
ipnadminep upon reception of 8SR. The time and place (node) at which ®®R was issued are
indicated in the message:

{yyyy/mm/dd hh:mm:}s[s] (sourceElD/creationTimeSecond®untelfragmentOffset status

perl v5.18.2 2016-09-07 4

ici::doc::pod3::ion(3) IClibrary functions ici::doc::pod3::ion(3)

flagsByteat time on endpointlQ 'reasonString

Communication statistics messages
A network performance report is a set of eight communication statistics messages, one for each of
eight different types of network adty. A report is issuedvery time contact transmission or
reception starts or stops, except when there is natgati any kind on the local node since the prior
report. Whena report is issued, statistic messages are generated to summarize all netwiyk acti
detected since the prior report, after which all network activity counters and accumulators are reset to
zero.

NOTE also that thébpstats utility program can be ioked to issue an interim network performance
report at ap time. Issuancef interim status reports doe®t cause network activity counters and
accumulators to be reset to zero.

Statistics messagesveathe following format:

{yyyy/mm/dd hh:mm:3}g x] xxx from tttttttt to TTTTTTTT (0) aaaa bbbbbbbbbl{1) cccc
dddddddddd?2) eeeefffiffff (+) gggg lhhhhhhhhh

xxxindicates the type of network activity that the message is reporting on. Statistics for égendif
types of network activity are reported:

src This message reports on the bundles sourced at the local node during the indicated interval.

fwd
This message reports on the bundles forwarded by the local node. When a bundle iardetbrw
due to custody transfer timeout it is counted a second time here.

xmt
This message reports on thenkles passed to the a@mence layer protocol(s) for transmission
from this node.Again, a re-forwardedundle that is then re-transmitted at theveogence layer
is counted a second time here.

rcv This message reports on the bundles from other nodes that wevedatdie local node.
dlv This message reports on the bundlesveidd to applications via endpoints on the local node.
ctr This message reports on the custody refusal signalsyedeihe local node.

rfw This message reports on bundles for whichvegence-layer transmission failed at this node,
causing the bundles to be re-forwarded.

exp This message reports on the bundles destroyed at this nodeTdeeixpiration.

tttttttt and TTTTTTTTindicate the start and end times of the interval for which statistics are being
reported, expressed yyyy/mm/dd-hh:mm:sormat. TTTTTTTTis the current time anttttttt is the
time of the prior report.

Each of the four alue pairs following the colon (:) reports on the number of bundles counted for the
indicated type of network agtty, for the indicated traffic fl, followed by the sum of the sizes of the
payloads of all thoseundles. Theour traffic flows for which statistics are reported a(@)” the
priority—0 or ‘bulk’ traffic, “(1)"’ the priority—1 ‘standard’ traffic, “(2)"’ the priority—2 ‘expedited”
traffic, and “(+)” the total for all classes of service.

Free-form messages

Other status messages are free-form, except that date and timevaye abted just as for the
documented status message types.

SEE ALSO
ionadmin(1), rfxclock(1), bpstatg1), licv (3), lyst(3), memmg(3), platform(3), psm(3), sdr(3), zco(3),
Itp (3), bp(3), cfdp(3), ams(3), bss(3)

perl v5.18.2 2016-09-07 5

ici::doc::pod3::llcv(3) ICllibrary functions ici::doc::pod3::licv(3)

NAME
licv - library for manipulating linked-list condition variable objects

SYNOPSIS
#include "llcv.h"

typedef struct licv_str

{
Lyst list;
pthread_mutex_t mutex;
pthread_cond_t cv;

} * Llcv;

typedef int (*LIcvPredicate)(Llcv);

[see description for available functions]

DESCRIPTION
A “link ed-list condition ariable’ object (LCV) is an nterthread communication mechanism that pairs a
process-priate linked list in memory with a condition variable asyided by the pthreads library.LCVs
echo in thread programming the standesd interprocess or intetask communication model that pairs
shared-memory semaphores with linked lists in shared memory or shared non-volatile gisrag¢he
semaphore/list model, aviable-length messages may be transmitted; the resources allocated to the
communication mechanism gvoand shrink to accommodate changes in data rate; the rate at which
messages are issued is completely decoupled from the rate at which messagevedenmdqgiocessed.
That is, there is no fl@ control, no blocking, and therefore no possibility of deadlock ‘@eadly
embracé. Traffic spikes are handled without impact on processing rate, provided sufficient memory is
provided to accommodate the peak backlog.

An LLCV comprises a Lyst, a mutex, and a conditianable. Thda.yst may be in either prite or shared
memory but the Lyst itself is not shared with other processes. The reader thaéigdow the condition
variable until signaled by a writer that some condition i iue. Thestandard st API functions are
used to populate and drain the linked list. In order to protect linked ligfritytecach thread must call
llicv_lock() before operating on the Lyst atidv_unlock() afterwards. Theother licv functions merely
effect flav signaling in a way that makes it unnecessary for the reader to poll or busy-wait on the Lyst.

Llcv licv_open(Lyst list, Llcv licv)
Opens an.LCV, initializing as necessaryrhelist agument must point to an existing Lyst, which may
reside in either pvate or shared dynamic memorjcv must point to an existing llicv_str management
object, which may reside in either static or dynamicvgbei or shared) memory— but NOT in stack
space. Returnifcv on success\ULL on ary error.

void llcv_lock(Llcv llcv)
Locks theLLCV’s Lyst so that it may be updated or examined safely by the calling thFeds.
silently on aw error.

void llcv_unlock(Llcv llcv)
Unlocks thelLLCV'’s Lyst so that another thread may lock and updatexamime it. Fails silently on
ary error.

int llcv_wait(Llcv llcv, LlcvPredicate cond, int microseconds)
Returns when theylst encapsulated within the.CV meets the indicated conditionf microseconds
is non-ngaive, will return -1 and seterrno to ETIMEDOUT when the indicated number of
microseconds has passed, if and only if the indicated condition has not been met by that time.
Negative walues of the microseconds argument other thabv BLOCKING (defined as -1) are
illegd. Returns-1 on ay error.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::llcv(3) ICllibrary functions ici::doc::pod3::licv(3)

void llcv_signal(Llcv llcy, LlcvPredicate cond)
Locks the indicatedLCV's Lyst; tests (ealuates) the indicated condition withgaed to thatLLCV; if
the condition is true, signals to the waiting reader onuh®/ (if any) that the Lyst encapsulated in
the indicated.LCV now meets the indicated condition; and unlocks the Lyst.

void llcv_signal_while_locked(LIcv licvLIcvPredicate cond)
Same adlcv_signal() except does not lock the Llcv’'mutex before signalling or unlock afteawds.
For use when the Llcv is already locked; yeets deadlock.

void llcv_close(Llcv llicv)
Destrgys the indicated LCV’s mutex and condition ariable. Rils silently (and has no effect) if a
reader is currently waiting on the Llcv.

int llcv_lyst_is_empty(Llcv Llcv)
A built-in - “‘convenience’ predicate, for use when callindlcv_wait(), llcv_signal() or
llcv_signal_while_loked(). Returns true if the length of the indicatedCV’s encapsulated Lyst is
zero, false otherwise.

int llcv_lyst_not_empty(Llcv Llcv)
A built-in - “‘convenience’ predicate, for use when callindlcv_wait(), llcv_signal() or
llcv_signal_while_loked(). Returns true if the length of the.CV’s encapsulated Lyst is non-zero,
false otherwise.

SEE ALSO
lyst(3)

perl v5.18.2 2016-09-07 2

ici::doc::pod3::lyst(3) IClibrary functions ici::doc::pod3::lyst(3)

NAME
lyst — library for manipulating generalized doubly linked lists

SYNOPSIS
#include "lyst.h"

typedef int (*LystCompareFn)(void *s1, void *s2);
typedef void (*LystCallback)(LystElt elt, void *userdata);

[see description for available functions]

DESCRIPTION
The ‘lyst” library uses tw types of objectslyst objects and.ystElt objects. ALyst knows hw many
elements it contains, its first and last elements, the memory manager used to cregtéiddsysd and its
elements, and lothe elements are sorted LystElt knows its content (normally a pointer to an item in
memory), what Lyst it belongs to, and the LystElts before and after it in that Lyst.

Lyst lyst_create(void)
Create and return awe.yst object without anelements in it. All operations performed on thigst
will use the allocation/deallocation functions of the default memory martaggér (seememmg(3)).
ReturnsNULL on ary failure.

Lyst lyst_create_using(unsigned memmgrid)
Create and return awe_yst object without anelements in it. All operations performed on thigst
will use the allocation/deallocation functions of the specified memory manageméemg(3)).
ReturnsNULL on ary failure.

void lyst_clear(Lyst list)
Clear a lyst, i.e. free all elements @i6t, calling the lyst's deletion function if defined, but without
destroying the Lyst itself.

void lyst_destroy(Lyst list)
Destrgy a Lyst. Wl free all elements olist, calling the Lysts deletion function if defined.

void lyst_compare_set(Lyst list, LystCompareFn compareFn)

LystCompareFn lyst_compare_get(Lyst list)
Set/get comparison function for specifieggst. Comparisorfunctions are called with tw Lyst
element data pointers, and must returngsinee integer if first is less than second, 0 if both are equal,
and a positie integer if first is greater than second (i.e., same return valuesrasp(3)). The
comparison function is used by tlyst_insert() lyst_seach(), lyst_sort() andlyst_sorted(functions.

void lyst_direction_set(Lyst list, LystSortDirection direction)
Set sort direction (eitharlST_SORT_ASCENDINGor LIST_SORT_DESCENDING for specified lst.
If no comparison function is set, then this controls whethar eélements are added to the end or
beginning (respeatély) of the Lyst wherlyst_insert()is called.

void lyst_delete_set(Lyst list, LystCallback deleteFn, void *userdata)
Set user deletion function for specifiegst. This function is automatically called wheree an
element of the Lyst is deleted, to perforny aiserrequired processing. When automatically called,
the deletion function is passedaverguments: the element being deleted and uberdatapointer
specified in thdyst_delete_set@all.

void lyst_insert_set(Lyst list, LystCallback insertFn, void *userdata)
Set user insertion function for specifiegst. Thisfunction is automatically called where a Lyst
element is inserted into thedt, to perform apuserrequired processing. When automatically called,
the insertion function is passedawrguments: the element being inserted anduberdatapointer
specified in thdyst_insert_set(kall.

unsigned long lyst_length(Lyst list)
Return the number of elements in the Lyst.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::lyst(3) IClibrary functions ici::doc::pod3::lyst(3)

LystElt lyst_insert(Lyst list, void *data)
Create a ng element whose content is the pointelue data and insert it into the yst. Usesthe
Lyst's comparison function to select insertion point, if defined; otherwise addsheleraent at the
beginning or end of the Lyst, depending on thestLsort direction setting. Returns a pointer to the
newly created element, BiULL on ary failure.

LystElt lyst_insert_first(Lyst list, void *data)

LystElt lyst_insert_last(Lyst list, void *data)
Create a n@ element and insert it at the dgianing/end of the yst. If these functions are used when
inserting elements into a Lyst with a defined comparison function, then the Lyst may get out of order
and future calls tdyst_insert()can put ne/ elements in unpredictable locationReturns a pointer to
the newly created element, MULL on ary failure.

LystElt lyst_insert_before(LystElt element, void *data)

LystElt lyst_insert_after(LystElt element, void *data)
Create a ng element and insert it before/after the specified element. If these functions are used when
inserting elements into aykt with a defined comparison function, then the Lyst may get out of order
and future calls to lyst_insert can putwgements in unpredictable locations. Returns a pointer to the
newly created element, SIULL on ary failure.

void lyst_delete(LystEIt element)
Delete the specified element from its Lyst and deallocate its mer@atlg the user delete function if
defined.

LystElt lyst_first(Lyst list)
LystElt lyst_last(Lyst list)
Return a pointer to the first/last element of a Lyst.

LystElt lyst_next(LystElt element)
LystElt lyst_prev(LystEIt element)
Return a pointer to the element following/preceding the specified element.

LystElt lyst_search(LystElt element, void *searchValue)
Find the first matching element in a Lyst starting with the specified elerRaturnsNULL if no
matches are found. Uses thgst’'s comparison function if defined, otherwise searches from trem gi
element to the end of the Lyst.

Lyst lyst_lyst(LystEIlt element)
Return the Lyst to which the specified element belongs.

void* lyst_data(LystEIt element)

void* lyst_data_set(LystElt element, void *data)
Get/set the pointeralue content of the specified Lyst element. The set routine returns the etement’
previous content, and the delete functiomit called. Ifthe lyst _data_set(function is used on an
element of a Lyst with a defined comparison function, then yisé rhay get out of order and future
calls tolyst_insert()can put n& elements in unpredictable locations.

void lyst_sort(Lyst list)
Sort the Lyst based on the current comparison function and sort direétistable insertion sort is
used that is very fast when the elements are already in order.

int lyst_sorted(Lyst list)
Determine whether or not the Lyst is sorted based on the current comparison function and sort
direction.

void lyst_apply(Lyst list, LystCallback applyFn, void *userdata)
Apply the functionapplyFnautomatically to each element in thgst. Whenautomatically called,
applyFnis passed tew aguments: a pointer to an element, andukerdataargument specified in the
call tolyst_apply() applyFnshould not delete or reorder the elements in the Lyst.

perl v5.18.2 2016-09-07 2

ici::doc::pod3::lyst(3) IClibrary functions ici::doc::pod3::lyst(3)

SEE ALSO
memmg(3), psm(3)

perl v5.18.2 2016-09-07 3

ici::doc::pod3::memmgr(3) IQlbrary functions ici::doc::pod3::memmgr(3)

NAME
memmgr — memory manager abstraction functions
SYNOPSIS
#include "memmgr.h"
typedef void *(* MemAllocator)
(char *fileName, int lineNbr, size_t size);
typedef void (* MemDeallocator)
(char *fileName, int lineNbr, void * blk);
typedef void *(* MemAtoPConverter) (unsigned int address);
typedef unsigned int (* MemPtoAConverter) (void * pointer);
unsigned int memmgr_add (char *name,
MemaAllocator take,
MembDeallocator release,
MemAtoPConverter AtoP,
MemPtoAConverter PtoA);
int memmgr_find (char *name);
char *memmgr_name (int mgrld);
MemAllocator memmgr_take (int mgrld);
MemDeallocator memmgr_release (int mgrid);
MemAtoPConverter memmgr_AtoP (int mgrld);
MemPtoAConverter memmgr_PtoA (int mgrid;
int memmgr_open (int memKey,
unsigned long memsSize,
char *memPtr,
int *smid,
char *partitionName,
PsmPartition *partition,
int *memMgr,
MemAllocator afn,
MemDeallocator ffn,
MemAtoPConverter apfn,
MemPtoAConverter pafn);
void memmgr_destroy (int smid,
PsmPartition *partition);
DESCRIPTION

“memmagr’ is an &straction layer for administration of memory management. It enables multiple memory
managers to coexist in a single application. Each memory manager specification is required to include
pointers to a memory allocation function, a memory deallocation function, and functions for translating
between local memory pointers andaddresse§’ which are abstract memory locations thavéenarivate
meaning to the managefhe allocation function is expected to return a block of memory of'size™ (in

bytes), initialized to all binary zeroesThe fileName and lineNbr amguments to the allocation and
deallocation functions are expected to be tlees of _FILE__and __ LINE_ _ at the point at which the
functions are called; this supportsyanemory usage tracing vigptrace(3) that may be implemented by

the underlying memory management system.

Memory managers are identified by number and by narhe.identifying number for a memory manager

is an ind& into a prvate, fixed-length array of up to 8 memory manager configuration structures; that is,
memory manager number must be in the range Mdwever, memory manager numbers are assigned
dynamically and not alays predictably To enable multiple applications to use the same memory manager
for a given segment of shared memagrg memory manager may be located by a predefined name of up to
15 characters that is known to all the applications.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::memmgr(3) IQlbrary functions ici::doc::pod3::memmgr(3)

The memory manager with manager number O veay available; its name is‘std”. Its memory
allocation function iscalloc(), its deallocation function idree() and its pointer/address translation
functions are merely casts.

unsigned int memmgr_add(char *name, MemAllocatoe tdkemDeallocator release, MemAtoPQenter
AtoP, MemPtoAConwerter PtoA)
Add a memory manager to the memory manager aifrapt already defined; attempting to add a
previously added memory manager is not considered an. enameis the name of the memory
manager.takeis a pointer to the managenmemory allocation functionteleaseis a pointer to the
manages memory deallocation functionAtoP is a pointer to the managegrfunction for comerting
an address to a local memory poinfetpAis a pointer to the managefointerto-address cormrter
function. Returnshe memory managéd number assigned to the named managerl on ay aror.

NOTE memmgr_add()s NOT thread-safe. Ira nultithreaded recution image (e.g., Vx¥rtks), all
memory managers should be loatiedoreary subordinate threads or tasks are spawned.

int memmgr_find(char *name)
Return the memmdb of the named manager -1 if not found.

char *memmgr_name(int mgrid)
Return the name of the manageregiby mgrid.

MemAllocator memmgr_take(int mgrid)
Return the allocator function pointer for the managesrgby mgrld.

memDeallocator memmgr_release(int mgrid)
Return the deallocator function pointer for the managengdsy mgrld.

MemAtoPConerter memmgr_AtoP(int mgrid)
Return the address-to-pointer gerter function pointer for the managewe by mgrid.

MemPtoACorerter memmgr_PtoA(int mgrid)
Return the pointer-to-address werter function pointer for the managewei by mgrid.

int memmgr_open(int memdy, unsigned long memsSize, char **memRnt *smid, char *partitionName,
PsmRrtition *partition, int *memMgy MemAllocator afn, MemDeallocator ffn, MemAtoPGerter apfn,
MemPtoAConrerter pafn);
memmgr_open@pens onee@nue of access to RSM managed region of shared memanjtializing
as necessatry.

In order for multiple tasks to share access to this memory region, all must cite thmeareg and
partitionNamewhen thg call memmgr_open()If shared access is not necessirgnmemli€ycan be
SM_NO_KEY andpartitionNamecan be apvalid partition name.

If it is known that a prior imocation of memmgr_open(has already initialized the region, then
memSizean be zero anthemPtrmust beNULL. OtherwisememSizds required and the required

value of memPtrdepends on whether or not the memory that is to be shared and managed has already
been allocated (e.g.,sta fied regon of bus memory).If so, then the memory pointer variable that
mempPtrpoints to must contain the address of that memagipmne Otherwise*memPtrmust contain

NULL.

memmgr_open(ill allocate system memory as necessary and will incase return the address of
the shared memory regionfimempPtr

If the shared memory is newly allocated or otherwise not yet uR8&t management, then
memmgr_openill invoke psm_mangeg) to manage the shared memorgiom. It will also add a
catalogue for the managed shared memory region as necessary.

If memMgris non-NULL, thenmemmgr_open(Yill additionally callmemmgr_add(jo establish a
nev memory manager for this managed shared memory region, as necebsarynde of the
applicable memory manager will be returnedriemMgr If that memory manager is newly created,
then the suppliedfn, ffn, apfn, and pafnfunctions (which can be written with reference to the memory

perl v5.18.2 2016-09-07 2

ici::doc::pod3::memmgr(3) IQlbrary functions ici::doc::pod3::memmgr(3)

manager inde value returned inmemMgj have been established as the memory management
functions for local pxiate access to this managed shared memory region.

Returns 0 on success, —1 oty &ror.

void memmagr_destroy(int smld, PsmPartition *partition);
memmgr_destroy(Jerminates all access to RSM managed region of shared memoigvoking
psm_erase(o destry the partition andm_ShmDestroy{d destrg the shared memory object.

EXAMPLE
[* this example uses the calloc/free memory manager, which is
* ¢ alled "std", and is always defined in memmgr. */

#include "memmgr.h"

main()

{
int mgrld,;
MemAllocator myalloc;
MemDeallocator myfree;
char *newBlock;

mgrld = memmgr_find("std");
myalloc = memmgr_take(mgrld);
myfree = memmgr_release(mgrld);

newBlock = myalloc(5000);

myfree(newBlock);

SEE ALSO
psm(3)

perl v5.18.2 2016-09-07 3

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

NAME
platform — C software portability definitions and functions

SYNOPSIS
#include "platform.h"

[see description for available functions]

DESCRIPTION
platformis a library of functions that simplify the porting of software written inlQorovides amPI that
enables application code to access the resources of an abstract POSIX-corigdisntcommon
denominatoi’ operating system— typically a large subset of the resources of the actual underlying
operating system.

Most of the functionality pndded by the platform library is aimed at making communication code
portable: common functions for shared memosgmaphores, andP soclets are preided. The
implementation of the abstract O/P| varies according to the actual operating system on which the
application runs, lt the API's behavior is always the same; applications thatvake the platform library
functions rather than nag QS system calls may forego some O/S—specific capabiitty they gain
portability at little if ary cost in performance.

Differences in word size among platforms are implementedlogs of theSPACE_ ORDERmMacro. ‘Space
order’ is the base 2 log of the number of octets incaidvfor 32-bit machines the space orderis 2 (272 =4
octets per word), for 64—bit machines itis 3 (2°3 = 8 octets per word).

A consistent platform-independent representation gelamtegers is useful for some applicatiofsr this
purpose platform defines ne typesvast and uvast (unsigned vast) which are consistently defined to be
64-hit integers rgardless of the platforms’mative word size.

The platform.h header file #includes npaf the most frequently needed header files: sys/types.h, errno.h,
string.h, stdio.h, sys/soekh, signal.h, dirent.h, netinet/in.h, unistd.h, stdlib.h, sys/time.h, sys/resource.h,
malloc.h, sys/param.h, netdb.h, sys/uni.h, and fcntBeyond this, platform attempts to enhance
compatibility by providing standard macros, type definitions, external references, or function
implementations that are missing from & faipported O/ but supported by all othergzinally, entirely

new, generic functions are provided to establish a common body of functionality that subsumes
significantly different O/S—specific capabilities.

PLATFORM COMP ATIBILITY P ATCHES
The platform library ‘patches’ the APIs of supported OfSto guarantee that all of the following items
may be utilized by application software:

The strchr(), strrchr(), strcasecmp(), and strncasecmp() functions.
The unlink(), getpid(), and gettimeofday() functions.

The select() function.

The FD_BITMAP macro (used by select()).

The MAXHOSTNAMELEN macro.

The NULL macro.

The timer_t type definition.

PLATFORM GENERIC MACROS AND FUNCTIONS
The generic macros and functions in this section may be used in place of comparable O/S-specific
functions, to enhance the portability of cod@he implementations of these macros and functions are no-
ops in environments in which there inapplicable, so they'revadys safe to call.)

perl v5.18.2 2016-09-07 1

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

FDTABLE_SIZE
The FDTABLE_SIZE macro returns the total number of file descriptors defined for the process (or
VxWorks target).

ION_PATH_DELIMITER
ThelON_PATH_DELIMITER macro returns thaSCll character — eithef or '\’ — that is used as a
directory name delimiter in path names for the file system used by the local platform.

oK(expression)
The oK macro simply casts the valueespressionto void, a vay of handling function return codes
that are not meaningful in this context.

CHKERR(condition)
The CHKERR macro is an ‘assert’ mechanism. Itcauses the calling function to return -1
immediately ifconditionis false.

CHKZERQ(condition)
The CHKZERO macro is an ‘assert’ mechanism. Itcauses the calling function to return 0
immediately ifconditionis false.

CHKNULL (condition)
The CHKNULL macro is an‘assert’ mechanism. Itcauses the calling function to retunuLL
immediately ifconditionis false.

CHKVOID(condition)
The CHKVOID macro is an‘assert’ mechanism. Itauses the calling function to return immediately
if conditionis false.

void snooze(unsigned int seconds)
Suspendsxecution of the inoking task or process for the indicated number of seconds.

void microsnooze(unsigned int microseconds)
Suspendsxecution of the iroking task or process for the indicated number of microseconds.

void getCurrentTime(struct tinvel * time)
Returns the current local time in a tivakstructure (see gettimeofday(3C)).

void isprintf(char *bufferint bufSize, char *format, ...)
isprintf() is a safe, portable implementation ofprintf(} see the snprintf(P) man page for details.
isprintf() differs from snprintf() in that it alvays NULL-terminates the string ibuffer, even if the
length of the composed string would equal eceedbufSize Buffer overruns are reported by log
message; unlikenprintf(), isprintf() returns void.

size_tistrlen(const char *sourceString, size_t maxlen)
istrlen() is a safe implementation sfrlen() see thestrlen(3) man page for detailsstrlen() differs
from strlen() in that it takes a second argument, the maximum valid lengtsooiceString The
function returns the number of non-NULL characterssourceStringpreceding the firsNULL
character irsourceStringprovided that aNULL character appears sowteere within the firstnaxlen
characters ofourceStringotherwise it returngnaxlen

char *istrcpy(char *bufferchar *sourceString, int bufSize)
istrcpy() is a safe implementation sfrcpy() see thestrcpy(3) man page for detailgstrcpy() differs
from strcpy()in that it takes a third gument, the total size of theiffer into whichsourceStrings to
be copied.istrcpy() always NULL-terminates the string ibuffer, even if the length ofsourceString
string would equal or excedufSize(in which casesourceStrings truncated to fit within the buffer).

char *istrcat(char *bufferchar *sourceString, int bufSize)
istrcat() is a safe implementation strcat() see thestrcat(3) man page for detailsstrcat() differs
from strcat() in that it takes a third gument, the total size of theauffer for the string that is being
aggregded. istrcat() always NULL-terminates the string ibuffer, even if the length ofsourceString
string would equal or exceed the sumbafSizeand the length of the string currently occupying the
buffer (in which cassourceStrings truncated to fit within the buffer).

perl v5.18.2 2016-09-07 2

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

char *igetcwd(char *buf, size_t size)
igetcwd() is normally just a wrapper aroungetcwd(3). It differs from getcwd(3) only when
FSWWDNAME is defined, in which case the implementationiggtcwd() must be supplied in an
included file namedwdname.c”, this adaptation option accommodates flight softwargérenments
in which the current working directory name must be configured rather thanaiestat run time.

void isignal(int signbrvoid (*handler)(int))
isignal() is a portable, simplified interface to signal handling that is functionally indistinguishable
from signal(P). It assures that reception of the indicated signal will interrupt system cali®4n
fashion, &en when running on a FreeBSD platform.

void iblock(int signbr)
iblock() simply prevents reception of the indicated signal by the calling thread. It provides a means of
controlling which of the threads in a process will reedhe signal cited in anwocation ofisignal().

char *igets(int fd, char *buffeint buflen, int *lineLen)
igets()reads a line of t&, delimited by a newline charactérom fd into buffer and writes aNULL
character at the end of the string. Thevliree character itself is omitted from the NULL-terminated
text line in buffer; if the newline is immediately preceded by a carriage return character (i.e., the line is
from aDOStext file), then the carriage return character isWise omitted from the NULL-terminated
text line in buffer. End of file is interpreted as an implicitwkne, terminating the line. If the number
of characters preceding thewime is greater than or equal tmflen only the first puflen — 1)
characters of the line are written irttaffer. On eror the function setslineLen to -1 and returns
NULL. On reading end-of-file, the function sétmelLen to zero and returnSULL. Otherwise the
function setglineLento the length of the text line inuffer, as if from strlen(3), and returnbuffer.

int iputs(int fd, char *string)
iputs() writes tofd the NULL-terminated character stringsiting. No terminating newline character
is appended tstring by iputs(). On eror the function returns —1; otherwise the function returns the
length of the character string writtenfth as if from strlen(3).

vast strtovast(char *string)
Corverts the leading characters sfring, skipping leading white space and ending at the first
subsequent character that d¢d€ interpreted as contributing to a numeric value, ¥ast integer and
returns that integer.

uvast strtouvast(char *string)
Same astrtovast()except the result is an unsigneakst integer value.

void findToken(char **cursorPtchar **token)
Locates the next non-whitespace lexicaletokin a character arragarting at*cursorPtr. The
function NULL-terminates that token within the array and places a pointer to the toktken
Also accommodates teks enclosed within matching single quotes, which may contain embedded
spaces and escaped single-quote characters. If no token is ftakath containsNULL on return
from this function.

void *acquireSystemMemory(size_t size)
Usesmemalign()to allocate a block of system memory of lengthe starting at an address that is
guaranteed to be an integral multiple of the size of a pointaridip and initializes the entire block to
binary zeroes. Returns the starting address of the allocated block on successNtgituron ary
error.

int createFile(const char *name, int flags)
Creates a file of the indicated name, using the indicated file creation flags. This functidespro
common file creation functionality across VxWorks and Unix platformepking creat() under
VxWorks andopen()elsavhere. r return values, semeat(2) andopen(2).

unsigned int getinternetAddress(char *hostName)
Returns theP address of the indicated host machine, or zero if the address cannot be determined.

perl v5.18.2 2016-09-07 3

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

char *getinternetHostName(unsigned int hostNbar *buffer)
Writes the host name of the indicated host machinebiuffer and returnduffer, or returnsNULL on
ary error. The size obuffer should be JAXHOSTNAMELEN + 1).

int getNameOfHost(char *buffemt bufferLength)
Writes the first QufferLength— 1) characters of the host name of the local machine lfter.
Returns 0 on success, —1 oty &ror.

unsigned ingetAddressOfHost()
Returns theP address for the host name of the local machine, or Oyoeriao.

void parseSocketSpec(char *socketSpec, unsigned short *potiigigned int *hostNbr)
PasessokeSpec extracting host numbetR address) and port number from the strisgketSpeds
expected to be of the form “{ @ | hostname }[:<portnbi>there @ signifies “the host name of the
local machiné! If host number can be determined, writes it ititostNbr, otherwise writes 0 into
*hostNbr. If port number is supplied and is in the range 1024 to 65535, writes itpottNbr;
otherwise writes 0 inttportNbr.

void printDottedString(unsigned int hostNIshar *buffer)
Composes a dotted-string (Xxx.XxX.Xxx.xxx) representation of the IPv4 addregstitbrand writes
that string intdouffer. The length obuffer must be at least 16.

char *getNameOfUser(char *buffer)
Writes the user name of thevaking task or process intauffer and returnduffer. The size obuffer
must be at leadt cuserid a mnstant defined in the stdio.h header file. Retbuffer.

int reUseAddress(int fd)
Makes the address that is bound to the ebidentified byfd reusable, so that the socket can be closed
and immediately reopened and re-bound to the same port nuRéterns 0 on success, —1 oryan
error.

int makeloNonBlocking(int fd)
Makes I/0O on the soek identified byfd non-blocking; returns -1 orailure. Anattempt to read on a
non-blocking soc&t when no data are pending, or to write on it when its outgterlis full, will not
block; it will instead return -1 and cause errno to be SEWOULDBLOCK.

int watchSocket(int fd)
Turns on the ‘linger” and “keepalve” options for the socket identified fg. See soke (2) for
details. Return® on siccess, —1 on grfailure.

void closeOnExec(int fd)
Ensures thafd will NOT be open in ayn child procesdork()ed from the imoking process. Has no
effect on a VxWorks platform.

EXCEPTION REPORTING
The functions in this section offer platform-independent capabilities for reporting on processing exceptions.

The underlying mechanism f&€l's exception reporting is a pair of functions that record error messages in

a privately managed pool of static memoryhese functions— postErrmsg(andpostSysErrmsg(— are
designed to returnery rapidly with no possibility of failing, themsels. Nonethelesthey are not safe to

call from an interrupt service routingSR). Although each merely copies its text to thexhewvailable

location in the error message memory pool, that pool is protected by a mutex; multiple processes might be
gueued up to takthat mutex, so the total time teeeute the function is non-deterministic.

Built on top of postErrmsg()and postSysErrmsg(are theputErrmsg() and putSysErrmsg(functions,
which may tak longer to return. Each one simply calls the correspondmogt” function but then calls
the writeErrmsgMemos(junction, which callsvriteMemo()to print (or otherwise deler) each message
currently posted to the pool and then destroys all of those posted messages, emptying the pool.

Recommended general pglion wsing thelCl exception reporting functions (which the functions in the
ION distribution libraries are supposed to adhere to) is as follows:

perl v5.18.2 2016-09-07 4

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

In the implementation of any ION library function or any ION
task's top—level driver function, any condition that prevents
the function from continuing execution toward producing the
effect it is designed to produce is considered an "error".

Detection of an error should result in the printing of an

error message and, normally, the immediate return of whatever
return value is used to indicate the failure of the function

in which the error was detected. By convention this value

is usually -1, but both zero and NULL are appropriate

failure indications under some circumstances such as object
creation.

The CHKERR, CHKZERO, CHKNULL, and CHKVOID macros are used to
implement this behavior in a standard and lexically terse

manner. Use of these macros offers an additional feature:

for debugging purposes, they can easily be configured to

call sm_Abort() to terminate immediately with a core dump

instead of returning a error indication. This option is

enabled by setting the compiler parameter CORE_FILE_NEEDED

to 1 at compilation time.

In the absence of either any error, the function returns a
value that indicates nominal completion. By convention this
value is usually zero, but under some circumstances other
values (such as pointers or addresses) are appropriate
indications of nominal completion. Any additional information
produced by the function, such as an indication of "success",
is usually returned as the value of a reference argument.
[Note, though, that database management functions and the
SDR hash table management functions deviate from this rule:
most return O to indicate nominal completion but functional
failure (e.g., duplicate key or object not found) and return

1 to i ndicate functional success.]

So when returning a value that indicates nominal completion
of the function —— even if the result might be interpreted

as a failure at a higher level (e.g., an object identified

by a given string is not found, through no failure of the
search function) —— do NOT invoke putErrmsg().

Use putErrmsg() and putSysErrmsg() only when functions are
unable to proceed to nominal completion. Use writeMemo()
or writeMemoNote() if you just want to log a message.

Whenever returning a value that indicates an error:

If the failure is due to the failure of a system call

or some other non-ION function, assume that errno
has already been set by the function at the lowest
layer of the call stack; use putSysErrmsg (or
postSysErrmsg if in a hurry) to describe the nature
of the activity that failed. The text of the error
message should normally start with a capital letter

perl v5.18.2 2016-09-07 5

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

and should NOT end with a period.

Otherwise —— i.e., the failure is due to a condition
that was detected within ION —— use putErrmsg (or
postErrmg if pressed for time) to describe the nature
of the failure condition. This will aid in tracing

the failure through the function stack in which the
failure was detected. The text of the error message
should normally start with a capital letter and should
end with a period.

When a failure in a called function is reported to "driver"

code in an application program, before continuing or exiting

use writeErrmsgMemos() to empty the message pool and print a
simple stack trace identifying the failure.

char *system_error_msg()
Returns a brief text string describing the current system, exsoilentified by the current value of
errno.

void setLogger(Logger usersLoggerName)
Sets the user function to be used for writing messages to a user-dédigieédn'edium. Thelogger
function’s alling sequence must match the following prototype:

void usersLoggerName(char *msg);

The default Logger function simply writes the message to standard output.

void writeMemo(char *msg)
Writes one log message, using the currently defined message logging function.

void writeMemoNote(char *msg, char *note)
Writes a log message &kwriteMemo() accompanied by the user-supplied cotigpecific text in
note

void writeErrMemo(char *msg)
Writes a log message likeriteMemo() accompanied by text describing the current system error.

char *itoa(int value)
Returns a string representation of the signedgertén valug nominally for immediate use as an
argument toputErrmsg() [Note that the string is constructed in a statiffdy; this function is not
thread-safe.]

char *utoa(unsigned int value)
Returns a string representation of the unsigned integealire nominally for immediate use as an
argument toputErrmsg() [Note that the string is constructed in a statiffdy; this function is not
thread-safe.]

void postErrmsg(char *text, char *argument)
Constructs an error message noting the name of the source file containing the line at which this
function was called, the line numbéretextof the message, and- if not NULL — asingle tetual
argumentthat can be used towvgi nore specific information about the nature of the reporédré
(such as thealue of one of the arguments to the failed function). The error message is appended to
the list of messages in a yamiely managed pool of static mempBRRMSGS_BUFSIZEbytes in
length.

If textis NULL or is a string of zero length or begins with a newline character*tegt,== "0’ or
\n’), the function returns immediately and no error message is recorded.

The errmsgs pool is designed to be large enough to contain error messages froghs alif lthe
calling stack at the time that an error is encountered. If the remaining unused space in the pool is less

perl v5.18.2 2016-09-07 6

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

than the size of the meerror message, heever, the error message is silently omitted. In this case,
provided at least te bytes of unused space remain in the pool, a message comprising a sivigile ne
character is appended to the list to indicate that a message was omitted due teedzngtsi

void postSysErrmsg(char *text, char *arg)
Like postErrmsg(except that the error message constructed by the function additionally contains te
describing the current system errdextis truncated as necessary to assure that the sum of its length
and that of the description of the current system error does not exceed 1021 bytes.

int getErrmsg(char *buffer)
Copies the oldest error message in the message podiuifieo and remwees that message from the
pool, making room for ive messages. Returrzero if the message pool cannot be locked for update
or there are no more messages in the pool; otherwise returns the length of the message copied into
buffer. Note that, for safefythe size obuffer should beERRMSGS_BUFSIZE.

Note that a returned error message comprising only a singlmmeeharacter alays signifies an error
message that was silently omitted because thasnienough space left on the message pool to
contain it.

void writeErrmsgMemos()
Calls getErrmsg() repeatedly until the message pool is emping writeMemo()to log all the
messages in the pooMessages that were omitted due xeessie length are indicated by logged
lines of the form “[message omitted due to exoesfngth]”.

void putErrmsg(char *text, char *argument)
The putErrmsg()function merely callpostErrmsg(and thenwriteErrmsgMemos()

void putSysErrmsg(char *text, char *arg)
TheputSysErrmsg(function merely callpostSysErrmsg@nd therwriteErrmsgMemos()

void discardErrmsgs()
CallsgeErrmsg()repeatedly until the message pool is emgliscarding all of the messages.

void printStackTrace()
On Linux machines on)yuseswriteMemo()to print a trace of the processurrent eecution stack,
starting with the lowest &l of the stack and proceeding to thain() function of the gecutable.

Note that (a)printStackTace() is only implemented for Linux platforms at this time; (b) symbolic
names of functions can only be printed if thelynamic flag was enabled when thgeeutable vas
linked; (c) only the names of non-static functions will appear in the stack trace.

For more complete information about the state of thecetable at the time the stack trace snapshot
was taken, use the Linwaddr2linetool. To do this, cd into a directory in which theeeutable file
resides (such as /opt/bin) and submit an addr2line command as follows:

addr2line —ename_of_executable stack_frame_address

where bothname_of executabland stack_frame_addresare taken from one of the lines of the
printed stack trace. addr2line will print the source file name and line number for that stack frame.

WAT CH CHARACTERS
The functions in this section offer platform-independent capabilities for recordmatch” characters
indicating the occurrence of protocaleats. Seébprc(5), Itprc (5), cfdprc(5), etc. for details of the aich
character production options provided by the protocol packages.

void setWatcher(Watcher usersWatcherName)
Sets the user function to be used for recordiagckv characters to a user-definegatch” medium.
The watcher functios’alling sequence must match the following prototype:

void usersWatcherName(char token);

The default Watcher function simply writes the token to standard output.

perl v5.18.2 2016-09-07 7

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

void iwatch(char token)
Records one “watchtharacterusing the currently defined watch character recording function.

SELF-DELIMITING NUMERIC VALUES (SDNV)
The functions in this section encode and decode SDNVSs, portabi#ble-length numeric variables that
expand to whateer size is necessary to contain the valuey twntain. SDNVsare used>densvely in the
BP andLTP libraries.

void encodeSdnv(Sart sdnvBuffer uvast value)
Determines the number of octetsSBNV text needed to contain theble, places that number in the
lengthfield of theSDNV buffer, and encodes the value 8DNV format into the firstengthoctets of
thetextfield of theSDNV buffer.

int decodeSdnv(uvast *value, unsigned char *sem)T
Determines the length of tr&DNV located atsdnvEx and returns this number after extracting the
SDNV’s value from those octets and storing ivalue Returns O if the encoded number value will not
fit into an unsigned vast integer.

ARITHMETIC ON LARGE INTEGERS (SCALARS)
The functions in this section perform simple arithmetic operations on unsigned Scalar -ebjgttstures
encapsulating large posi integers in a machine-independerayw Each Scalar comprises dwntegers, a
count of units [ranging from 0 to (2°30 - 1), i.e., up to 1 gig] and a count of gigs [ranging from 0 to (2°31
—-1)]. A Scalar can represent a numeric value up to 2 billion billions, i.e., 2 million trillions.

void loadScalar(Scalar *scalaigned int value)
Sets the value afcalarto the absolute value ghlue

void increaseScalar(Scalar *scaldgned int value)
Adds toscalarthe absolute value eflue

void reduceScalar(Scalar *scaglagned int value)
Adds toscalarthe absolute value afilue

void multiplyScalar(Scalar *scalagsigned int value)
Multiplies scalarby the absolute value ohlue

void divideScalar(Scalar *scalaigned int value)
Dividesscalarby the absolute value gtlue

void copyScalar(Scalar *to, Scalar *from)
Copies the value dfominto to.

void addToScalar(Scalar *scal&calar *increment)
Addsincrement(a Scalar rather than a C integersoalar.

void subtractFromScalar(Scalar *scal@ralar *decrement)
Subtractglecrementa Scalar rather than a C integer) frecalar.

int scalarlsValid(Scalar *scalar)
Returns 1 if the arithmetic performed scalarhas not resulted inverflow or underflow.

int scalarToSdnv(Sdr*sdrv, Scalar *scalar)
If scalarpoints to a valid Scalastores the value dadcalarin sdny otherwise sets the length sdnvto
zero.

int sdnvToScalar(Scalar *scalansigned char *sdnwéixt)
If sdnvEX points to a sequence of bytes that, when interpreted ascttaf 8n Sdwm, has a value that
can be represented in a 61-bit unsigned binargémtéhen this function stores that valuesoalar
and returns the detected Sdangth. Otherwiseeturns zero.

Note that Scalars and Sdnare both representations of potentially large unsigned intalyersv Ay
Scalar can alternaily be represented as an S8driHoweva, it is possible for a valid Sdnto be bo
large to represent in a Scalar.

perl v5.18.2 2016-09-07 8

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

PRIVATE MUTEXES
The functions in this section provide platform-independent management ofemdibe synchronizing
operations of threads or tasks in a commovef®iaddress space.

int initResourceLock(ResourcelLock *lock)
Establishes an inter-thread lock for use in locking some resource. Returns 0 if successful, -1 if not.

void killResourceLock(ResourcelLock *lock)
Deletes the resource lock referred tddmgk

void lockResource(ResourcelLock *lock)
Checks the state dbck If the lock is already owned by a different thread, the call blocks until the
other thread relinquishes the lock. If the lock is unowned, ivengb the current thread and the lock
countis setto 1. If the lock is already owned by this thread, the lock count is incremented by 1.

void unlockResource(ResourcelLock *lock)
If called by the current owner &dck, decrementsock's lock count by 1; if zero, relinquishes the lock
so it may be taken by other threads. Care must be taken te mak that one, and only one,
unlockResource(all is issued for eadbockResource($all issued on a gén resource lock.

SHARED MEMORY | PC DEVICES
The functions in this section provide platform-independent managemenPfmechanisms for
synchronizing operations of threads, tasks, or processes that may diféenent address spaces but share
access to a common system (nomingligcessor) memory.

NOTE that this is distinct from the Vx@rks *“VXMP’’ capability enabling tasks to share accessus b
memory or dual-ported board memory from multiple processors. ‘pllagform” system will supportPC
devices that utilize this capability at some time in the future, but that support is not yet implemented.

int sm_ipc_init()
Acquires and initializes shared-memoRC management resourcedlust be called before grother
shared-memonpPC function is called. Returns 0 on success, —1 grfaifure.

void sm_ipc_stop()
Releases shared-memoRC management resources, disabling the shared-memoifunctions until
sm_ipc_init()is called again.

int sm_GetUniqueky()
Some of the'sm_" (shared memory) functions described beéssociate n& communication objects
with key values that uniquely identify them, so thatfelient processes can access them independently
Key vaues are typically defined as constants in application codewever, when a n&
communication object is required for which no specific nead anticipated in the application, the
sm_GetUnique&y() function can be woked to dbtain a nw, arbitrary key value that is known not to
be already in use.

sm_Semld sm_SemCreate(imykint semType)
Creates a shared-memory semaphore that can be used to synchroritgeaauting tasks or processes
residing in a common system memouyt possibly multiple address spaces; returns a reference handle
for that semaphore, &@M_SEM_NONEoOnN ary failure. If key refers to an existing semaphore, returns
the handle of that semaphor#. key is the constantalue SM_NO_KEY, automatically obtains an
unused ky. On VxWorks platformssemTypealetermines the order in which the semaphoreviengd
multiple tasks that attempt to &kt while it is already taken: if set t8M_SEM_PRIORITYthen the
semaphore is gen to tasks in task priority sequence (i.e., the highest-priority task waiting for it
receves it when it is released), while otherwiseM_SEM_FIFQ the semaphore is\gin to tasks in the
order in which the attempted to ta& it. On all other platforms, only6M_SEM_FIFObehaior is
supported andemTypés ignored.

int sm_SemTake(sm_Semld semid)
Blocks until the indicated semaphore is no longer taken kpyotrer task or process, then takes it.
Return 0 on success, —1 oryanror.

perl v5.18.2 2016-09-07 9

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

void sm_SemGie(sm_Semld semid)
Gives the indicated semaphore, so that another task or process edn tak

void sm_SemEnd(sm_Semld semid)
This function is used to pass a termination signal to whiatask is currently bloakd on taking the
indicated semaphore, if gnlt sets to 1 the‘énded’ flag associated with this semaphore, so that a test
for sm_SemEndedgill return 1, and it gies the semaphore so that the bledktask will hae an
opportunity to test that flag.

int sm_SemEnded(sm_Semld semid)
This function returns 1 if théended’ flag associated with the indicated semaphore has been set to 1;
returns zero otherwise. When the function returns 1 it alss tie semaphore so thatyasther tasks
that might be pended on the same semaphore are atsoagi gportunity to test it and disger that
it has been ended.

void sm_SemUnend(sm_Semld semld)
This function is used to reset an ended semaphore, so that a restarted subsystem can reuse that
semaphore rather than delete it and allocateveone.

int sm_SemUnwedge(sm_Semld semld, int timeoutSeconds)
Used to release semaphores thatehieeen taken but wer released, possibly because the tasks or
processes that took them crashed before releasing them. Attempte thheakemaphore; if this
attempt does not succeed wittimeoutSecondseconds (providing time for normal processing to be
completed, in thewent that the semaphore is legitimately and temporarily locked by some task), the
semaphore is assumed to be wedged. W aase, the semaphore is then releas@dturns 0 on
success, —1 on grerror.

void sm_SemDelete(sm_Semld semld)
Destroys the indicated semaphore.

sm_Semld sm_GetTaskSemaphore(int taskid)
Returns thelD of the semaphore that is dedicated to thevap®i use of the indicated task, or
SM_SEM_NONEON ary efror.

This function implements the concept that for each task there waysdbe one dedicated semaphore,
which the task canwahbys use for its own purposes, whosy kalue may be known a priori because
the key d the semaphore is based on the &Kk’ The design of the function rests on the assumption
that each task'ID, whether a VxWorks taslo or a Unix procestD, maps to a number that is out of
the range of all possibleek \alues that are arbitrarily produced kyn_GetUnique&y). For
VxWorks, we assume this to be true becauseI@sk a pointer to task state in memory which we
assume not to exceed 2GB; the unigag ®unter starts at 2GBFor Unix, we assume this to be true
because procedd is an inde into a process table whose size is less than 64K; unieysede
formed by shifting procesi® left 16 bits and adding thealue of an incremented counter which is
always greater than zero.

int sm_ShmAttach(intéy, int size, char *shmPtint *id)
Attaches to a ggment of memory to which tasks or processes residing in a common system memory
but possibly multiple address spaces, aldaccess.

This function registers thevoking task or process as a user of the shared mempmnyese identified

by key. If key is the constant valueM_NO_KEY,automatically setkey to some unusedely value. Ifa
shared memory segment identified kgy already exists, thesize may be zero and the value of
*shmPtris ignored. Otherwise the size of the shared memory segment musvisegrosizeand a
new shared memory segment is created in a manner that is dependshtrorir. if *shmPtris NULL

then size bytes of shared memory are dynamically acquired, allocated, and assigned twlthe ne
created shared memory segment; otherwise the memory locasbadthBtris assumed to ka keen
pre-allocated and is merely assigned to the newly created shared memory segment.

On success, stores the unique shared merbooy the segment ifid for possible future destruction,
stores a pointer to thegraents assigned memory itshmPtr, and returns 1 (if the ggnent is nevly

perl v5.18.2 2016-09-07 10

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

created) or O (otherwise). Returns —1 o emor.

void sm_ShmDetach(char *shmPtr)
Unregisters the iroking task or process as a user of the shared memory starsingn&tr

void sm_ShmbDestroy(int id)
Destrgys the shared memorygaent identified byd, releasing aym memory that was allocated when
the segment was created.

PORTABLE MULTI-TASKING
int sm_TaskldSelf()
Returns the unique identifying number of theoking task or process.

int sm_TaskEXxists(int taskld)
Returns non-zero if a task or process identifieddskldis currently running on the local processor
zero otherwise.

void *sm_TaskVar(void **arg)
Posts or retriees the value of the “taskariable’ belonging to the imoking task. Each task has access
to a single task ariable, initialized toNULL, that resides in the taskrivate state; this can be
corvenient for passing task-specific information to a signal hanidieexample. Ifargis non-NULL,
then*arg is posted as the nevalue of the task’ private task wariable. Inary case, the value of that
task variable is returned.

void sm_TaskSuspend()
Indefinitely suspendsxecution of the inoking task or processHelpful if you want to freeze an
application at the point at which an error is detected, then use a debugger to examine its state.

void sm_TaskDelay(int seconds)
Same asnoozg3).

void sm_TaskYield()
Relinquishe<CPUtemporarily for use by other tasks.

int sm_TaskSpan(char *name, char *argl, char *arg2, char *arg3, chag4achar *arg5, char *arg6, char
*arg7, char *arg8, char *arg9, char *arg10, int prigrityt stackSize)
Spavns/forks a ne task/process, passing it up to ten command-ligaraents.nameis the name of
the function (VxWorks) orxecutable imageUNIX) to be executed in the ne task/process.

For UNIX, namemust be the name of sonmeeeutable program in thBPATHof the irvoking process.

For VxWorks, namemust be the name of some function named in an application-definetk pri
symbol table (if PRIVATE_SYMTAB is defined) or the system symbol table (otherwis#).
PRIVATE_SYMTAB is defined, the application must pite a suitable adaptation of the symt¢ab
source file, which implements theyatie symbol table.

“ priority” and “stackSize” are ignored undetNIX. Under VxWorks, if zero the default to the
vaues in the application-defined yaie symbol table if pndaded, or otherwise taCl_PRIORITY
(nominally 100) and 32768 respefety.

Returns the task/process of the nev task/process on success, or —1 onearor.

void sm_TaskKill(int taskld, int sigNbr)
Sends the indicated signal to the indicated task or process.

void sm_TaskDelete(int taskld)
Terminates the indicated task or process.

void sm_Abort()
Terminates the calling task or procesénot called whilelON is in flight configuration, a stack trace
is printed or a core file is written.

perl v5.18.2 2016-09-07 11

ici::doc::pod3::platform(3) IClibrary functions ici::doc::pod3::platform(3)

int pseudoshell(char *script)
Pasesscript into a command name and up to 1@uenents, then passes the command name and
arguments tosm_TaskSpawn{pr execution. Thesm_TaskSpawngunction is irvoked with priority
and stack size both set to zero, causing defallteg (possibly from an application-definedvae
symbol table) to be usedlokens in script are normally whitespace-delimitedytba token that is
enclosed in single-quote characters (') may contain embedded whitespace and may contain escaped
single-quote characters\("). Onary parsing filure returns —1; otherwise returns the value returned
by sm_TaskSpawn()

USER’S GUIDE

Compiling an application that uses “platform”:
Just be sure to “#include "platform.h™ at the top of each source file that inclugeplatform
function calls.

Linking/loading an application that uses “platform”:
a. In a Solaris environment, link with these libraries:

—Iplatform —socket —nsl| —posix4 —c

b. In a Linux environment, simply link with platform:
—Iplatform

c. In a VxWorks environment, use
Id 1, O, "libplatform.o"

to load platform on the target before loading applications.

SEE ALSO
gettimeofday(3C)

perl v5.18.2 2016-09-07 12

ici::doc::pod3::psm(3) IClibrary functions ici::doc::pod3::psm(3)

NAME
psm - Personal Space Management

SYNOPSIS
#include "psm.h"

typedef enum { Okay, Redundant, Refused } PsmMgtOutcome;
typedef unsigned long PsmAddress;
typedef struct psm_str

{
char *space;
int freeNeeded;
struct psm_str *trace;
int traceArea[3];

} P smView, *PsmPartition;

[see description for available functions]

DESCRIPTION
PSMis a library of functions that support personal space management, that is, user management of an
application-configured memory partitio®.SMis designed to be faster and more efficient than malloc/free
(for details, see thédETAILED DESCRIPTION below), but more importantly it predes a memory
management abstraction that insulates applications frderafites in the management ofvpie versus
shared memory.

PSMis often used to manage shared memory partitions. On most operating systems, separate tasks that
connect to a common shared memory partition arenghe same base address with which to access the
partition. Onsome systems (such as Solaris) this is not necessarily the case; an absolute address within
such a shared partition will be mapped to different pointer valuesferatif tasks. If a pointer value is

stored within shared memory and used withouteion by multiple tasks, segment violations will occur.

PSM gets around this problem by piding functions for translating between local pointer values and
relatve addresses within the shared memory partitiGior complete portability applications which store
addresses in shared memory should store these addres=&d msdative aldresses and ceert them to
local pointer values before using them. The PsmAddress data typeidepréor this purpose, along with
the cowersion functiongpsa()andpsp()

int psm_manage(charstart, unsigned int length, char *name, PsmPartition *partitionPointer
PsmMgtOutcome *outcome)
Puts thelength bytes of memory astart underPSM management, associating this memory partition
with the identifying stringhame(which is required and which canveaa maximum string length of
31). PSMcan manage grcontiguous range of addresses to which the application has access, typically
a bock of heap memory returned by a malloc call.

Every other PSM API function must be passed a pointer to a logadrtition” state structure
characterizing the PSM-managed memory to which the function is to be appliedartition state
structure itself may be pre-allocated in static or local (or shared) memory by the application, in which
case a pointer to that structure must be passpdno mange() as the alue of*partitionPointer; if
*partitionPointer is null, psm_mange() will use malloc() to allocate this structure dynamically from
local memory and will store a pointer to the structurepartitionPointer.

psm_mangg)) formats the managed memory as necessary and returns —-¥ ema@an0 atherwise.
The outcome to the attempt to manage memory is placedtoome An outcome of Redundant
means that the memory startis already undePSM management with the same name and sfee.
outcome of Refused means tR&Mwas unable to put the memory start underPSMmanagement as
directed; a diagnostic message was posted to the message pool (see discyssiBrrmgg()in
platform(3)).

perl v5.18.2 2016-09-07 1

ici::doc::pod3::psm(3) IClibrary functions ici::doc::pod3::psm(3)

char *psm_name(PsmPartition partition)
Returns the name associated with the partition at the time it was put under management.

char *psm_space(PsmPartition partition)
Returns the address of the space managerSiWfor partition. This function is provided to enable
the application to do an operating-system release (sufthedy of this memory when the managed
partition is no longer neededVOTE that callingpsm_erase(dr psm_unmangg)) [or ary other PSM
function, for that matter] after releasing that space is virtually guaranteed to resuligmentsion
fault or other seriously bad behavior.

void *psp(PsmPartition partition, PsmAddress address)
addressis an offset within the space managed for the partition. Returns thergion of that dket
into a locally usable pointer.

PsmAddress psa(PsmPartition partition, void *pointer)
Returns the carersion ofpointerinto an offset within the space managed for the partition.

PsmAddress psm_malloc(PsmPartition partition, unsigned int length)
Allocates a block of memory from th#arge pool’ of the indicated partition. (See tI¥ETAILED
DESCRIPTIONbelown.) lengthis the size of the block to allocate; the maximum size is 1/2 of the total
address space (i.e., 2G for a 32-bit machif@turnsNULL if no free block could be foundThe
block returned is aligned on a doubted boundary.

void psm_panic(PsmPartition partition)
Forces the‘large pool’ memory allocation algorithm to hunt laboriously for free blocks liokets
that may not contain &n This setting remains in force for the indicatpdrtition until a subsequent
psm_relax(xall reverses it.

void psm_relax(PsmPartition partition)
Reversespsm_panic() Lets the‘large pool’ memory allocation algorithm retumULL when no free
block can be found easily.

PsmAddress psm_zalloc(PsmPartition partition, unsigned int length)
Allocates a block of memory from the “small pdolif the indicated partition, if possible; if the
requested block size- length — is too large for small pool allocation (which is limited to 6drds,
i.e., 256 bytes for a 32-bit machine), or if no small pool spaceaiklale and the size of the small
pool cannot be increased, then allocates from the large pool instead. Small pool allocation is
performed by an especially speedy algorithm, and minimum space is consumed in memory
managementwerhead for small-pool blocksReturnsNULL if no free block could be foundThe
block returned is aligned on a word boundary.

void psm_free(PsmPartition partition, PsmAddress block)
Frees for subsequent re-allocation the indicated block of memory from the indicated pdbtdizin.
may hae been allocated by eith@sm_malloc(pr psm_zalloc()

int psm_set_root(PsmPartition partition, PsmAddress root)
Sets the ‘foot” word of the indicated partition (a word at a fixed,vae location in thePSM
bookkeeping data area) to the indicatedue. Thisfunction is typically useful in a shared-memory
ervironment, such as a VxWorks address space, in which a task wants tce rietne the indicated
partition some data thatas inserted into the partition by some other task; the partition roat w
enables multiple tasks to vigate the same data in the saR®M partition in shared memaryThe
argument is normally a pointer to somethingeli inked list of the linked lists that populate the
partition; in particularit is likely to be an object catalog (§eem_add_catlgf) Returng on siccess,
-1 on an failure (e.g., the partition already has a root object, in whichgsreeerase_root@hust be
called beforgopsm_set_root)

PsmAddress psm_get_root(PsmPartition partition)
Retrieves the current value of the root word of the indicated partition.

perl v5.18.2 2016-09-07 2

ici::doc::pod3::psm(3) IClibrary functions ici::doc::pod3::psm(3)

void psm_erase_root(PsmPartition partition)
Erases the current value of the root word of the indicated partition.

PsmAddress psm_add_catlg(PsmPartition partition)
Allocates space for an object catalog in the indicated partition and establishew ttetateg as the
partition’s root object. Returns O on success, -1 oy anor (e.g., the partition already has some
other root object).

int psm_catlg(PsmPartition partition, char *objName, PsmAddress objLocation)
Inserts an entry for the indicated object into the catalog that is the root object for this paftitéon.
length ofobjNamecannot exceed 32 bytes, amisfiNamemust be unique in the catalo&eturns 0 on
success, —1 on grerror.

int psm_uncatlg(PsmPartition partition, char *objName)
Remores the entry for the named object from the catalog that is the root object for this partition, if that
object is found in the catalog. Returns O on success, —lyosrran

int psm_locate(PsmPartition partition, char *objName, PsmAddress *objLocation, PsmAddress *entryElt)
Places irfobjLocation the address associated withjNamein the catalog that is the root object for
this partition and places frentryElt the address of the list element that points to this catalog dftry
nameis not found in catalog, s&ntryEltto zero. Returns 0 on success, —1 oneror.

void psm_usage(PsmPartition partition, PsmUsageSummary *summary)
Loads the indicated PsmUsageSummary structure with a snapshot of the indicated pagdmgs’
status. PsmUsageSummasydefined by:

typedef struct {
char partitonName[32];
unsigned int partitionSize;
unsigned int smallPoolSize;
unsigned int smallPoolFreeBlockCount[SMALL_SIZES];
unsigned int smallPoolFree;
unsigned int smallPoolAllocated;
unsigned int largePoolSize;
unsigned int largePoolFreeBlockCount|LARGE_ORDERS];
unsigned int largePoolFree;
unsigned int largePoolAllocated,;
unsigned int unusedSize;

} PsmUsageSummary;

void psm_report(PsmUsageSummary *summary)
Sends to stdout the contentsofmmarya sxapshot of a partitiog’usage status.

void psm_unmanage(PsmPartition partition)
Terminates locaPSMmanagement of the memorypartition and destroys the partition state structure
*partition, but doesrt erase anything in the managed memoR8M management can be re-
established by a subsequent calpson_mange().

void psm_erase(PsmPartition partition)
Unmanages the indicated partition and additionally discards all information in the managed,memory
preventing re-management of the partition.

MEMOR Y USAGE TRACING
If PSM_TRACEIs defined at the time ttesM source code is compiled, the system includes built-in support
for simple tracing of memory usage: memory allocations are logged, and memory deallocations are
matched to logged allocationsglosing” them. Thisenables memory leaks and some other kinds of
memory access problems to be readilyegtigated.

int psm_start_trace(PsmPartition partition, int traceLogSize, char *traceLogAddress)
Begins an episode dPSM memory usage tracingtraceLogSizeis the number of bytes of shared
memory to use for trace activity logging; the frequewith which “closed’ trace log gents must be

perl v5.18.2 2016-09-07 3

ici::doc::pod3::psm(3) IClibrary functions ici::doc::pod3::psm(3)

deleted will vary inersely with the amount of memory allocated for the trace toareLogAddresss
normally NULL, causing the trace system to allocdtacelLogSizebytes of shared memory
dynamically for trace logging; if non-NULL, it must point taceLogSizebytes of shared memory

that hae keen pre-allocated by the application for this purpose. Returns 0 on success, %1 on an
failure.

void psm_print_trace(PsmPartition partition, int verbose)
Prints a cumulatie trace report and current usage report fartition. If verboseis zero, only
exceptions (notablytrace log ®ents that remain oper— potential memory leaks) are printed,;
otherwise all activity in the trace log is printed.

void psm_clear_trace(PsmPartition partition)
Deletes all closed trace logeats from the log, freeing up memory for additional tracing.

void psm_stop_trace(PsmPartition partition)
Ends the current episode PEM memory usage tracing. If the shared memory used for the trace log
was dlocated bypsm_start_trace(yeleases that shared memory.

EXAMPLE
For an xample of the use of psm, see the file psmshell.c irSMsource directory.

USER’S GUIDE
Compiling aPSMapplication
Just be sure to “#include "psm.h™ at the top of each source file that includ&satfynction calls.

Linking/loading aPSMapplication
a. In auUNIX environment, link with libpsm.a.

b. In a VxWorks environment, use
Id 1, 0, "libpsm.o"
to loadPSMon the target before loading argMapplications.

Typical usage:
a. Callpsm_mange() to initiate management of the partition.

b. Call psm_malloc(Yand/orpsm_zalloc() to dlocate space in the partition; cam_free(o release
space for later re-allocation.

¢. Whenpsm_malloc(eturnsNULL and you're willing to wait a while for a moreteaustve free
block search, calpsm_panic(before retryingopsm_malloc() When youte no longer so desperate for
space, calpsm_relax()

d. To dore a vital pointer in the single predefined location in the partitionPtasitresenes for this
purpose, calbsm_set_root()}o retrieve that pointercall psm_get_root()

e. To get a snapshot of the current configuration of the partition, psal_usge(). To print this
shapshot to stdout, cgdém_report()

f. When you're done with the partition but want tovied in its current state for future re-management
(e.g., if the partition is in shared memory), gadim_unmangg(). If you're done with the partition
forever, call psm_erase()

DETAILED DESCRIPTION
PSM supports user management of an application-configured memory partition. The partition is
functionally divided into tw pools of variable size: a “small pobbf | ow-overhead blocks aligned on
4-byte boundaries that can each contain up to 256 bytes of user datalaye @6ol’ of high-overhead
blocks aligned on 8-byte boundaries that can each contain up to 2GB of user data.

Space in the small pool is allocated iry ane of 64 diferent block sizes; each possible block size is (4i +
n) where i is a “block list inde’ from 1 through 64 and n is the length of #&V overhead information

per block [4 bytes on a 32-bit machin&iven a wser request for a block of size g where q is in the range 1
through 256 inclusie, we return the first block on thetfii small-pool free list where j = (q — 1) / 4. If there

perl v5.18.2 2016-09-07 4

ici::doc::pod3::psm(3) IClibrary functions ici::doc::pod3::psm(3)

is no such block, we increase the size of the small pool [incrementing its upper limit by (4 * (j + 1)) + n],
initialize the increase as a free block from list j, and return that block. No attempt is made to consolidate
physically adjacent blocks when there freed or to bisect large blocks to satisfy requests for small ones; if
there is no free block of the requested size and the size of the small pool cannot be increased without
encroaching on the Ige pool (or if the requested size exceeds 256), we attempt to allocage-adat

block as described belo The differences between small-pool and large-pool blocks are transparent to the
user and small-pool and large-pool blocks can be freely intermixed in an application.

Small-pool blocks are allocated and freed very rapidhygl space werhead consumption is smallutb
capacity per block is limited and space assigned to small-pool blockswehasge is neer agan available
for ary other purpose.The small pool is designed to satisfy requests for allocation of a stedskdl o
population of small, volatile objects such as List and ListEIt structure$y&€®)).

Space in the large pool is allocated frony ane of 29 hickets, one for each power of 2 in the range 8
through 2G. The size of each block can kpressed as (n + 8i + m) where i igyanteger in the range 1
through 256M, n is the size of the blogltading eerhead area [8 bytes on a 32-bit machine], and m is
the size of the block'trailing overhead area [also 8 bytes on a 32-bit machi®Gyen a wser request for a
block of size g where q is in the range 1 through 2G inausie first compute r as the smallest multiple of
8 that is greater than or equal to \§le then allocate the first block irubket t such that 2 ** (t + 3) is the
smallest power of 2 that is greater than v fioris a power of 2, the first block inuxket t such that 2 ** (t

+ 3) = 1]. Thatis, we try to allocate blocks of size 8 fromadset 0 [2**3 = 8], blocks of size 16 from
bucket 1 [2**4 = 16], blocks of size 24 frormubket 2 [2**5 = 32, 32 > 24], blocks of size 32 froradbet 2
[2**5 = 32], and so on. is the first lucket whose free blocks are L guaranteed to be at least as large as
r; bucket t — 1 may also contain some blocks that are as large as r (el@t, b will contain blocks of size
24 as well as blocks of size 16), but we wouldeh® do a wssibly time consuming sequential search
through the free blocks in thatitket to find a match, because free blocks withiuekét are stored in no
particular order.

If bucket t is emptywe dlocate the first block from the first non-emptycket corresponding to a greater

power of two; if all eligible licket are emptywe increase the size of thedarpool [decrementing itsver

limit by (r + 16)], initialize the increase as a free block afmde” it, and try agin. If the size of the lae

pool cannot be increased without encroaching on the small pool, then if we are desperate we search
sequentially through all blocks inubket t — 1 (some of which may be of size r or greater) and allocate the
first block that is big enough, if gn Otherwise, no block is returned.

Having selected a free block to allocate, we reenthe allocated block from the free list, splif aé a rew

free block all bytes ima&ess of (r + 16) bytes [unless that excess is too small to forgdasiee block],

and return the remainder to the us®vhen a block is freed, it is automatically consolidated with the
physically preceding block (if that block is free) and the physically subsequent block (if that block is free).

Large-pool blocks are allocated and freed quite rapidly; capacityestieély unlimited; space werhead
consumption is ery high for extremely small objects but becomes an insignificant fraction of block size as
block size increases. The large pool is designed toesasva gneral-purpose heap with minimal
fragmentation whoseverhead is best justified when used to store redgtiarge, long-lved objects such

as image packets.

The general goal of this memory allocation scheme is to satisfy memory management requests rapidly and
yet minimize the chance of refusing a memory allocation request when adequate unusedsipdné &s
inaccessible (because it is fragmentary owisdal as unused space in a block that is larger than necessary).
The size of a small-pool block dedred to satisfy a request for q bytes willaeexceed q + 3 (alignment),

plus 4 bytes of verhead. Thesize of a large-pool block dedired to satisfy a request for q bytes wilvae

exceed q + 7 (alignment) + 20 (the maximum excess that lsarglit off as a gparate free block), plus 16

bytes of werhead.

Neither the small pool nor the large powkredecrease in size, but large-pool space previously allocated
and freed is \@ilable for small-pool allocation requests if no small-pool spacevadahle. Small-pool
space previously allocated and freed cannot easily be reassigned tge¢heolal; though, because blocks

in the large pool must be ykically contiguous to support defragmentation. No such reassignment
algorithm has yet been dgoped.

perl v5.18.2 2016-09-07 5

ici::doc::pod3::psm(3) IClibrary functions ici::doc::pod3::psm(3)

SEE ALSO
lyst(3)

perl v5.18.2 2016-09-07 6

ici::doc::pod3::sdr(3) IClibrary functions ici::doc::pod3::sdr(3)

NAME
sdr — Simple Data Recorder library

SYNOPSIS
#include "sdr.h"

[see below for available functions]

DESCRIPTION
SDRis a library of functions that support the use of an abstract data recording device caldRran *
(“'simple data recorder”) for persistent storage of dathe SDR abstraction insulates software not only
from the specific characteristics ofyasingle data storage device but also from some kinds of persistent
data storage and retvie chores. Thainderlying principle is that aBDR provides standardized support for
user data ganization at object granularityvith direct access to persistent user data objects, rather than
supporting user dataganization only at‘file’’ granularity and requiring the user to implement access to
the data objects accreted within those files.

The SDR library is designed to pwide some of the same kinds of directory services as a file system
together with support for compelata structures that provide more operational flexibility than files. (As an
example of this flgibility, consider hav much easier andakter it is to delete a\gn dement from the
middle of a linled list than it is to delete a range of bytes from the middle of a text file.) The intent is to
enable the software ddoper to tale maximum adantage of the high speed and direct byte addressability
of a non-volatile flat address space in the management of persistentTt&t&DR equivaent of a
“record’ of data is simply a block of nominally persistent memory allocated from this address $pace.
SDRequiaent of a *file’” is a collectionobject. Like files, collections can ke rames, can be located by
name within persistent storage, and can impose structure on the data itgneacttrapass. Butas
discussed lateSDR collection objects can impose structures other than the Biffiotaccretion of records

or bytes that characterizes a file.

The notional data recorder managed by SR library takes the form of a single array of randomly
accessible, contiguous, nominally persistent memory locations cafiedpa Physically, the heap may be
implemented as a region of shared memasya sgle file of predefined size, or botk- that is, the heap
may be a region of shared memory that is automatically mirrored in a file.

SDR services that manag&DR data are provided in geral layers, each of which relies on the services
implemented at lower \els:

At the highest leel, a cataloguing service enables ratal®f persistent objects by name.

Services that manage three types of persistent data collections are provided for use both by
applications and by the cataloguing service: dihKists, self-delimiting tables (which function as
arrays that remember theiwo dimensions), and self-delimiting strings (short character arrays that
remember their lengths, for speedier retie

BasicSDR heap space management services, analogaualtoc() andfree(), enable the creation and
destruction of objects of arbitrary type.

Father davn the service stack are mergdike low-level functions for reading from and writing to
the heap.

Protection ofSDR data integrity across a series of reads and writes is providedtitansaction
mechanism.

SDR persistent data are referenced in application code by Object values and Address values, both of which
are simply displacements (offsets) witt8DR address space. The difference between tleiswhat an

Object is alvays the address of a block of heap space returned by some edll_toalloc() while an

Address can refer to wibyte in the address space. That is, an Address iSoiRdunctional equialent of

a C pinter inDRAM, and some Addresses point to Objects.

Before usingSDRservices, the services must be loaded to tlyetamachine and initialized byvioking the
sdr_initialize()function and the management profiles of one or rBof@s must be loaded by woking the

perl v5.18.2 2016-09-07 1

ici::doc::pod3::sdr(3) IClibrary functions ici::doc::pod3::sdr(3)

sdr_load_profile(function. Thesesteps are normally performed only once, at application load time.

An application @ins access to @DR by passing the name of ti#®R to thesdr_start_using(function,
which returns an Sdr pointeMost othelSDRlibrary functions tak an @ir pointer as first argument.

All writing to an SDR heap must occur duringteansactionthat was initiated by the task issuing the write.
Transactions are single-threaded; if task B wants to start a transaction while a transgaotiobnyttask A

is still in progress, it must wait untif#transaction is either ended or cancellédtransaction is begun by
calling sdr_begin_xn() The current transaction is normally ended by callingstthe end_xn(¥unction,
which returns an error return code value in thenethat ay serious SDR-related processing erroasw
encountered in the course of the transactibransactions may safely be nested, provided tat devel

of transaction activity that is begun is properly ended.

The current transaction may instead be cancelled by caltingcancel_xn()which is normally used to
indicate that some sort of serious SDR-related processing error has been enco®émezling a
transaction reerses allSDR update activity performed up to that point within the scope of the transaction
— and, if the canceled transaction is an inmested transaction, &DR update activity performed within

the scope of very outer transaction encompassing that transaciwhevey other transaction nested
within ary of those outer transactions- provided theSDR was aonfigured for transactioreversibility.

When anSDR s configured for reersibility, al heap write operations performed during a transaction are
recorded in a log file that is retained until the end of the transaction. Each log file entry notes the location
at which the write operation was performed, the length of data written, and the content\ahihéten

heap bytes prior to the write operatioBanceling the transaction causes the log entries to be read and
processed in kerse orderrestoring all @erwritten data. Ending the transaction, on the other hand, simply
causes the log to be discarded.

If a log file ists at the time that the profile for &DR is loaded (typically during application
initialization), the transaction that was being logged is automatically canceledvarstde Thisensures
that, for example, a power failure that occurs in the middle of a transaction weillvmeck theSDR's data
integrity: either all updates issued during aegi transaction are reflected in the current dataspace content
or none are.

As a further measure to prote8DR data intgrity, an SDR may additionally be configured fabject
bounding When anSDR is configured to be'bounded’, every heap write operation is restricted to the
extent of a single object allocated from heap space; thatsignpossible to werwrite part of one object by

writing beyond the end of anotheTo enable the library to enforce this mechanism, application code is
prohibited from writing anywhere but within the extent of an object that either (a) was allocated from
managed heap space during the same transaction (directly or indirectly via some collection management
function) or (b) vasstaged — identified as an update g@t — duringthe same transaction (again, either
directly or via some collection management function).

Note that both transaction vesibility and object bounding consume processing cycles and inhibit
performance to some gieee. Determininghe right balance between operational safety and processing
speed is left to the user.

Note also that, sinc&€DR transactions are single-threaded,ytlwan additionally be used as a general
mechanism for simply implementing “critical secticnisi software that is already usingDR for other
purposes: the beginning of a transaction marks the start of code thabeawécuted concurrently by
multiple tasks. To support this use of theSDR transaction mechanism, the additional transaction
termination functionsdr_exit_xn()is provided. sdr_exit_xn()simply ends a transaction without either
signaling an error or checking for errorsike sdr_cancel_xn()sdr_exit_xn()has no return value; unbk
sdr_cancel_xn()it assures that ending an inneested transaction does not cause the outer transaction to
be aborted and backed out. But this capability must be used carefully: the prote&inzRdzfta intgrity
requires that transactions which are endeddby exit_ xn()must not encompass yaSDR update actiity
whatsoeger.

The heap space management functions ofSthe library are adapted directly from the Personal Space
Managementsn) function library The manual page fqgsm(3) explains the algorithms used and the
rationale behind them. The principal difference betw®SM memory management amsDR heap

perl v5.18.2 2016-09-07 2

ici::doc::pod3::sdr(3) IClibrary functions ici::doc::pod3::sdr(3)

management is that, for performance reasébf resenes the “small pool'f or its own use only; all user
data space is allocated from the “large pool”, viaskde _malloc()function.

RETURN VALUES AND ERROR HANDLING
Wheneer an SDRfunction call fails, a diagnostic message explaining aflare of the function is recorded
in the error message pool managed by thltform” system (see the discussion p@tErrmsg()in
platform(3)).

The failure of ary function irvoked in the course of asDR transaction causes all subsequ&DR activity

in that transaction to fail immediatelyrhis can streamlin@DR application code somewhat: it may not be
necessary to check the returalue of eery SDR function call eecuted during a transaction. If the
sdr_end_xn(kall returns zero, all updates performed during the transaction nvessitaeeded.

SYSTEM ADMINISTRATION FUNCTIONS
int sdr_initialize(int wmSize, char *wmPRint wmKey, char *wmName)
Initializes theSDR system. sdr_initialize()must be called oncerery time the computer on which the
system runs is rebooted, before &all to ary otherSDRIibrary function.

This function attaches to a pool of shared memagnaged byrSM (seepsm(3), that enableSDR
library operations. If th&DRsystem is to access a common pool of shared memory with one or more
other systems, theely o that shared memory gment must be provided wmkey and thePSM
partition name associated with that memory segment must be providedName otherwisewmkey

must be zero ammNamemust beNULL, causingsdr_initialize()to assign defaultalues. Ifa shared
memory segment identified by thdesfive value ofwmkKey already exists, thewmSizemay be zero

and the value ofvmPtris ignored. Otherwise the size of the shared memory pool must be provided in
wmSizeand a ne shared memory segment is created in a manner that is dependemtRtn if
wmPtr is NULL then wmSizebytes of shared memory are dynamically acquired, allocated, and
assigned to the mdy created shared memory segment; otherwise the memory locatadRit is
assumed to W& been pre-allocated and is merely assigned to the newly created shared memory
segment.

sdr_initialize()also creates a semaphore to serialize access g&DRgystems [rivate array ofSDR
profiles.

Returns 0 on success, -1 oty &ailure.

void sdr_wm_usage(PsmUsageSummary *summary)
Loadssummarywith a snapshot of the usage of 8BR system$ private working memory To print
the snapshot, ugesm_report() (Seepsm(3).)

void sdr_shutdown()
Ends all access to all SDRs (sl _stop_using]) detaches from th8DR system$ working memory
(releasing the memory if it was dynamically allocated soly initialize(), and destroys th&DR
systems$ private semaphoreAfter sdr_shutdown()sdr_initialize() must be called again beforeyan
call to aty otherSDRibrary function.

DATABASE ADMINISTRATION FUNCTIONS

int sdr_load_profile(char *name, int configFlags, long heapWords, int legapK logSize, int logley,

char *pathName, char *restartCmd, unsigned int restartLatency)
Loads the profile for aBDRinto the systens private list of SDR profiles. AlthoughSDRs themsebks
are persistentSDR profiles are not: in order for an application to accesSR, sdr_load_profile()
must hae keen called to load the profile of tBBRsince the last wocation ofsdr_initialize()

nameis the name of theDR,required for ap subsequensdr_start_using(tall.

configFlagsspecifies the configuration of tI#DR, the bitwise “or’’ of some combination of the
following:

SDR_IN_DRAM
SDRdataspace is implemented as a region of shared memory.

perl v5.18.2 2016-09-07 3

ici::doc::pod3::sdr(3) IClibrary functions ici::doc::pod3::sdr(3)

SDR_IN_FILE
SDRdataspace is implemented as a file.

SDR_REVERSIBLE
SDRtransactions are logged and areereed if canceled.

SDR_BOUNDED
Heap updates are not allowed to cross object boundaries.

heapWordspecifies the size of the heap in wordsydavsize depends on machine architecture, i.e., a
word is 4 bytes on a 32-bit machine, 8 bytes on a 64-bit machine. Note th&8Rphepends to
the heap amap” of predefined, fixed size. The total amount of space occupied BpRudataspace

in memory and/or in a file is the sum of the size of the map plus the produdradfsize and
heapWords

heapkey is ignored if configFlags does not includeSDR_IN_DRAM. It should normally be
SM_NO_KEY, causing the shared memory region for 8R dataspace to be allocated dynamically
and shared using a dynamically selected shared meregnifkspecified,heapkey must be a shared
memory ley identifying a pre-allocated geon of shared memory whose length is equal to the total
SDRdataspace size, shared via the indicagsd k

logSizespecifies the maximum size of the transaction log (in bytes) if and only if the log is to be
written to memory rather than to a file; otherwise it must be degKeyis ignored iflogSizeis zero.

It should normally besM_NO_KEY, causing the shared memongi@n for the transaction log to be
allocated dynamically and shared using a dynamically selected shared mesyony gpecified,
logKey must be a shared memorgyidentifying a pre-allocated region of shared memory whose
length is equal ttogSize shared via the indicatecel

pathNameis ignored ifconfigFlagsincludes neitheSDR_REVERSIBLEnor SDR_IN_FILE. It is the
fully qualified name of the directory into which tBBRSs log file and/or dataspace file will be written.
The name of the log file (if any) will be<sdrname>.sdrlog’ The name of the dataspace file (ifyan
will be “<sdrname>.sd; this file will be automatically created and filled with zeros if it does not
exist at the time th&DRs profile is loaded.

If a cleanup task must be run wheerea transaction is rersed, the command toxecute this task
must be preided in restartCmdand the number of seconds to wait for this task to finish before
resuming operations must be provideddstartLatency If restartCmdis NULL or restartLatencyis

zero then no cleanup task will be run upon transactiersal.

Returns O on success, —1 oy &tor.

int sdr_reload_profile(char *name, int configFlags, long heapey int heapky, int logSize, int logley,

char *pathName, char *restartCmd, unsigned int restartLatency)
For use when the state of @DRis thought to be inconsistent, perhaps due to crash of a program that
had a transaction open. Unloads the profile forsbR, forcing the rgersal of aly transaction that is
currently in progress when tl#DRs profile is re-loaded.Then callssdr_load_profile(Xo re-load the
profile for theSDR. Same return values as sdr_load_profile.

Sdr sdr_start_using(char *name)
LocatesSDR profile by nameand returns a handle that can be used for all functions that operate on
thatSDR. On ary failure, returnsNULL.

char *sdr_name(Sdr sdr)
Returns the name of the sdr.

long sdr_heap_size(Sdr sdr)
Returns the total size of ttgDRheap, in bytes.

void sdr_stop_using(Sdr sdr)
Terminates access to tlDR via this handle. Other users of tABR are not dected. Freeshe Sdr
object.

perl v5.18.2 2016-09-07 4

ici::doc::pod3::sdr(3) IClibrary functions ici::doc::pod3::sdr(3)

void sdr_abort(Sdr sdr)
Terminates the task. In flight configuration, also terminates all use 8ftRsystem by all tasks.

void sdr_destroy(Sdr sdr)
Ends all access to thBDR, unloads theSDRs profile, and erases th®DR from memory and file
system.

DATABASE TRANSACTION FUNCTIONS
void sdr_begin_xn(Sdr sdr)
Initiates a transaction. Note that transactions are single-threadei@sarthat callsdr_begin_xn()s
suspended until all previously requested transactioves lteeen ended or canceled.

int sdr_in_xn(Sdr sdr)
Returns 1 if called in the course of a transaction, O otherwise.

void sdr_exit_xn(Sdr sdr)
Simply abandons the current transaction, ceasing the calling task’onION. Must not be used if
ary dataspace modifications were performed during the transaatibngnd_xn()must be called
instead, to commit those modifications.

void sdr_cancel_xn(Sdr sdr)
Cancels the current transaction. Weesibility is enabled for th&€DR,canceling a transactionveses
all heap modifications performed during that transaction.

int sdr_end_xn(Sdr sdr)
Ends the current transaction. Returns O if the transaction completed witlyoertr@m returns -1 if
ary operation performed in the course of the transactiled, in which case the transactiomsv
automatically canceled.

DATABASE 1/0O FUNCTIONS
void sdr_read(Sdr sdchar *into, Address from, int length)
Copieslength characters afrom (a location in the indicate8DR) to the memory location gen by
into. The data are copied from the shared memagiorein which thesDRresides, if any; otherwise
they are read from the file in which tf&DRresides.

void sdr_peek(sdwariable, from)
sdr_peek()is a macro that usesdr_read()to load variable from the indicated address in tis®R
dataspace; the size w@driableis used as the number of bytes toycop

void sdr_write(Sdr sdrAddress into, char *from, int length)
Copieslengthcharacters d@rom (a location in memory) to th8DR heap location gien by into. Can
only be performed during a transaction, and if $R is configured for object bounding then heap
locationsinto through {nto + (length— 1)) must be within the extent of some object thasweither
allocated or staged within the same transaction. The data are copied both to the shared mi@mory re
in which theSDRresides, if ap, and also to the file in which tr&DRresides, if ap

void sdr_poke(sdiinto, variable)
sdr_poke()is a macro that usesdr_write() to storevariable at the indicated address in ts®R
dataspace; the size w@driableis used as the number of bytes toycop

char *sdr_pointer(Sdr sdAddress address)
Returns a pointer to the indicated location in the heap — a “heap pomntarNULL if the indicated
address is welid. NOTE that this functioncannot be usedf the SDR does not reside in a shared
memory region.

Providing an alternatie o using sdr_read()to retrieve dbjects into local memorsdr_pointer()can
help malke R-based applications run very quickhlut it must be use@VITH GREAT CAUTION!
Never use a direct pointer into the heap when not within a transaction, because youveilibha
assurance at grtime that the object pointed to by that pointer has not changed (@nist#l there).
And NEVER de-reference a heap pointer in order to write directly into the heap: thésriraksaction
reversal impossible. Whewer writing to theSDR, always usesdr_write()

perl v5.18.2 2016-09-07 5

ici::doc::pod3::sdr(3) IClibrary functions ici::doc::pod3::sdr(3)

Address sdr_address(Sdr stirar *pointer)
Returns the address within tBBR heap of the indicated location, which must be (or bevelfrom)
a heap pointer as returned bByr_pointer() Returns zero if the indicated location is not greater than
the start of the heap mirtcoNOTE that this functioncannot be used the SDR does not reside in a
shared memory region.

void sdr_get(sdrvariable, heap_pointer)
sdr_get() is a macro that usesdr_read() to load variable from the SDR address gen by
heap_pointerheap_pointemust be (or be demd from) a heap pointer as returnedday pointer()
The size ofvariableis used as the number of bytes toycop

void sdr_set(sdiheap_pointervariable)
sdr_set()is a macro that useslr_write()to storevariable at theSDR address gien by heap_pointer
heap_pointemust be (or be demd from) a heap pointer as returned sgr_pointer() The size of
variableis used as the number of bytes toycop

HEAP SPACE MANAGEMENT FUNCTIONS
Object sdr_malloc(Sdr sdunsigned long size)
Allocates a block of space from the of the indicag&iRs heap. sizeis the size of the block to
allocate; the maximum size is 1/2 of the maximum address space size (i.e., 2G for a 32—bit machine).
Returns block address if successful, zero if block could not be allocated.

Object sdr_insert(Sdr sdthar *from, unsigned long size)
Usessdr_malloc()to obtain a block of space of sis&zeand, if this allocation is successful, uses
sdr_write()to copy sizebytes of data from memory &bm into the newly allocated blockReturns
block address if successful, zero if block could not be allocated.

Object sdr_stow(sdwariable)
sdr_stow()is a macro that useslir_insert()to insert a cop of variableinto the dataspace. The size of
variableis used as the number of bytes toycop

int sdr_object_length(Sdr sdbbject object)
Returns the number of bytes of heap space allocated to the applicationadgeatat

void sdr_free(Sdr sdbject object)
Frees for subsequent re-allocation the heap space occupibieby

void sdr_stage(Sdr sdthar *into, Object from, int length)
Like sdr_read() this function will coly length characters afrom (a location in the heap of the
indicatedSDR) to the memory location gen by into. Unlike sdr_get() sdr_stayg() requires thafrom
be the address of some allocated object, not justl@ation within the heapsdr_staye), when
called from within a transaction, notifies thBR library that the indicated object may be updated later
in the transaction; this enables the library to retrithe objects sze for later reference inalidating
attempts to write into some location within the objeé€tlengthis zero, the objet’sze is prvately
retrieved by SDRbut none of the object’ content is copied into memory.

long sdr_unused(Sdr sdr)
Returns number of bytes of heap space not yet allocated to either the large or small objects pool.

void sdr_usage(Sdr sdsdrUsageSummary *summary)
Loads the indicated SdrUsageSummary structure with a snapshot @&D#ie usage status.
SdrUsageSummary is defined by:

perl v5.18.2 2016-09-07 6

ici::doc::pod3::sdr(3) IClibrary functions ici::doc::pod3::sdr(3)

typedef struct
{
char sdrName[MAX_SDR_NAME + 1];
unsigned int dsSize;
unsigned int smallPoolSize;
unsigned int smallPoolFreeBlockCount[SMALL_SIZES];
unsigned int smallPoolFree;
unsigned int smallPoolAllocated;
unsigned int largePoolSize;
unsigned int largePoolFreeBlockCount|LARGE_ORDERS];
unsigned int largePoolFree;
unsigned int largePoolAllocated,;
unsigned int unusedsSize;

} SdrUsageSummary;

void sdr_report(SdrUsageSummary *summary)
Sends to stdout a printed summary of $Rs usage status.

int sdr_heap_depleted(Sdr sdr)
A Boolean function: returns 1 if the totalalable space in th8DRs heap (small pool free, large pool
free, and unused) is less than 1/16 of the total size of the heap. Otherwise returns zero.

HEAP SPACE USAGE TRACING
If SDR_TRACEIs defined at the time tt&DR source code is compiled, the system includék-im support
for simple tracing of SDR heap space usage: heap space allocations are logged, and heap space
deallocations are matched to logged allocatidomsing” them. Thisenables heap space leaks and some
other kinds oSDRheap access problems to be readilystigated.

int sdr_start_trace(Sdr sdnt traceLogSize, char *traceLogAddress)
Begins an episode c3DR heap space usage tracingacelLogSizas the number of bytes of shared
memory to use for trace activity logging; the frequewih which “closed’ trace log gents must be
deleted will vary inersely with the amount of memory allocated for the trace toaceLogAddresss
normally NULL, causing the trace system to allocdtacelLogSizebytes of shared memory
dynamically for trace logging; if non-NULL, it must point t@celLogSizebytes of shared memory
that hae keen pre-allocated by the application for this purpose. Returns 0 on success, %1 on an
failure.

void sdr_print_trace(Sdr sdnt verbose)
Prints a cumulatie race report and current usage reportsr If verboseis zero, only Bceptions
(notably trace log gents that remain oper— potential SDR heap space leaks) are printed; otherwise
all activity in the trace log is printed.

void sdr_clear_trace(Sdr sdr)
Deletes all closed trace logents from the log, freeing up memory for additional tracing.

void sdr_stop_trace(Sdr sdr)
Ends the current episode ®DR heap space usage tracing. If the shared memory used for the trace log
was dlocated bysdr_start_trace()releases that shared memory.

CATALOGUE FUNCTIONS
The SDR catalogue functions are used to maintain the catalogue of the names, types, and addresses of
objects within anSDR. The catalogue service includes functions for creating, deleting and finding
catalogue entries and a function for navigating through catalogue entries sequentially.

void sdr_catlg(Sdr s¢dchar *name, int type, Object object)
Associate®bjectwith namein the indicatedsDRs catalogue and notes tiypethat was declared for
this object. typeis optional and has no significance other than that conferred on it by the application.

The SDR catalogue is flat, not hierarchical dila drectory tree, and all names must be uniqlibe
length ofnameis limited to 15 characters.

perl v5.18.2 2016-09-07 7

ici::doc::pod3::sdr(3) IClibrary functions ici::doc::pod3::sdr(3)

Object sdr_find(Sdr sdchar *name, int *type)
Locates the Object associated witlimein the indicatedSDRs catalogue and returns its address; also
reports the catalogued type of the objecttype if typeis non-NULL. Returns zero if no object is
currently catalogued under this name.

void sdr_uncatlg(Sdr sdchar *name)
Dissociates froomamewhatever object in the indicate@DRs catalogue is currently catalogued under
that name.

Object sdr_read_catlg(Sdr sdnhar *name, int *type, Object *object, Object previous_entry)
Used to neigate through catalogue entries sequentidfiyprevious_entryis zero, reads the first entry
in the indicatedsDR’s catalogue; otherwise, reads the next catalogue entry following the one located at
preMous_entry In dther case, returns zero if no such catalogue enistse otherwise, copies that
entry’s name, type, and catalogued object addressnatoe *type, and *object, and then returns the
address of the catalogue entry (which may be usegresous_entryin a subsequent call to
sdr_read_catlg()

USER’S GUIDE
Compiling anSDR application
Just be sure to “#includédr.h™ at the top of each source file that includesSDi function calls.

For UNIX applications, link with “~Isdr”.

Loading ansDR application (VxWorks)
Id < "libsdr.o"

After the library has been loaded, you can begin loagibRapplications.

SEE ALSO
sdrlist(3), sdrstring(3), sdrtable(3)

perl v5.18.2 2016-09-07 8

ici::doc::pod3::sdrhash(3) IQibrary functions ici::doc::pod3::sdrhash(3)

NAME
sdrhash — Simple Data Recorder hash table management functions
SYNOPSIS
#include "sdr.h"
Object sdr_hash_create (Sdr sdr, int keyLength,
int estNbrOfEntries,
int meanSearchLength);
int sdr_hash_insert (Sdr sdr, Object hash, char *key,
Address value, Object *entry);
int sdr_hash_delete_entry (Sdr sdr, Object entry);
int sdr_hash_entry_value (Sdr sdr, Object hash, Object entry);
int sdr_hash_retrieve (Sdr sdr, Object hash, char *key,
Address *value, Object *entry);
int sdr_hash_count (Sdr sdr, Object hash);
int sdr_hash_revise (Sdr sdr, Object hash, char *key,
Address value);
int sdr_hash_remove (Sdr sdr, Object hash, char *key,
Address *value);
int sdr_hash_destroy (Sdr sdr, Object hash);
DESCRIPTION

The SDRhash functions manage hash table objects ®Dan

Hash tables associate values widyk A vaue is alays in the form of arsDR Address, nominally the
address of some stored object identified by the associeyeluk the actual significance of a value may be
arything that fits into dong. A key is dways an array of from 1 to 255 bytes, which mayehany
semantics at all.

Keys must be unique; no twdistinct entries in aisDR hash table may ka the same &y. Any atempt to
insert a duplicate entry in @DR hash table will be rejected.

All keys must be of the same length, and that length must be declared at the time the hash table is created.
Invoking a hash table function with & that is shorter than the declared length wiliehanpredictable
results.

An SDR hash table is an array of linked lists. The location of \gergivalue in the hash table is
automatically determined by computingtaash’ of the ley, dividing the hash by the number of linked lists
in the array using the remainder as an ixdé the corresponding linked list, and then sequentially
searching through the list entries until the entry with the matclapgskound.

The number of linkd lists in the array is automatically computed at the time the hash table is created,
based on the estimated maximum number of entries xmeceto store in the table and the mean linked list
length (i.e., mean search time) you prefaicreasing the maximum number of entries in the table and
decreasing the mean liedt list length both tend to increase the amourgtnit heap space occupied by the
hash table.

Object sdr_hash_create(Sdr,sdt keylLength, int estNbrOfEntries, int meanSearchLength)
Creates arsDR hash table. Returns tt8DR address of the mehash table on success, zero oy an
error.

int sdr_hash_insert(Sdr sé@bject hash, char %y, Address value, Object *entry)
Inserts an entry into the hash table identifiechdgh On success, places the address of the hash
table entry irentryand returns zero. Returns -1 oty &mor.

int sdr_hash_delete_entry(Sdr,gdbject entry)
Deletes the hash table entry identifiedeloyry. Returns zero on success, —1 oy afmor.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::sdrhash(3) IQibrary functions ici::doc::pod3::sdrhash(3)

Address sdr_hash_entry_value(Sdr, &iject hash, Object entry)
Returns the value of the hash table entry identifieelrigy.

int sdr_hash_retne(Sdr sdyr Object hash, char #y, Address *value, Object *entry)
Searches for the value associated W#hin this hash table, storing it walueif found. If the entry
matchingkey was found, places the address of the hash table enémytijand returns 1. Returns zero
if no such entry exists, —1 onyaather failure.

int sdr_hash_count(Sdr s@bject hash)
Returns the number of entries in the hash table identifidd&ly

int sdr_hash_revise(Sdr s@@bject hash, char #y, Address value)
Searches for the hash table entry matcliggn this hash table, replacing the associated value with
valueif found. Returns 1 if the entry matchifkgy was found, zero if no such entry exists, -1 oy an
other failure.

int sdr_hash_reme(Sdr sdr Object hash, char &y, Address *value)
Searches for the hash table entry matchkigygn this hash table; if the entry is found, stores @
in value deletes the entrynd returns 1. Returns zero if no such entry exists, —1 potaer failure.

void sdr_hash_destroy(Sdr s@bject hash);
Destroyshash destrgying all entries in all linked lists of the array and destroying the hash table array
structure itself. DO NOT usesdr_free()to destry a hash table, as this would leate hash table’
content allocated yet unreferenced.

SEE ALSO
sdr(3), sdrlist(3), sdrtable(3)

perl v5.18.2 2016-09-07 2

ici::doc::pod3::sdrlist(3) IClibrary functions ici::doc::pod3::sdrlist(3)

NAME
sdrlist — Simple Data Recorder list management functions

SYNOPSIS
#include "sdr.h"

typedef int (*SdrListCompareFn)(Sdr sdr, Address eltData, void *argData);
typedef void (*SdrListDeleteFn)(Sdr sdr, Object elt, void *argument);

[see description for available functions]

DESCRIPTION
The SDR list management functions manage doubly-linked lists in man&@®l heap space.The
functions manage twkinds of objects: lists and list elemeni&.list knows hav mary elements it contains
and what its start and end elements are. An element knows what list it belongs to and the elements before
and after it in the list. An element also knows its content, which is normallgdReAddress of some
object in theSDR heap. Alist may be sorted, which speeds the process of searching for a particular
element.

Object sdr_list_create(Sdr sdr)
Creates a e list object in theSDR; the nev list object initially contains no list elements. Returns the
address of the melist, or zero on anerror.

void sdr_list_destroy(Sdr sddbject list, SdrListDeleteFn fn, void *arg)
Destrgys a list, freeing all elements of listf fn is non-NULL, that function is called once for each
freed element; when calleth is passed the Address that is the elersetita and theargument
pointer passed tedr_list_destroy()

Do not usesdr_freeto destrg an SDR list, as this would leze te elements of the list allocated yet
unreferenced.

int sdr_list_length(Sdr sd®bject list)
Returns the number of elements in the list, or —1 greamor.

void sdr_list_user_data_set(Sdr,g0bject list, Address userData)
Sets the “user datavord oflist to userData Note thatuserDatais hominally an Address but can in
fact be ay value that occupies a singleomd. It is typically used to point to aBDR object that
somehwv characterizes the list as a whole, such as a name.

Address sdr_list_user_data(Sudir, Object list)
Returns the value of the “user data'ord oflist, or zero on aw error.

Object sdr_list_insert(Sdr sdbbject list, Address data, SdrListCompareFn fn, void *dataBuffer)
Creates a e list element whose data valuedata and inserts that element into the lidt. fn is
NULL, the nev list element is simply appended to the list; otherwise, thelisé element is inserted
after the last element in the list whose data value is “less than or equaktaata value of the we
element (in dataBuffer) according to the collating sequence establistied Rgturns the address of
the newly created element, or zero og emnor.

Object sdr_list_insert_first(Sdr s@bject list, Address data)

Object sdr_list_insert_last(Sdr s@bject list, Address data)
Creates a e element and inserts it at the front/end of the list. This function should not be used to
insert a ne element into ap ordered list; usesdr_list_insert()instead. Returnthe address of the
newly created list element on success, or zero preraor.

Object sdr_list_insert_before(Sdr s@bject elt, Address data)

Object sdr_list_insert_after(Sdr s@bject elt, Address data)
Creates a me element and inserts it before/after the specified list element. This function should not be
used to insert a meelement into ay ordered list; usadr_list_insert()instead. Returnthe address of
the newly created list element, or zero oy emor.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::sdrlist(3) IClibrary functions ici::doc::pod3::sdrlist(3)

void sdr_list_delete(Sdr sdbbject elt, SdrListDeleteFn fn, void *arg)
Deleteelt from the list it is in. If fn is non-NULL, that function will be called upon deletioneif
when called, that function is passed the Address that is the list elematvalue and tharg pointer
passed tedr_list_delete()

Object sdr_list_first(Sdr sgDbject list)
Object sdr_list_last(Sdr sdbbject list)
Returns the address of the first/last elemetisfor zero on ag error.

Object sdr_list_next(Sdr sdbbject elt)
Object sdr_list_prev(Sdr sdbbject elt)
Returns the address of the element following/preceglirig that elemens list, or zero on anerror.

Object sdr_list_search(Sdr s@bject elt, int rgerse, SdrListCompareFn fn, void *dataBuffer);
Search a list for an element whose data matches the dédgaBuffer sarting at the indicated initial
list element. If thecomparefunction is non-NULL, the list is assumed to be sorted in the order
implied by that function and the function is automatically called once for each element of the list until
it returns a value that is greater than or equal to zero (where zero indicaxestamatch and aalue
greater than zero indicates that the list contains no matching element); eacbripages called it is
passed the Address that is the elenserthita value and thedataBuffer vaue passed to
sm_list_seath(). If reverseis non-zero, then the list is searched inerse order (starting at the
indicated initial list element) and the search ends wiwnparereturns a &lue that is less than or
equal to zero.If compareis NULL, then the entire list is searched (in either famvor reerse order
as directed) until an element is located whose daltzevis equal to ((AddresdptaBuffe}. Returns
the address of the matching element if one is found, O otherwise.

Object sdr_list_list(Sdr sdObject elt)
Returns the address of the list to whattbelongs, or O on arerror.

Address sdr_list_data(Sdr s@bject elt)
Returns the Address that is the data valugltpbr O on ay eror.

Address sdr_list_data_set(Sdr,sdbject elt, Address data)
Sets the data value feit to data, replacing the originalalue. Returnshe original data value faglt,
or 0 on ag error. The original data value fait may or may not hae keen the address of an object in
heap data spaceyen if it was, that object wasOT deleted.

Warning: changing the data value of an element of an ordered list may ruin the ordering of the list.

USAGE
When inserting elements or searching a list, the user may optionallglgor@ compare function of the
form:

int user_comp_name(Sdr sdr, Address eltData, void *dataBuffer);

When preided, this function is automatically called by the sdrlist function beingked; when the
function is called it is passed the content of a list elenadtddta, nominally the Address of an item in the
SDRs heap space) and angament,dataBuffer which is nominally the address in local memory of some
other item in the same format. The user-supplied function normally compares epneaules of the tw
data items and returns O if there equal, an integer less than @lifDatas key \alue is less than that of
dataBuffer and an integer greater than OeiltDatds key \alue is greater than that dataBuffer These
return values will produce a list in ascending ardéthe user desires the list to be in descending otfaker
function must reerse the signs of these return values.

When deleting an element or degirg a list, the user may optionally provide a delete function of the
form:

void user_delete_name(Sdr sdr, Address eltData, void *argData)

When praided, this function is automatically called by the sdrlist function beingkad; when the
function is called it is passed the content of a list elengdtddta nominally the Address of an item in the
SDRs heap space) and argament,argData, which if non-NULL is normally the address in local memory

perl v5.18.2 2016-09-07 2

ici::doc::pod3::sdrlist(3) IClibrary functions ici::doc::pod3::sdrlist(3)

of a data item providing context for the list element deletibhe user-supplied function performsyan
application-specific cleanup associated with deleting the element, such as freeing thesstentent’'data

item and/or othe8DR heap space associated with the element.

SEE ALSO
lyst(3), sdr(3), sdrstring(3), sdrtable(3), smlist(3)

perl v5.18.2 2016-09-07

ici::doc::pod3::sdrstring(3) IQlbrary functions ici::doc::pod3::sdrstring(3)

NAME
sdrstring — Simple Data Recorder string functions

SYNOPSIS

#include "sdr.h"

Object sdr_string_create (Sdr sdr, char *from);

Object sdr_string_dup (Sdr sdr, Object from);

int sdr_string_length (Sdr sdr, Object string);

int sdr_string_read (Sdr sdr, char *into, Object string);
DESCRIPTION

SDR strings are used to record strings of up to 258l characters in the heap space ofS@R. Unlike
standard C strings, which are terminated by a zero B strings record the length of the string as part
of the string object.

To dore strings longer than 255 characters,atsemalloc()andsdr_write()instead of these functions.

Object sdr_string_create(Sdr scmar *from)
Creates a “self-delimited stririgh the heap of the indicategbR, allocating the required space and
copying the indicated contentfrom must be a standard C string for whistnlen() must not &ceed
255; if it does, or if insdicient SDR space is wilable, 0 is returned. Otherwise the address of the
newly createdsDR string object is returnedTo destrgy, just usesdr_free()

Object sdr_string_dup(Sdr sdbject from)
Creates a duplicate of tI#®R string whose addressfiom, dlocating the required space and gioyg
the original stringg @ntent. If insufficient SDR space is ilable, 0 is returned. Otherwise the
address of the newly created gopf the original SDR string object is returnedTo destrg, use
sdr_free()

int sdr_string_length(Sdr sdbbject string)
Returns the length of the indicated self-delimited string (@sldvbe returned bgtrlen(), or -1 on
ary error.

int sdr_string_read(Sdr sathar *into, Object string)
Retrieves the content of the indicated self-delimited string into memory as a standard C string (
terminated). Lengtlof into should normally bSDRSTRING_BUFSZi.e., 256) to alla for the lagest
possibleSDR string (255 characters) plus the terminatiig.L. Returns length of string (as would be
returned bystrlen()), or =1 on aw error.

SEE ALSO
sdr(3), sdrlist(3), sdrtable(3), string(3)

perl v5.18.2 2016-09-07 1

ici::doc::pod3::sdrtable(3) Idlbrary functions ici::doc::pod3::sdrtable(3)

NAME
sdrtable — Simple Data Recorder table management functions
SYNOPSIS
#include "sdr.h"
Object sdr_table_create (Sdr sdr, int rowSize, int rowCount);
int sdr_table_user_data_set (Sdr sdr, Object table, Address userData);
Address sdr_table_user_data (Sdr sdr, Object table);
int sdr_table_dimensions (Sdr sdr, Object table, int *rowSize,
int *rowCount);
int sdr_table_stage (Sdr sdr, Object table);
Address sdr_table_row (Sdr sdr, Object table,
unsigned int rowNbr);
int sdr_table_destroy (Sdr sdr, Object table);
DESCRIPTION

The SDR table functions manage table objects in #R. An SDR table comprises N rows of M bytes
each, plus optionally oneosd of user data (which is nominally the address of some other object in the
SDRs heap space). When a table is created, the number of rows in the table and the length of a&ch ro
specified; the remain fixed for the life of the tabléhe table functions merely maintain information about
the table structure and its location in R and calculate i addresses; othe3DR functions such as
sdr_read()and sdr_write() are used to read and write the contents of the talde/s. In particulay the
format of the rows of a table is left entirely up to the user.

Object sdr_table_create(Sdr sidit rowSize, int rowCount)
Creates a “self-delimited table”, comprisimgwCountrows of rowSizebytes each, in the heap space
of the indicatedSDR. Note that the content of the table, atdimensional arrgys a sngle SDR heap
space object of sizeafvCountx rowSiz@. Returnsthe address of the wetable on success, zero on
ary error.

void sdr_table_user_data_set(Sdr, §2hject table, Address userData)
Sets the‘tiser datd’word of table to userData Note thatuserDatais nominally an Address but can
in fact be ap value that occupies a singleowd. Itis typically used to point to aBDR object that
somehwv characterizes the table as a whole, such &b&string containing a name.

Address sdr_table_user_data(Sdr &thject table)
Returns the value of the “user data'ord oftable or zero on aw error.

void sdr_table_dimensions(Sdr s@bject table, int *rowSize, int *rowCount)
Reports on the m size and rav count of the indicated table, as specified when the table was created.

void sdr_table_stage(Sdr s@bject table)
Stagestable so that the array it encapsulates may be updated; see the discussittnstdjg)) in
sdr(3). Theeffect of this function is the same as:

sdr_stage(sdr, NULL, (Object) sdr_table_row(sdr, table, 0), 0)

Address sdr_table_row(Sdr s@bject table, unsigned int rowNbr)
Returns the address of trevNbrth row of table for use in reading or writing the content of this/yo
returns —1 on anerror.

void sdr_table_destroy(Sdr s@bject table)
Destroystable, releasing all bytes of all rows and destroying the table structure iBeIfNOT use
sdr_free()to destrg a table, as this would lga the tables mntent allocated yet unreferenced.

SEE ALSO
sdr(3), sdrlist(3), sdrstring(3)

perl v5.18.2 2016-09-07 1

ici::doc::pod3::smlist(3) IClibrary functions ici::doc::pod3::smlist(3)

NAME
smlist — shared memory list management library

SYNOPSIS
#include "smlist.h"

typedef int (*SmListCompareFn)

(PsmPartition partition, PsmAddress eltData, void *argData);
typedef void (*SmListDeleteFn)

(PsmPartition partition, PsmAddress elt, void *argument);

[see description for available functions]

DESCRIPTION
The smlist library provides functions to create, manipulate and gedtnably-linked lists in shared
memory As with lyst(3), smlist uses tw types of objectslist objects ancelementobjects. Havever, as
these objects are stored in shared memory which is managpdni§$), pointers to these objects are
carried as PsmAddresslues. Alist knows heav mary elements it contains and what its first and last
elements are. An element km® what list it belongs to and the elements before and after it in itAlst.
element also knows its content, which is normally the PsmAddress of some object in shared memory.

PsmAddress sm_list_create(PsmPartition partition)
Create a n& list object without apelements in it, within the memory segment identifiedobytition.
Returns the PsmAddress of the list, or O oneror.

void sm_list_unwedge(PsmPartition partition, PsmAddress list, int interval)
Unwedge, as necessamthe mute semaphore protecting shared access to the indicatedHist.
details, see the explanation of #a_SemUnwedgd{)nction inplatform(3).

int sm_list_clear(PsmPartition partition, PsmAddress list, SmListDeleteFn delete, void *argument);
Empty a list. Frees each element of the list. Ifdeietefunction is non-NULL, that function is called
once for each freed element; when called, that function is passed the PsmAddress of the list element
and theargumentpointer passed tem_list_clear() Returns 0 on success, —1 oryavor.

int sm_list_destroy(PsmPartition partition, PsmAddress list, SmListDeleteFn delete, void *argument);
Destry a list. Sameassm_list_clear() but additionally frees the list structure itseReturns 0 on
success, —1 on grerror.

int sm_list_user_data_set(PsmPartition partition, PsmAddress list, PsmAddress userData);
Set the value of a user data variable associated with the list as a whole. This value may be used for
ary purpose; it is typically used to store the PsmAddress of a shared memory block containing data
(e.g., state data) which the user wishes to associate with th&késtrns 0 on success, —1 oryan
error.

PsmAddress sm_list_user_data(PsmPartition partition, PsmAddress list);
Return the value of the user data variable associated with the list as a whole, oy @rooran

int sm_list_length(PsmPartition partition, PsmAddress list);
Return the number of elements in the list.

PsmAddress sm_list_insert(PsmPartition partition, PsmAddress list, PsmAddress data, SmListCompareFn
compare, void *dataBuffer);

Create a ne list element whose data valuedata and insert it into the gen list. If the compare

function isNULL, the nev list element is simply appended to the list; otherwise, theiseelement is

inserted after the last element in the list whose data value is “less than or e€dured tidta value of

the nev element (indataBuffe} according to the collating sequence establisheddmgpare Returns

the PsmAddress of thewwelement, or 0 on anerror.

PsmAddress sm_list_insert_first(PsmPartition partition, PsmAddress list, PsmAddress data);

perl v5.18.2 2016-09-07 1

ici::doc::pod3::smlist(3) IClibrary functions ici::doc::pod3::smlist(3)

PsmAddress sm_list_insert_last(PsmPartition partition, PsmAddress list, PsmAddress data);
Create a ne list element and insert it at the start/end of a list. Returns the PsmAddress ofithe ne
element on success, or O oty &ror. Disregards aly established sort order in the list.

PsmAddress sm_list_insert_before(PsmPartition partition, PsmAddress elt, PsmAddress data);

PsmAddress sm_list_insert_after(PsmPartition partition, PsmAddress elt, PsmAddress data);
Create a ne list element and insert it before/after aegi dement. Returnshe PsmAddress of the
new element on success, or 0 oryaror. Disregards aty established sort order in the list.

int sm_list_delete(PsmPartition partition, PsmAddress elt, SmListDeleteFn delete, void *argument);
Delete an element from a list. If thgelete function is non-NULL, that function is called upon
deletion ofelt; when called, that function is passed the PsmAddress of the list element and the
argumentpointer passed tem_list_delete() Returns 0 on success, —1 orya@ror.

PsmAddress sm_list_first(PsmPartition partition, PsmAddress list);
PsmAddress sm_list_last(PsmPartition partition, PsmAddress list);
Return the PsmAddress of the first/last elemefisinor 0 on ay etror.

PsmAddress sm_list_next(PsmPartition partition, PsmAddress elt);
PsmAddress sm_list_prev(PsmPartition partition, PsmAddress elt);
Return the PsmAddress of the element following/preceelirig that elemens list, or 0 on ap error.

PsmAddress sm_list_search(Psmtlion partition, PsmAddress elt, SmListCompareFn compaoi v
*dataBuffer);
Search a list for an element whose data matches the dd&daBuffer If the comparefunction is
non-NULL, the list is assumed to be sorted in the order implied by that function and the function is
automatically called once for each element of the list until it returns a value that is greater than or
equal to zero (where zero indicates an exact match aalli@ greater than zero indicates that the list
contains no matching element); each ticoenpareis called it is passed the PsmAddress that is the
elements data value and thdataBuffervalue passed tem_list_seash(). If compareis NULL, then
the entire list is searched until an element is located whose data e equal to (PsmAddress)
dataBuffe}. Returnghe PsmAddress of the matching element if one is found, O otherwise.

PsmAddress sm_list_list(PsmPartition partition, PsmAddress elt);
Return the PsmAddress of the list to whidtbelongs, or 0 on arerror.

PsmAddress sm_list_data(PsmPartition partition, PsmAddress elt);
Return the PsmAddress that is the data valuelfoor O on ay eror.

PsmAddress sm_list_data_set(PsmPartition partition, PsmAddress elt, PsmAddress data);
Set the data value fait to data, replacing the originalalue. Returnshe original data value faelt,
or 0 on ag error. The original data value fait may or may not hae keen the address of an object in
memory; &en if it was, that object wasOT deleted.

Warning: changing the data value of an element of an ordered list may ruin the ordering of the list.

USAGE
A user normally creates an element and adds it to a list by doing the following:

1 obtaining a shared memory block to contain the elemeata,;

2 corverting the shared memory bloskPsmAddress to a character pointer;
3 using that pointer to write the data into the shared memory block;
4

calling one of thesm_list_insertfunctions to create the element structure (which will include the
shared memory block’PsmAddress) and insert it into the list.

When inserting elements or searching a list, the user may optionalligeor@ compare function of the
form:

int user_comp_name(PsmPartition partition, PsmAddress eltData,
void *dataBuffer);

When provided, this function is automatically called by the smlist function beirgieny when the

perl v5.18.2 2016-09-07 2

ici::doc::pod3::smlist(3) IClibrary functions ici::doc::pod3::smlist(3)

function is called it is passed the content of a list elengdtiddta, nominally the PsmAddress of an item in
shared memory) and angament,dataBuffer which is nominally the address in local memory of some
other item in the same format. The user-supplied function normally compares epnedules of the tw
data items and returns 0O if thare equal, an integer less than @lifDatds key walue is less than that of
dataBuffer and an integer greater than OeiltDatds key \alue is greater than that dataBuffer These
return values will produce a list in ascending ardéthe user desires the list to be in descending otfaker
function must reerse the signs of these return values.

When deleting an element or degtrm a list, the user may optionally provide a delete function of the
form:

void user_delete_name(PsmPartition partition, PsmAddress elt, void *argData)

When provided, this function is automatically called by the smlist function beiraesy when the
function is called it is passed the address of a list elereéirdr(d an agument,argData, which if non-

NULL is normally the address in local memory of a data item providing context for the list element
deletion. Theausersupplied function performs grapplication-specific cleanup associated with deleting the
element, such as freeing the elemeathtent data item and/or other memory associated with the element.

EXAMPLE
For an example of the use of smlist, see the file smlistsh.c in the utils directaty. of

SEE ALSO
lyst(3), platform(3), psm(3)

perl v5.18.2 2016-09-07 3

ici::doc::pod3::zco(3) IClibrary functions ici::doc::pod3::zco(3)

NAME
zco - library for manipulating zero—cppbjects

SYNOPSIS
#include "zco.h"

typedef enum

{
Zcolnbound =0,
ZcoOutbound =1,
ZcoUnknown = 2

} Z coAcct;

typedef enum

{
ZcoFileSource =1,
ZcoBulkSource = 2,
ZcoObjSource = 3,
ZcoSdrSource = 4,
ZcoZcoSource =5

} Z coMedium;

typedef void (*ZcoCallback)(ZcoAcct);

[see description for available functions]

DESCRIPTION
“ Zero-coy objects’ (ZCOs) are abstract data access representations designed to minimize 1/O in the
encapsulation of application source data within one or more layers of communication protocol structure.
ZCOs are constructed within the heap space &®ito which implementations of all layers of the stack
must hae access. EaclCO contains information enabling access to the source data objects, together with
(a) a linked list of zero or mor&ektents’ that reference portions of these source data objects and @ link
lists of protocol header and trailer capsules thaé Hmen explicitly attached to tH&CO since its creation.
The concatenation of the headers (in ascending stack sequence), source data object extents, and trailers (in
descending stack sequence) is what is to be transmitted or has beau recei

Each source data object may be either a file (identified by pathname storéfila@rreférence’ object in

SDR heap) or an item in mass storage (identified by item nymilithrimplementation-specific semantics,
stored in a‘bulk referencé’object inSDRheap) or an object iBDRheap space (identified by heap address
stored in an‘bbject referencé’object in SDR heap) or an array of bytes 8DR heap space (identified by
heap address)Each protocol header or trailer capsule indicates the length and the addressS@ithin
heap space) of a single protocol header or trailer at some layer of theltaekhat the source data object

for eachzCO extent is specified indirectlyoy reference to a content lien reference structure to a heap space
object, mass storage item, or file; the reference structures contain the actual locations of the source data
together with reference counts, enabling aamber of “‘clones’ of a given ZCO extent to be constructed
without consuming additional resourcebhese reference counts ensure that the reference structures and
the source data items theefer to are deleted automatically when (and only whenjGd extents that
reference them Ilve been deleted.

Note that the safety of shared access rta@ is protected by the fact that tE€O0 resides inSDR heap
space and therefore cannot be modified other than in the coursesbiRamnsaction, which serializes
access. Moregr, extraction of data from @CO may entail the reading of file-based source datangs,
which may cause file progress to be updated in one or more file reference objec8DiR ltleap. Br this
reason, alzCO“ transmit’ and “receive” f unctions must be performed withDRtransactions.

Note also thazCO can more broadly be used as a general-purpose reference counting system for non-
volatile data objects, where a need for such a system is identified.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::zco(3) IClibrary functions ici::doc::pod3::zco(3)

The total volume of file system space, mass storage spacép&tieap space that may be occupied by
inbound and (separately) outbourndO extents are system configuration parameters that may be set by
ZCO library functions. Those limits are enforced when extents are appended to ZCOs: total inbound and
outboundzCo file space, mass storage, a80R heap occupancare updated continuously as ZCOs are
created and destroyed, and the formation of \a edent is prohibited when the length of thetemt

exceeds the difference between the applicable limit and the corresponding current octoipdn®oing
separate accounting for inbound and outbound ZCOs enables inbound ZCOs to be formed (for data
reception purposesyen when the total current volume of outbound ZCOs has reached its limit, and vice
versa.

void zco_register_callback(ZcoCallback notify)
This function registers the‘callback” function that thezCO system will irvoke every time azCO is
destryed, makingzCo file, bulk, and/or heap spaceadable for the formation of e ZCO extents.
This mechanism can be used, for example, to notify tasks that are waitib@d@pace to be made
awailable so that thecan resume some communication protocol procedure.

void zco_unregister_callback()
This function simply unregisters the currently registered callback functiGdCfodestruction.

Object zco_create_file_ref(Sdr sdnar *pathName, char *cleanupScript, ZcoAcct acct)
Creates and returns awéile reference object, which can be used as the sourcexdetd cation
for creating &ZzCO whose source data object is the file identifiedphthName cleanupScriptif not
NULL, is invoked at he moment the lagtCO that cites this file reference is destroyed [normally upon
delivery either devn to the “ZCO transition layer” of the protocol stack or up to a ZCO-capable
application]. Azero-length string is interpreted as implicit direction to delete the referenced file when
the file reference object is destenl. Maximumlength of cleanupScriptis 255. acct must be
Zcolnbound or ZcoOutbound, depending on whether theZitetthat will reference this object will
be inbound or outbound. ReturdBRlocation of file reference object on success, 0 gregor.

Object zco_revise_file_ref(Sdr s@bject fileRef, char *pathName, char *cleanupScript)
Changes thgathNameand cleanupScriptof the indicated file referencelThe nev values of these
fields are validated as faco_create_file_ref()Returns O on success, —1 oryamor.

char *zco_file_ref_path(Sdr sdbbject fileRef, char *bufferint buflen)
Retrieves the pathName associated witleRefand stores it ifbuffer, truncating it to fit (as indicated
by buflen) and NULL-terminating it. On success, retutmgfer; returnsNULL on ary error.

int zco_file_ref_xmit_eof(Sdr sdDbject fileRef)
Returns 1 if the last octet of the referenced file (as determined at the time the file referenceasbject w
created) has been read g0 via a reader with file offset tracking turned on. Otherwise returns zero.

void zco_destroy_file_ref(Sdr sdbbject fileRef)
If the file reference object residing at locatfdaRefwithin the indicated Sdr is no longer in use (no
longer referenced by grzCO), destroys this file reference object immediatedgherwise, flags this
file reference object for destruction as soon as the last reference to itv®ademo

Object zco_create_bulk_ref(Sdr sdnsigned long item, vast length, ZcoAcct acct)
Creates and returns améulk reference object, which can be used as the source data extent location
for creating azCO whose source data object is the mass storage item of llemggth identified by
item (the semantics of which are implementation-dependeRNtte that the referenced item is
automatically destroyed at the time that the [BSD that cites this bulk reference is deged
(normally upon deliery either down to the'ZCO transition layer’ of the protocol stack or up to a
ZCO-capable application)acctmust be Zcolnbound or ZcoOutbound, depending on whether the first
ZCO that will reference this object will be inbound or outbouriReturnsSDR location of tulk
reference object on success, 0 oy a@mnor.

void zco_destroy_bulk_ref(Sdr sdbject bulkRef)
If the bulk reference object residing at locatmmutkRefwithin the indicated Sdr is no longer in use (no
longer referenced by grzCO), destroys this bulk reference object immediat&¥herwise, flags this
bulk reference object for destruction as soon as the last reference to it i&demo

perl v5.18.2 2016-09-07 2

ici::doc::pod3::zco(3) IClibrary functions ici::doc::pod3::zco(3)

Object zco_create_obj_ref(Sdr s@bject object, vast length, ZcoAcct acct)
Creates and returns amebject reference object, which can be used as the source data extent location
for creating azCO whose source data object is thBR heap object of lengtlength identified by
object Note that the referenced object is automatically freed at the time that t<@shat cites
this object reference is destroyed (normally uporveslieither down to the ZCO transition layef’of
the protocol stack or up to a ZCO-capable applicatiagt must be Zcolnbound or ZcoOutbound,
depending on whether the fir&CO that will reference this object will be inbound or outbound.
ReturnsSDRIocation of object reference object on success, 0 prraor.

void zco_destroy_obj_ref(Sdr sdbject objRef)
If the object reference object residing at locat@jRefwithin the indicated Sdr is no longer in use
(no longer referenced by wrzCO), destroys this object reference object immediatéherwise,
flags this object reference object for destruction as soon as the last reference to ited.remo

void zco_status(Sdr sdr)
Uses thdON logging function to write a report of the current contents ofzZtb® space accounting
database.

vast zco_get_file_occupancy(Sdr sdcoAcct acct)
Returns the total number of file system space bytes occupied by ZCOs (inbound or outbound) created
in this Sdr.

void zco_set_max_file_occupancy(Sdr,s@ist occupang ZcoAcct acct)
Declares the total number of file system space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

vast zco_get_max_file_occupancy(Sdr, ZroAcct acct)
Returns the total number of file system space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

int zco_enough_file_space(Sdr,sgrst length, ZcoAcct acct)
Returns 1 if the total remaining file system spa@dable for ZCOs (inbound or outbound) in this Sdr
is greater thatength Returns 0 otherwise.

vast zco_get_bulk_occupancy(Sdr,satoAcct acct)
Returns the total number of mass storage space bytes occupied by ZCOs (inbound or outbound)
created in this Sdr.

void zco_set_max_bulk_occupancy(Sdr, sast occupang ZcoAcct acct)
Declares the total number of mass storage space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

vast zco_get_max_bulk_occupancy(Sdr, ZdoAcct acct)
Returns the total number of mass storage space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

int zco_enough_bulk_space(Sdr,s@rst length, ZcoAcct acct)
Returns 1 if the total remaining mass storage speaikalsle for ZCOs (inbound or outbound) in this
Sdr is greater thalength Returns 0 otherwise.

vast zco_get_heap_occupancy(Sdr, ZdoAcct acct)
Returns the total number 8bRheap space bytes occupied by ZCOs (inbound or outbound) created in
this Sdr.

void zco_set_max_heap_occupancy(Sdr ekt occupang ZCoAcct acct)
Declares the total number &DR heap space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

vast zco_get_max_heap_occupancy(SdrZdvAcct acct)
Returns the total number &DR heap space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

perl v5.18.2 2016-09-07 3

ici::doc::pod3::zco(3) IClibrary functions ici::doc::pod3::zco(3)

int zco_enough_heap_space(Sdr gdst length, ZcoAcct acct)
Returns 1 if the total remainir@PR heap spacevailable for ZCOs (inbound or outbound) in this Sdr
is greater thatength Returns 0 otherwise.

int zco_extent_too_large(Sdr sdcoMedium source, vast length, ZcoAcct acct)
Returns 1 if the total remaining spacaikable for ZCOs (inbound or outbound) KT enough to
contain a ne extent of the indicated length in the indicated source medium. Returns O otherwise.

int zco_get_aggote_length(Sdr sdrObject location, vast offset, vast length, vast *fileSpaceOccupied,
vast *bulkSpaceOccupied, vast *heapSpaceOccupied)
PopulategfileSpaceOccupiedbulkSpaceOccupiednd *heapSpaceOccupiedith the total number
of ZCO space bytes occupied by the extents of the zdocation from offsetto offset + length If
offsetisn’t the start of an extent affset + lengthisn’'t the end of an>dent, returns —1 in all three
fields.

Object zco_create(Sdr sdzcoMedium firstExtentSourceMedium, Object firstExtentLocatioast v
firstExtentOffset, vast firstExtentLength, ZcoAcct acct, unsigned char provisional)
Creates a ne inbound or outboundCo. firstExtentLocatiorandfirstExtentLengtimust either both
be zero (indicating thatco_append_extentflill be used to insert the first source data extent later) or
else both be non-zerdf firstExtentLocations non-zero, then (dijrstExtentLocatiommust be the&SDR
location of a file reference object, bulk reference object, object reference @gjedieap object, or
ZCO, depending on thealue of firstExtentSourceMediumand (b) firstExtentOffseindicates hw
mary leading bytes of the source data object should be skipgdvben adding the initial source
data extent to the mezCO. A ngyative value forfirstExtentLengthindicates that the extent is already
known not to be too large for thevallable ZCO space, and the actual length of the extent is the
additive inverse of this ®lue. Anon-zero value foprovisional indicates that thigCO will occupy
non-Restricted InboundCO space. Thispace is a critical resource, so provisional ZCOs are subject
to defensie destruction if thg cannot immediately be migrated into the Outbodad space pool.
On success, returns tB®R location of the n& ZCO. Returns 0 if there is inslifient ZCO space for
creation of the ne®CO; returns ((Object) —1) on grerror.

int zco_append_extent(Sdr s@bject zco, ZcoMedium sourceMedium, Object locaticast\offset, ast

length)
Appends the indicated source data extent to the indiz&tedas described farco_create() Both the
locationandlengthof the source data must be non-zefonegdive \value forlengthindicates that the
extent is already known not to be toodarfor the gailable ZCO space, and the actual length of the
extent is the additie inverse of this alue. Fr constraints on the value lofcation, seezco_create()
Returnslength on success, 0 if there is infiaient ZCO space for creation of the wesource data
extent, -1 on ayerror.

int zco_prepend_header(Sdr,9dbject zco, char *headerast length)

int zco_append_trailer(Sdr s@bject zco, char *trailewvast length)

void zco_discard_first_header(Sdr,s0bject zco)

void zco_discard_last_trailer(Sdr s@bject zco)
These functions attach and rerache ZCO's headers and trailerdheaderandtrailer are assumed to
be arrays of octets, not necessarilyt.teAttachinga header or trailer causes it to be written to the
SDR. The prepend and append functions return O on success, —¥% eman

Object zco_header_text(Sdr s@bject zco, int skip, vast *length)
Skips wver the firstskip headers ofcoand returns the address of the text of next heatising the
length of the header'text in *length. Returns 0 on anerror.

Object zco_trailer_text(Sdr sdbbject zco, int skip, vast *length)
Skips wer the firstskip trailers ofzcoand returns the address of the text of next trgilacing the
length of the trailes text in *length. Returns O on anerror.

void zco_destroy(Sdr sdDbject zco)
Destrgys the indicated ZcoThis reduces the reference counts for all files @bl objects referenced
in the ZCO's extents, resulting in the freeing SDR objects and (optionally) the deletion of files as

perl v5.18.2 2016-09-07 4

ici::doc::pod3::zco(3) IClibrary functions ici::doc::pod3::zco(3)

those reference count drop to zero.

void zco_bond(Sdr sgfbject zco)
Corverts all headers and trailers of the indicated Zco to source gtat® Usethis function to
ensure that known header and trailer data are included wha@hs cloned.

int zco_revise(Sdr sd®bject zco, vast offset, char *bufferast length)
Writes the contents diuffer, for lengthlength into zcoat ofsetoffset Returns O on success, —1 on
ary error.

Object zco_clone(Sdr sdbbject zco, vast offset, vast length)
Creates a ve ZCO whose source data is a gopf a subset of the source data of the refererced.
This procedure is required whesee it is necessary to process tEZ€0s source data in multiple
different ways, for different purposes, and thereforeztb@ must be in multiple states at the same
time. Portionof the source data extents of the origin@b are copied as necessdnyt no header or
trailer capsules are copiedrReturnsSDR location of the ne& ZCO on success, (Object) —1 onyan
error.

vast zco_clone_source_data(Sdr, $dlsject toZco, Object fromZco, vast offset, vast length)
Appends totoZcoa mpy of a subset of the source data fstbmZCQ Portions of the source data
extents offromZCOare copied as necessafeturns total data length cloned, or —1 og emor.

vast zco_length(Sdr sd®bject zco)
Returns length of entirgCO, including all headers and trailers and all source detnts. Thiss the
size of the object that would be formed by concatenating #teoteall headers, trailers, and source
data extents into a single serialized object.

vast zco_source_data_length(Sdr, €dlvject zco)
Returns length of entir@CO minus the lengths of all attached header and trailer capsliés.is the
size of the object that would be formed by concatenating the text of all source data extents (including
those that are presumed to contain header or trakemtiched elsewhere) into a single serialized
object.

ZcoAcct zco_acct(Sdr sdbbject zco)
Returns an indicator as to whetlzepis inbound or outbound.

int zco_is_provisional(Sdr sdbbject zco)
Returns an indicator as to whether or naais flagged as “provisional”.

void zco_start_transmitting(Object zco, ZcoReader *reader)
Used by underlying protocol layer to staxtraction of an outboun@CO's bytes (both from header
and trailer capsules and from source datergs) for ‘transmission’ — i.e., the copying of bytes into
a memory huffer for delvery to some non-ZCOveare protocol implementation. Initializes reading at
the first byte of the total concatena®dO object. Populategeader, which is used to keep track of
“ transmissiori’progress via thigCO reference.

Note that this function can be called multiple times to restart reading at the starrofthEote also
that multiple ZcoReader objects may be used concurrdmtlyhe same task or different tasks, to
advance through th&CO independently.

void zco_track_file_offset(ZcoReader *reader)
Turns on file offset tracking for this reader.

vast zco_transmit(Sdr sdZcoReader *readevast length, char *buffer)
Copieslengthas-yet-uncopied bytes of the total concatenated (referenced byeader) into buffer.
If buffer is NULL, skips aer lengthbytes without coping. Returnghe number of bytes copied (or
skipped) on success, 0 orydile access errpr-1 on any ather error.

void zco_start_receiving(Object zco, ZcoReader *reader)
Used by eerlying protocol layer to startxéraction of an inboundCQO's bytes for ‘reception’ — i.e.,
the copying of bytes into a memoryffer for delivery to a protocol header pars&s a gotocol trailer
parseror to the ultimate recipient (application). Initializes reading of headers, source data, and trailers

perl v5.18.2 2016-09-07 5

ici::doc::pod3::zco(3) IClibrary functions ici::doc::pod3::zco(3)

at the first byte of the concatenatedO objects. Populateseader, which is used to keep track of
“reception” progress via thiZCoO reference and is required.

vast zco_receie_headers(Sdr sdfcoReader *readgvast length, char *buffer)
Copieslengthas-yet-uncopied bytes of presumptirotocol header text frorBCO source dataxgéents
into buffer. If buffer is NULL, skips wer length bytes without coping. Returnsnumber of bytes
copied (or skipped) on success, 0 on file access errpr1 on any ather error.

void zco_delimit_source(Sdr sdbbject zco, vast offset, vast length)
Sets the computed offset and length of actual source data aTtehereby implicitly establishing
the total length of th&CO's concatenated protocol headersddfsetand the location of th&CO's
innermost protocol trailer as the sumadfsetandlength Offset and length are typically determined
from the information carried in resed presumptve protocol header text.

vast zco_receie_source(Sdr sgZcoReader *readevast length, char *buffer)
Copieslengthas-yet-uncopied bytes of source data flo@® extents intobuffer. If buffer is NULL,
skips aver lengthbytes without coping. Returnshumber of bytes copied (or skipped) on success, 0
on ary file access errpr-1 on ay ather error.

vast zco_receie_trailers(Sdr sqiZcoReader *readgevast length, char *buffer)
Copieslength as-yet-uncopied bytes of trailer data fr@@O extents intobuffer. If buffer is NULL,
skips aver lengthbytes without coping. Returnshumber of bytes copied (or skipped) on success, 0
on ary file access errpr1 on ay ather error.

void zco_strip(Sdr sdiObject zco)
Deletes all source datxtents that contain only header or trailer data and adjusts the offsets and/or
lengths of all remaining extents to exclude/ &nown header or trailer data. This function is useful
when handling azCO that was receied from an underlying protocol layer rather than from an
overlying application or protocol layer; use it before starting the transmission @chdo another
node or before enqueuing it for reception by eerlging application or protocol layer.

SEE ALSO
sdr(3)

perl v5.18.2 2016-09-07 6

Itp::doc::pod3::ltp(3) I[P library functions Itp::doc::pod3::ltp(3)

NAME
Itp — Licklider Transmission Protocol (LTP) communications library

SYNOPSIS
#include "ltp.h"

typedef enum

{
LtpNoNotice = 0,
LtpExportSessionStart,
LtpXmitComplete,
LtpExportSessionCanceled,
LtpExportSessionComplete,
LtpRecvGreenSegment,
LtpRecvRedPart,
LtpImportSessionCanceled

} L tpNoticeType;

[see description for available functions]

DESCRIPTION
The ltp library provides functions enabling application software td-TiBéo send and rec& information
reliably over a long-lateng link. It conforms to th&TP specification as documented by the Delajeant
Networking Research Group of the Internet Research Task Force.

TheLTP notion ofenginelD corresponds closely to the Internet notion of a host, al@Nrengine IDs are

normally indistinguishable from node numbers including the node numbers in Bundle Protocol endpoint

IDs conforming to the “ipri’scheme.

TheLTP notion ofclient ID corresponds closely to the Internet notion of “protocol numberised in the
Internet Protocol. It enables data from multiple applicatienslients — tobe multiplexed over a sngle
reliable link. However, for ION operations we normally us&P exclusively for the transmission of Bundle
Protocol data, identified by clier = 1.

int Itp_attach()
Attaches the application 1o P functionality on the Icoal computeReturns 0 on success, -1 oryan
error.

void Itp_detach()
Terminates all access ta P functionality on the local computer.
int Itp_engine_is_started()
Returns 1 if the localTP engine has been started and not yet stopped, 0 otherwise.

int Itp_send(uast destinationEngineld, unsigned int clientld, Object clientServiceData, unsigned int

redLength, LtpSessionld *sessionid)

Sends a client service data unit to the application that is waiting for data tagged with the indicated

clientld as recaied at he remote.TP engine identified byestinationEngineld

clientServiceDatanust be a‘zero-cofpy object” reference as returned lignCreateZco() Note that

LTP will privately male and destrg its own reference to the client service data object; the application

is free to destpits reference at grtime.

redLengthindicates the number of leading bytes of dateclisntServiceDatathat are to be sent
reliably, i.e., with selectie retransmission in response tpécit or implicit negative acknowledgment
as necessaryAll remaining bytes of data iclientServiceDatawill be sent as‘green’ data, i.e.,
unreliably If redLengthis zero, the entire client service data unit will be sent unrelidbihe entire
client service data unit is to be sent relialéglLengthmay be simply be set torP_ALL_RED (i.e.,
-1).

On success, the function populatssssionldwith the source engin® and the “session numbeér’

perl v5.18.2 2016-09-07 1

Itp::doc::pod3::ltp(3) I[P library functions Itp::doc::pod3::ltp(3)

assigned to transmission of this client service data unit and returnsTzer@aession number may be
used to link futureLTP processing eents, such as transmission cancellation, to the affected client
service dataltp_send(yeturns —1 on anerror.

int Itp_open(unsigned int clientld)
Establishes the applicati@néclusive access to receed srvice data units tagged with the indicated
client service datéD. At any time, only a single application task is permitted to rexatrvice data
units for ay single client service dat®.

Returns 0 on success, —1 ory &ror (e.g., the indicated client service is already being held open by
some other application task).

int Itp_get_notice(unsigned int clientld, LtpNotiggE *type, LtpSessionld *sessionld, unsigned char
*reasonCode, unsigned char *endOfBlock, unsigned int *dataOffset, unsigned int *datalLength, Object
*data)
Receves motices ofLTP processing eents pertaining to the flo of service data units tagged with the
indicated client servicéD. The nature of eachvent is indicated by'type. Additional parameters
characterizing the vent are returned in*sessionld *reasonCode *endOfBlock *dataOffset
*dataLength and *data as releant.

The value returned ifdata is aways a zero-cop object; use the zco_* functions defined ‘zcd.h”
to retriave the content of that object.

When the notice is an LtpRecvGreenSegment,ztb@ returned in*data contains the content of a
single LTP green sgment. Reassemblyf the green part of some block from these segments is the
responsibility of the application.

When the notice is an LtpRecvRedPart, Ze® returned in*data contains the red part of a possibly
aggr@aed block. The zCOs content may therefore comprise multiple service data objects.
Extraction of indvidual service data objects from the aggted block is the responsibility of the
application. Asimple way to do this is to prepend the length of the service data object to the object
itself (using zco_prepend_header) before calling Itp_send, so that the receiving application can
alternate extraction of object lengths and objects from theedsti blocks red part.

The cancellation of anxport session may result in dediy of multiple LtpExportSessionCanceled
notices, one for each service data unit in the export sesgpmténtially) aggrgaed block. ThezCO
returned in*data for each such notice is a service data @qiO that had previously been passed to
ltp_send()

Itp_get_notice(plways blocks indefinitely until abTP processing\eent is delvered.
Returns zero on success, —1 og amor.

void Itp_interrupt(unsigned int clientld)
Interrupts artp_get_notice()nvocation. Thisfunction is designed to be called from a signal handler;
for this purposeglientld may need to be obtained from a static variable.

void Itp_release_data(Object data)
Releases the resources allocated to Hatd, which must be aeceived client service dataCo.

void Itp_close(unsigned int clientld)
Terminates the applicatios’'exclusive access to receed service data units tagged with the indicated
client service dati.

SEE ALSO
Itpadmin(1), Itprc (5), zco(3)

perl v5.18.2 2016-09-07 2

AMSRC(5) AMSconfiguration files AMSRC(5)

NAME
amsrc — CCSDS Asynchronous Message Service MIB initialization file

DESCRIPTION
The Management Information Bas®IB) for an AMS communicating entity (eitheamsd or an AMS
application module) must contain enough information to enable the entity to initiate participaiids in
message exchange, such as the network location of the configuratien asdvthe roles and message
subjects defined for some venture.

AMS entities automatically load their MIBs from initialization files at startfhenAMS is built with the
—DNOEXPAT compiler option set, th&IB initialization file must conform to thamsrcsyntax described
belov; otherwise theexpat XML parsing library must be linked into themMS executable and theviB
initialization file must conform to themsxmbkyntax described iamsxm(5).

The MIB initialization file listselementof MIB update information, each of which maywbkame or more
attributes An dement may also wa sub-elements that are listed within the declaration of the parent
element, and so on.

The declaration of an element may occapsngle line of text in theMIB initialization file or may gtend

across multiple filesA single-line element declaration is indicated by a ™' in the first character of the line.
The bginning of a multi-line element declaration is indicated by a '+ in the first character of the line,
while the end of that declaration is indicated by a -’ in the first character of the lin@erincase, the

type of element must be indicated by an element-type name beginning in the second character of the line
and terminated by whitespac&very start-of-element linenust be matched by a subsequent end-of-
element line that precedes the start gf aher element that is not a nested sub-element of this element.

Attributes are represented by whitespace-terminated <name>=<valjoessstons immediately follang
the element-type name on a '*' or '+’ line. An attribute value that contains whitespace must be enclosed
within a pair of single-quote (') characters.

Two types of elements are recognized in M8 initialization file: control elements and configuration
elements. Acontrol element establishes the update context within which the configuration elements nested
within it are processed, while a configuration element declares values for one or more iteKS of
configuration information in thelB.

Note that an agggete configuration element (i.e., one which may contain other interior configuration
elements; venture, for example) may be presented outsidey @batrol element, simply to establish the
context in which subsequent control elements are to be interpreted.

CONTROL ELEMENTS
ams_mib_init
Initializes an emptyIB. This element must be declared prior to the declarationyobttier element.

Sub-elements: none
Attributes:

continuum_nbr
Identifies the local continuum.

ptsname
Identifies the primary transport service for the continuwlid values include ‘dgr” and
“ udp”.

publey
This is the name of the publicek wised for walidating the digital signatures of meta-AMS
messages reaad from the configuration seey for this continuum. The value of this attribute (if
present) must identify aely that has been loaded into th@N security database, nominally by
ionsecadmirgl).

privkey
This is the name of the pete key wsed for constructing the digital signatures of meta-AMS
messages sent by the configuration server for this contindtmis attribute shouldnly be

perl v5.18.2 2016-09-07 1

AMSRC(5) AMSconfiguration files AMSRC(5)

present in theMIB initialization file foramsd() The value of this attribute (if present) must
identify a ley tat has been loaded into ti@N security database, nominally lnsecadmirl).

ams_mib_add
This element contains a list of configuration items that are to be addedwiBthe

ams_mib_change
This element contains a list of configuration items that are to be revisedviBthe

ams_mib_delete
This element contains a list of configuration items that are to be deleted frofiBthe

CONFIGURATION ELEMENTS
continuum
Identifies a known remote continuum.

Sub-elements: none
Attributes:
nbr ldentifies the local continuum.

name
Identifies the local continuum.

neighbor
1 if the continuum is a neighbor of the local continuum, zero otherwise.

desc
A textual description of this continuum.

csendpoint
Identifies one of the network locations at which the configuratioresemay be reachable. If the
configuration server might be running atyame of seeral locations, the number of other locations
that are preferred to this one is noted; in this case, csendpoints must be listed within the ams_mib_add
element in descending order of preference, i.e., with the most preferred network location listed first.

Sub-elements: none
Attributes:
epspec
Identifies the endpoint at which the configuration eernay be reachable. The endpoint

specification must conform the endpoint specification syntax defined for the consrimnalry
transport service; see tA®1S Blue Book for details.

after
If present, indicates the number of other configuration esenetwork locations that are
considered preferable to this one. This atitiebis used to ensure that csendpoints are listed in
descending order of preference.

amsendpoint
Normally the specifications of the transport service endpoints at whiégtM8napplication module
can receie messages are computed automatically using standard transport-service-specific rules.
However, in some cases it might be necessary for a module toveecgissages at one or more non-
standard endpoints; in these cases, amsendpoint elements can be declared in getiedechs
standard endpoint specification rules.

Sub-elements: none
Attributes:

tsname
Identifies the transport service for which a non-standard endpoint specification is being supplied.

perl v5.18.2 2016-09-07 2

AMSRC(5)

AMSconfiguration files AMSRC(5)

epspec
Identifies an endpoint at which the application module will be reachable, in the context of the
named transport service. The endpoint specification must conform the endpoint specification
syntax defined for the named transport service; seeMiseBlue Book for details.

application

Identifies one of the applications supported within this continuum.
Sub-elements: none
Attributes:

name
Identifies the application.

publey
This is the name of the publicek wsed for validating the digital signatures of meta-AMS
messages recaid from the rgistrars for all cells of gnmessage space in this continuum that is
characterized by this application name. The value of this @krifif present) must identify ak
that has been loaded into ti@N security database, nominally mnsecadmirgl).

privkey
This is the name of the pete key wsed for constructing the digital signatures of meta-AMS
messages sent by the registrars for all cells gf rmessage space in this continuum that is
characterized by this application name. This aitebshouldonly be present in theviB
initialization file foramsd() The value of this attribute (if present) must identifyey khat has
been loaded into the©N security database, nhominally lpnsecadmirl).

venture

perl v5.18.2

Identifies one of the ventures operating within the local continuum.
Sub-elements: role, subject, unit, msgspace

Attributes:

nbr Identifies the venture.

appname
Identifies the application addressed by this venture.

authname
Identifies the authority under which the venture operates, distinguishingetttisrer from all
other ventures that address the same application.

gweid

Identifies theRAMS network endpointiD of the RAMS gateway module for this enture’s
message space in the local continuunGatevay endpoint ID is expressed as
<protocol_name>@-<eid_string> whepeotocol_nameis either ‘bp” or “‘udp”. If protocol
name is‘bp” theneid_stringmust be a valid Bundle Protocol endpdibf otherwise,eid_string
must be of the form <hostname>:<port_number>. If the gweid aittrils omitted, th&RAMS
gaeway module’s RAMS network endpoint ID defaults to
“bp@ipn:<local_continuum_number>.<venture_number>".

net_config
Has the wlue ‘tree” if the RAMS network supporting this venture is configured as a tree;
otherwise ‘mesh’, indicating that theRAMS network supporting this venture is configured as a
mesh.

root_cell_resync_period
Indicates the number of seconds in the period on which resynchronization is performed for the
root cell of this entures message space in the local continuum. If this attribute is omitted,
resynchronization in that cell is disabled.

2016-09-07 3

AMSRC(5) AMSconfiguration files AMSRC(5)

role
Identifies one of the functional roles in the venture that is the elemens thatently being
configured.

Sub-elements: none
Attributes:
nbr ldentifies the role.

name
Identifies the role.

authname
Identifies the authority under which the venture operates, distinguishingettisrer from all
other ventures that address the same application.

publey
This is the name of the publicek wsed for validating the digital signatures of meta-AMS
messages reaad from all application modules thatgister in this functional role. The value of
this attribute (if present) must identify ayktat has been loaded into tl@&N security database,
nominally byionsecadmirl).

privkey
This is the name of the pete key used for constructing the digital signatures of meta-AMS
messages sent by all application modules that register in this functional role. Thigteattrib
shouldonly be present in th#1B initialization file for application modules that register in this
role. Thevalue of this attribute (if present) must identify eykhat has been loaded into @GN
security database, nominally lpnsecadmirgl).

subject
Identifies one of the subjects on which messages may be sent, within the venture that is the element
that’s aurrently being configured.

Sub-elements: sendeecever
Attributes:
nbr ldentifies the subject.

name
Identifies the subject.

desc
A textual description of this message subject.

symley
This is the name of the symmetrieykused for both encrypting and decrypting the content of
messages on this subject; if omitted, messages on this subject are not encrypi¢s. Hf
authorized senders and re@es are defined for this subject, then this attribute shonlyg be
present in thevIB initialization file for application modules that register in roles that appear in
the subjecs lists of authorized senders and/or reeesi. Thevalue of this attribute (if present)
must identify a ky that has been loaded into theN security database, nominally by
ionsecadmirfl).

marshal
This is the name associated with the content marshaling function defined for this message subject.
If present, whenar a message on this subject is issued the associated function is automatically
called to cowert the supplied content data to a platform-independent representation for
transmission; this caersion occurs before grapplicable content encryption is performeld.
omitted, content data are transmitted without vemion to a platform-independent
representation. Marshalinfynctions are defined in the marshalRules table in the marshal.c
source file.

perl v5.18.2 2016-09-07 4

AMSRC(5) AMSconfiguration files AMSRC(5)

unmarshal
This is the name associated with the content unmarshaling function defined for this message
subject. Ifpresent, whener a message on this subject is reedi the associated function is
automatically called to cemlrt the transmitted content to local platform-specific representation;
this corversion occurs after gnapplicable content decryption is performed. If omitted, neski
content data are de#red without cowmersion to a local platform-specific representation.
Unmarshaling functions are defined in the unmarshalRules table in the marshal.c source file.

sender
Identifies one of the roles in which application modules must register in order to be authorized senders
of messages on the subject that is the elemens tatently being configured.

Sub-elements: none
Attributes:

name
Identifies the sendeiThe value of this attrilte must be the name of a role that has been defined
for the venture that is currently being configured.

receiver
Identifies one of the roles in which application modules mugister in order to be authorized
recevers of messages on the subject that is the elemert thatntly being configured.

Sub-elements: none
Attributes:

name
Identifies the receer. The value of this attribute must be the name of a role that has been defined
for the venture that is currently being configured.
unit
Identifies one of the genizational units within the enture that is the element tigaturrently being
configured.

Sub-elements: none
Attributes:
nbr ldentifies the venture.

name
Identifies the venture.

resync_period
Indicates the number of seconds in the period on which resynchronization is performed, for the
cell of this \entures message space that is the portion of the indicated unit which resides in the
local continuum. If this attribute is omitted, resynchronization in that cell is disabled.

msgspace
Identifies one of the message spaces in remote continua that are encompasseehiyréhthat is the
element thas aurrently being configured.

Sub-elements: none
Attributes:
nbr ldentifies the remote continuum within which the message space operates.

gweid
Identifies theRAMS network endpointiD of the RAMS gaeway module for this message space.
Gatavay endpointID is expressed as <protocol_name>@-<eid_string> wper®col_names
either ‘bp” or “‘udp”. If protocol name isbp’ theneid_stringmust be a valid Bundle Protocol
endpointD; otherwise eid_stringmust be of the form <hostname>:<port_numbdf+he gweid

perl v5.18.2 2016-09-07 5

AMSRC(5) AMSconfiguration files AMSRC(5)

attribute is omitted, theRAMS network endpointiD of the message spaseRAMS gaeway
module defaults to “bp@ipn:<remote_continuum_number>.<venture_number>".

symiey
This is the name of the symmetrieykused for both encrypting and decrypting all messages to
and from modules in the remote message space that are forwarded between tRaNscal
gaeway server and modules in the local message space; if omitted, these messages are not
encrypted. Thevalue of this attribute (if present) must identify aykhat has been loaded into
thelON security database, nominally lpnsecadmirfl).

EXAMPLE
*ams_mib_init continuum_nbr=2 ptsname=dgr

+ams_mib_add

*continuum nbr=1 name=apl desc=APL

*csendpoint epspec=beaumont.stepsoncats.com:2357
*application name=amsdemo

+venture nbr=1 appname=amsdemo authname=test
*role nbr=2 name=shell

*role nbr=3 name=log

*role nbr=4 name=pitch

*role nbr=5 name=catch

*role nbr=6 name=benchs

*role nbr=7 name=benchr

*role nbr=96 name=amsd

*role nbr=97 name=amsmib

*role nbr=98 name=amsstop

*subject nbr=1 name=text des&SCllI text’

*subject nbr=2 name=noise desc="ma&ClI text’
*subject nbr=3 name=bench desc="numbered msgs’
*subject nbr=97 name=amsmib dega8 updates’
*subject nbr=98 name=amsstop desc="shutdown’
*unit nbr=1 name=orbiters

*unit nbr=2 name=orbiters.near

*unit nbr=3 name=orbiters.far

*msgspace nbr=2

-venture

—ams_mib_add

SEE ALSO
amsxm(5)

perl v5.18.2 2016-09-07 6

AMSXML(5) AMS configuration files AMSXML(5)

NAME
amsxml — CCSDS Asynchronous Message Service MIB initialization XML file

DESCRIPTION
The Management Information Bas®IB) for an AMS communicating entity (eitheamsd or an AMS
application module) must contain enough information to enable the entity to initiate participaiids in
message exchange, such as the network location of the configuratien asdvthe roles and message
subjects defined for some venture.

AMS entities automatically load their MIBs from initialization files at startfhenAMS is built with the
—DNOEXPAT compiler option set, thelB initialization file must conform to themsrcsyntax described in
amsrg(5); otherwise thexpat XML parsing library must be linked into tlevS executable and théB
initialization file must conform to themsxmbkyntax described belo

The XML statements in th®IIB initialization file constituteelementsof MIB update information, each of
which may hae me or moreattributes An dement may also lva sub-elements that are listed within the
declaration of the parent element, and so on.

Two types of elements are recognized in B initialization file: control elements and configuration
elements. Acontrol element establishes the update context within which the configuration elements nested
within it are processed, while a configuration element declares values for one or more &S of
configuration information in thelB.

For a dscussion of the recognized control elements and configuration elements\iBtlhigitialization
file, see theamsrg(5) man page NOTE, though, that all elements of an XML-bagatB initialization file
must be sub-elements of a single sub-element ofxtlie extension typeams_load_mibin order for the
file to be parsed successfully by expat.

EXAMPLE
<?xml version="1.0" standalone="yes"?>

<ams_mib_load>
<ams_mib_init continuum_nbr="2" ptsname="dgr"/>

<ams_mib_add>
<continuum nbr="1" name="apl" desc="APL"/>
<csendpoint epspec="beaumont.stepsoncats.com:2357"/>
<application name="amsdemo" />
<venture nbr="1" appname="amsdemo" authname="test">
<role nbr="2" name="shell"/>
<role nbr="3" name="log"/>
<role nbr="4" name="pitch"/>
<role nbr="5" name="catch"/>
<role nbr="6" name="benchs"/>
<role nbr="7" name="benchr"/>

<role nbr="96" name="amsd"/>

perl v5.18.2 2016-09-07 1

AMSXML(5) AMS configuration files AMSXML(5)

<role nbr="97" name="amsmib"/>
<role nbr="98" name="amsstop"/>
<subject nbr="1" name="text" desc="ASCII text"/>
<subject nbr="2" name="noise" desc="more ASCII text"/>
<subject nbr="3" name="bench" desc="numbered msgs"/>
<subject nbr="97" name="amsmib" desc="MIB updates"/>
<subject nbr="98" name="amsstop" desc="shutdown"/>
<unit nbr="1" name="orbiters"/>
<unit nbr="2" name="orbiters.near"/>
<unit nbr="3" name="orbiters.far"/>
<msgspace nbr="2"/>

</venture>

</ams_mib_add>
</ams_mib_load>

SEE ALSO
amsrg(5)

perl v5.18.2 2016-09-07 2

ACSRC(5) BPconfiguration files ACSRC(5)

NAME
acsrc — Aggrgate Custody Signal management commands file

DESCRIPTION
Aggregae Custody Signal management commands are passedadmineither in a file of text lines or
interactvely at acsadmiris command prompt (:). Commands are interpreted line-by line, with exactly one
command per line. The formats andeefs of the Aggrgate Custody Signal management commands are
described belw.

GENERAL COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by acsadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

1 <logLevel> [<heapWords>]
The initialize command. Untilthis command is »@&cuted, Aggrgate Custody Signals are not in
operation on the loc&N node and mosticsadmircommands will fail.

The logLevel agument specifies at which log v the ACS appending and transmitting
implementation should record its activity to tl log file. This argument is the bitwise®©R” of the
following log levels:

0x01 ERROR
Errors inACS programming are logged.

0x02 WARN
Warnings like “out of memory’ that dont causeACS to fail but may change behavior are logged.

0x04 INFO
Informative information like “this custody signal is a duplicatés logged.

0x08 DEBUG
Verbose information lik the state of the pendirkCS tree is logged.

The optionalheapWordsargument informsACS to allocate that manheap words in its wn DRAM
SDR for constructing pendingCs. If not supplied, the defult ACS_SDR_DERULT_HEAPWORDSIs
used. Oncall ACS DR is allocated, anincoming custodial bundles that would trigger/as will
trigger a normal, non-agggde custody signal instead, un#iCS DR is freed. If your node
intermittently emits non-agggete custody signals when it should emits, you should increase
heapWords

SinceACS usesSDR only for emitting Aggrgae Custody Signal3PON can still receie ACS even if
this command is notxecuted, or alACS DR memory is allocated.

h Thehelp command. Thisill display a listing of the commands and their formats. It is the same as
the? command.

s <minimumCustodyld>
This command sets the minimum custobythat the local bundle agent may use in custody transfer
enhancement blocks that it emifShese custody IDs must be unique in the network (for the lifetime
of the bundles to which theefer).

The minimumCustodylgrovided is stored irSDR, and incrementedvery time a n& custodyID is
required. Sothis command should be used only when the local bundle agent has discagizRl its
and restarted.

perl v5.18.2 2016-09-07 1

ACSRC(5) BPconfiguration files ACSRC(5)

CUSTODIAN COMMANDS
a custodianEid acsSidacsDelay

Theadd custodiancommand. Thigommand provides information about #eS characteristics of a
remote custodian.custodianEid is the custodianEID for which this command is pvaing
information. acsSizeis the preferred size oACS bundles sent taustodianEi¢gl ACS bundles this
implementation sends taustodianEidwill aggregate until ACS are at mosacsSizévytes (ifacsSizas
smaller than 19 bytes, someS containing only one signal willxeeedacsSizeand be sent gmays;
settingacsSizao 0 causes “aggggtes’ of only 1 signal to be sent).

acsDelayis the maximum amount of time to delay &DS destined for this custodian before sending
it, in seconds; if not specifieBEFAULT _ACS_DELAY will be used.

EXAMPLES
aipn:15.0 100 27
Informs ACS on the local node that the local node should getibundles destined for the custodian
ipn:15.0 wheneer they are 100 bytes in size or ¥ been delayed for 27 seconds, whiodtecomes
first.

SEE ALSO
acsadmirn(1)

perl v5.18.2 2016-09-07 2

BPRC(5) BPconfiguration files BPRC(5)

NAME
bprc — Bundle Protocol management commands file

DESCRIPTION
Bundle Protocol management commands are passgzhtbnin either in a file of tet lines or interactiely
atbpadmin’s command prompt (:). Commands are interpreted line-by line, wabty one command per
line. Theformats and effects of the Bundle Protocol management commands are descrived belo

GENERAL COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by bpadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version ofON currently installed and the crypto suiBP was
compiled with. HINT: combine withe 1command to log the version number at startup.

1 Theinitialize command. Untikthis command is»ecuted, Bundle Protocol is not in operation on the
local ION node and modipadmincommands will fail.

r ‘'command_tekt
The run command. Thicommand will &ecute command_texas if it had been typed at a console
prompt. Itis used to, for example, run another administeggrogram.

s Thestart command. Thisommand starts all schemes and all protocols on the local node.

m heapmaxmax_database_heap_per_acquisition
The manage heap for bundle acquisitiorcommand. Thi€ommand declares the maximum number
of bytes ofSDR heap space that will be occupied by aimgle bundle acquisition activity (nominally
the acquisition of a single bundle, but this is at the discretion of tivergence-layer input task)All
data acquired inxeess of this limit will be written to a temporary file pending extraction and
dispatching of the acquired bundle ambdles. Dedult is the minimum allowed value (560 bytes),
which is the approximate size ofz&O file reference object; this is the minimusdR heap space
occupang in the e/ent that all acquisition is into a file.

X Thestopcommand. Thisommand stops all schemes and all protocols on the local node.

w{0|1|activity_spegd
The BP watch command. Thicommand enables and disables production of a continuous stream of
userselected Bundle Protocol activity indication charactétsvatch parameter ofl”’ selects allBP
actvity indication characters;'0"’ de-selects allBP actiity indication characters; §nother
activity_specsuch as‘acz™ selects all actiity indication characters in the string, de-selecting all
others. BP will print each selected awtty indication character tetdout evey time a processingvent
of the associated type occurs:

a new bundle is queued for forwarding
b bundle is queued for transmission
c bundle is popped from its transmission queue

custody acceptance signal is reedi
custody of bundle is accepted
custody of bundle is refused

bundle is accepted upon asai

N < X 5 3

bundle is queued for defry to an application

t

bundle is abandoned (discarded) on attempt to forward it

perl v5.18.2 2016-09-07 1

BPRC(5) BPconfiguration files BPRC(5)

! bundle is destroyed due T@L expiration

custody refusal signal is reved

bundle is queued for re-forwarding dueGb protocol failure
j bundle is placed in “limbd’f or possible future re-forwarding
k bundle is remwed from “limbo’ and queued for re-forwarding

h Thehelp command. Thisill display a listing of the commands and their formats. It is the same as
the? command.

SCHEME COMMANDS
a shemescheme_namédorwarder_commard admin_app_command

The add schemecommand. Thiscommand declares an endpoint namifsghteme” for use in
endpoint IDs, which are structured as URIsscheme_namscheme-specific_part
forwarder_commanavill be executed when the scheme is started on this node, to initiate operation of
a forwarding daemon for this schemadmin_app_commandill also be &ecuted when the scheme
is started on this node, to initiate operation of a daemon that opens a custodian endpoint identified
within this scheme so that it can rageend process custody signals and bundle status reports.

¢ shemescheme_namdorwarder_commarid admin_app_command
The change scheme&ommand. Thixommand sets the indicated schesvietwarder_commaneénd
admin_app_commartd the strings provided as arguments.

d schemescheme_name
The delete schemeommand. Thicommand deletes the scheme identifiedsblyeme_nameThe
command will fail if aiy bundles identified in this scheme are pending &ding, transmission, or
delivery.

i schemescheme_name
This command will print information (number and commands) about the endpoint naming scheme
identified byscheme_name

| scheme
This command lists all declared endpoint naming schemes.

s £hemescheme_name
Thestart schemecommand. Thigommand starts the forwarder and administeagndpoint tasks for
the indicated scheme task on the local node.

x schemescheme_name
The stop schemecommand. Thigommand stops the forwarder and administeaghdpoint tasks for
the indicated scheme task on the local node.

ENDPOINT COMMANDS
a endpoint endpoint_ID{ q | x } ["recv_script]
Theadd endpointcommand. Thi€ommand establishesDIN endpoint nameéndpoint_IDon the
local node. The remaining parameters indicate what is to be done when bundles destined for this
endpoint arrre & a ime when no application has got the endpoint open for bundle reception. If 'X’,
then such bundles are to be discarded silently and immedidtely’, then such bundles are to be
enqueued for later debry and, ifrecv_scriptis providedrecv_scriptis to be &ecuted.

¢ endpoint endpoint_ID{ q | x } ["recv_script]
The change endpointcommand. Thigommand changes the action that is to be taken winedids
destined for this endpoint are & a ime when no application has got the endpoint open dodle
reception, as described afeo

d endpoint endpoint_ID
The delete endpointcommand. Thicommand deletes the endpoint identifiedelmglpoint_ID The
command will fail if ary bundles are currently pending dediy to this endpoint.

perl v5.18.2 2016-09-07 2

BPRC(5) BPconfiguration files BPRC(5)

i endpoint endpoint_ID
This command will print information (disposition and script) about the endpoint identified by
endpoint_ID

| endpoint
This command lists all local endpointsgaadless of scheme name.

PROTOCOL COMMANDS
a protocol protocol_name payload_bytes_per_frame overhead_bytes_per [fnameal_data_rate
The add protocol command. Thiscommand establishes access to the namedegemce layer
protocol at the local nodeThe payload_bytes_per_framend overhead_bytes_per_fransguments
are used in calculating the estimated transmission capacity consumption of each bundle, to aid in route
computation and congestion forecasting.

The optionalnominal_data_rateargument @errides the hard-coded default continuous data rate for
the indicated protocol, for purposes of rate contfedr al ‘‘promiscuous’ prototocols - that is,
protocols whose outducts are not specifically dedicated to transmission to a single identified
convergence-layer protocol endpoing — the protosa@plicable nominal continuous data rate is the
data rate that is wbhys used for rate controlver links served by that protocol; data rates are not
extracted from contact graph informatioithis is because only the induct and outduct throttles for
non-promiscuous protocol&TP, TCP) can be dynamically adjusted in response to changes in data rate
between the local node and its neighbors, as enacted per the contadiyglarfor an outduct of a
non-promiscuous protocol the nominal data rate may be the authority for rate control vienthitbat

the contact plan lacks identified contacts with the node to which the outduct is mapped.

d protocol protocol_name
The delete pmotocol command. Thixommand deletes the amngence layer protocol identified by
protocol_name The command will fail if ap ducts are still locally declared for this protocol.

i protocol protocol_name
This command will print information about the eergence layer protocol identified by
protocol_name

| protocol
This command lists all cergence layer protocols that can currently be utilized at the local node.

s protocol protocol_name
The start protocol command. Thiscommand starts all induct and outduct tasks for inducts and
outducts that hae keen defined for the indicat@d protocol on the local node.

X protocol protocol_name
The stop protocol command. Thiscommand stops all induct and outduct tasks for inducts and
outducts that ha keen defined for the indicat@d protocol on the local node.

INDUCT COMMANDS
a induct protocol_name duct_nam€Ll_commantl
The add induct command. Thiscommand establishes @uct” for reception of bndles via the
indicatedCL protocol. Theduct's data acquisition structure is used and populated by'itrduct”
task whose operation is initiated 8Y.1_commandat the time the duct is started.

¢ induct protocol_name duct_nam€L|_command
The change inductcommand. Thisommand changes the command that is used to initiate operation
of the induct task for the indicated duct.

d induct protocol_name duct_name
The delete induct command. Thiscommand deletes the induct identified jmptocol_nameand
duct_name The command will fail if ap bundles are currently pending acquisition via this induct.

i induct protocol_name duct_name
This command will print information (theLl command) about the induct identified fmptocol_name
andduct_name

perl v5.18.2 2016-09-07 3

BPRC(5) BPconfiguration files BPRC(5)

| induct [protocol_namg
If protocol_names specified, this command lists all inducts established locally for the indicated
protocol. Otherwisé lists all locally established inducts gaedless of protocol.

s induct protocol_name duct_name
Thestart induct command. Thisommand starts the indicated induct task as defined for the indicated
CL protocol on the local node.

x induct protocol_name duct_name
Thestop induct command. Thigommand stops the indicated induct task as defined for the indicated
CL protocol on the local node.

OUTDUCT COMMANDS
a outduct protocol_name duct_nam€LO_command max_payload_length
Theadd outduct command. Thigommand establishes ‘duct” for transmission of undles via the
indicatedCL protocol. Theduct's data transmission structure is serviced by tetduct” task whose
operation is initiated byCLO_commandat the time the duct is startedA value of zero for
max_payload_lengtimdicates that bundles of asize can be accommodated,; this is the default.

¢ outduct protocol_name duct_nam€LO_command max_payload_length
The change outductcommand. Thi€ommand sets mevalues for the indicated dustpayload size
limit and the command that is used to initiate operation of the outduct task for this duct.

d outduct protocol_name duct_name
The delete outductcommand. Thicommand deletes the outduct identified gsgtocol_nameand
duct_name The command will fail if ap bundles are currently pending transmission via this outduct.

i outduct protocol_name duct_name
This command will print information (thecLO command) about the outduct identified by
protocol_namendduct_name

| outduct [protocol_namg
If protocol_nameds specified, this command lists all outducts established locally for the indciated
protocol. Otherwisd lists all locally established outductsgeedless of protocol.

s autduct protocol_name duct_name
The start outduct command. Thiscommand starts the indicated outduct task as defined for the
indicatedCL protocol on the local node.

b outduct protocol_name duct_name
The block outduct command. Thiscommand disables transmission of bundles via the indicated
outduct and reforwards all non-critical bundles currently queued for transmission via this outduct.

u outduct protocol_name duct_name
Theunblock outduct command. Thicommand re-enables transmission ofidles via the indicated
outduct and reforwards all bundles ihmbo’’ in the hope that the unblocking of this outduct will
enable some of them to be transmitted.

x outduct protocol_name duct_name
The stop outduct command. Thiscommand stops the indicated outduct task as defined for the
indicatedCL protocol on the local node.

EXAMPLES

a <heme ipn 'ipnfw’ ipnadminep’
Declares the “ipri’scheme on the local node.

a protocol udp 1400 100 16384
Establishes access to thadp” convergence layer protocol on the local node, estimating the number
of payload bytes per ultimate {est-layer) frame to be 1400 with 100 bytes of totarloead BP,
UDP, IP, A09) per lowest-layer frame, and setting the default nominal data rate to be 16384 bytes per
second.

perl v5.18.2 2016-09-07 4

BPRC(5) BPconfiguration files BPRC(5)

r 'ipnadmin flyby.ipnrc’
Runs the administrat programipnadminfrom within bpadmin

SEE ALSO
bpadmin(1), ipnadmin(1), dtn2admin(1)

perl v5.18.2 2016-09-07 5

BSSRC(5) BReonfiguration files BSSRC(5)

NAME
bssrc — IPN scheme configuration commands file adapted for Bundle Streaming Service

DESCRIPTION
IPN scheme configuration commands are passédgsadmineither in a file of tet lines or interactiely at
bssadmiris command prompt (:).Commands are interpreted line-by line, with exactly one command per
line.

IPN scheme configuration commands (a) manage a table of destination endpoints thatvaréokbe
associated with Bundle Streaming ServiB8g) applications, (b) establish BSS-adapted egress plans for
direct transmission to neighboring nodes that are members of endpoints identifiedpn’therl scheme,

and (c) establish static default routing rules for forwarding bundles to specified destination nodes.

A BSS endpoint tableentry identifies anlPN endpointiD — in which the node number and/or service
number may be the wild-card character *~ that is known to be associated withB&S application.
These table entries enaltiesfw to distinguishBSS bundles from non-BSS tri€ and apply BSS-specific
egess planning logic to the former while handling the latter in exactly the same Vpajvas

The gressplan established for a gén neighboring node associates three defaglegsduct expressions

with that node: one faBSStraffic that must be forwarded as real-time streaming data (usingzergemnce-

layer protocol that does not perform retransmission), oneg8traffic that must be forarded as playback

data (using a reliable ceergence-layer protocol), and one for non-BSSfizaf Thesedefault duct
expressions may beverridden by more narrowly scopqulanrules in gecific circumstances: ddrent

egess duct xpressions may apply when the source endpoint for the subject bundle identifies a specific
node, a specific service, or both.

Each duct epression is a string of the fornprotocol_namfutduct_namjgdestination_induct_nariig
signifying that the bundle is to be queued for transmission via the indicateergeorte layer protocol
outduct. destination_induct_nammaust be provided when the indicated outducipi®miscuous, i.e., not
configured for transmission only to a single neighboring node; this is protocol-specific.

The circumstances that characterize a specific rule within a general plan are expresgadlifiers a
string of the form Souice_service_number sa& node_numbémwhere eithelsource_service_number
source_node_numbermay be an asterisk character (*) signifying “all”.

Note that egress plamsust be established for all neighboring nodegjardless of whether or not contact
graph routing is used for computing dynamic routes to distant nodes. This is by definition: if there isn’
egess plan to a node, it cabe onsidered a neighbor.

Static default routes armressed agroups in the ipn-scheme routing databas®.group is a range of

node numbers identifying a set of nodes for which defineduttefouting behavior is established.
Wheneer a hundle is to be forwarded to a node whose number is in the groegle number rangand it

has not been possible to compute a dynamic route to that node from the contact schedules lthah ha
provided to the local nodand that node is not a neighbor to which the bundle can be directly transmitted,
BP will forward the bundle to thgateway node associated with this group. Theteway node for ay

group is identified by an endpoiiit, which might or might not be an ipn-sche®i®; regadless, directing

a hundle to the gtevay for a group causes the bundle to be re-forwarded to that intermediate destination
endpoint. Multiplegroups may encompass the same node nyritbemich case the aevay associated

with the most restricte goup (the one with the smallest range) isagk selected.

The formats and effects of tiesSforwarding configuration commands are describedvielo

GENERAL COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by bssadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

perl v5.18.2 2016-09-07 1

BSSRC(5) BReonfiguration files BSSRC(5)

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

h Thehelp command. Thisill display a listing of the commands and their formats. It is the same as
the? command.

ENTRY COMMANDS
a entry service_nbr node_nbr
The add entry command. Thisasserts that all bundles whose destination endpbintatches
service_nbrand node_nbr(either or both of which may be the wild-card character '*') are to be
processed aBSStraffic.

d entry service_nbr node_nbr

The delete entrycommand. Thicommand rescinds a priBSSassertion characterized by theaaet
sameservice_nbrandnode_nbr

| entry
This command lists all entries in the nadi@ble of destination endpoint IDs that indicB&Straffic.

PLAN COMMANDS

a plan node_nbr non-BSS_ducikmession BSS_noneliable_duct_expression

BSS_reliable_duct_expression custody_expiration_interval
The add plan command. Thiscommand establishes an egress plan for the bundles that must be
transmitted to the neighboring node identifiednioge nbr custody_expiration_intervahdicates the
number of seconds thP agent must wait for custody acceptance after transmitting a bundle on either
BSSduct before automatically re-forwarding thenile. Ageneral plan must be in place for a node
before ag more specific rules are declared.

c plan node_nbr non-BSS_duckmession BSS_noneliable_duct_expression
BSS_reliable_duct_expression custody_expiration_interval

The change plancommand. Thicommand changes the duaipeessions and/or custodyaration
interval for the indicated plan.

d plan node_nbr

The delete plan command. Thiscommand deletes thegmss plan for the node identified by
node_nbyincluding all associated rules.

i plan node_nbr
This command will print information (the default dugpesssions, custody expiration interval, and all
specific rules) about the egress plan for the node identifiadds_nbr

I plan
This command lists all egress plans established iB$iselatabase for the local node.

PLANRULE COMMANDS
a planrule node_nbr qualifier non-BSS_duckpgession BSS_noneliable_duct_expression
BSS_reliable_duct_expression
Theadd planrule command. Thigommand establishes a planrule, i.e., a set of duct expressions that
override the default duct expressions of thgress plan for the node identified hgde_nbrin the
event that the source endpoiidt of the subject bundle matchesalifier.

¢ planrule node_nbr qualifier non-BSS_duckpeession BSS_noneliable_duct_expression
BSS_reliable_duct_expression

The change planrule command. Thiscommand changes the duct expressions for the indicated
planrule.

d planrule node_nbr qualifier

The delete planrule command. Thiscommand deletes the planrule identified tyde_nbrand
qualifier.

perl v5.18.2 2016-09-07 2

BSSRC(5) BReonfiguration files BSSRC(5)

i planrule node_nbr qualifier
This command will print information (the duct expressions) about the planrule identifreztiby nbr
andqualifier.

| planrule node_nbr
This command lists all planrules in the plan for the indicated node.

GROUP COMMANDS
a group first_node_nbr last_node_nbr gateway_endpoint_ID
The add group command. Thiscommand establishes &roup” for static default routing as
described abe.

c group first_node_nbr last_node_nbr gateway_endpoint_ID
The change goup command. Thiscommand changes theatgvay node number for the group
identified byfirst_node_nbandlast_node_nbr

d group first_node_nbr last_node_nbr
The delete goup command. Thiscommand deletes the group identified fingt node_nbrand
last_node_nhr

i group first_node_nbr last_node_nbr
This command will print information (theatpvay endpoint ID) about the group identified by
first_node_nbandlast_node nhr

I group
This command lists all groups defined in B&Sdatabase for the local node.

GROUPRULE COMMANDS
a grouprule first_node_nbr last_node_nbr qualifier gateway_endpoint_ID
Theadd grouprule command. Thisommand establishes a grouprule, i.e atagpy endpointiD that
overrides the defult gatevay endpointID of the group identified bfirst_node_nbandlast_node_nbr
in the event that the source endpoiidt of the subject bundle matchegsalifier.

c grouprule first_node_nbr last_node_nbr qualifier gateway_endpoint_ID
The change gouprule command. Thiscommand changes theatgvay EID for the indicated
grouprule.

d grouprule first_node_nbr last_node_nbr qualifier
The delete gouprule command. Thixommand deletes the grouprule identifiedfibst_node_nbr
last_node_nhrand qualifier.

i grouprule first_node_nbr last_node_nbr qualifier
This command will print information (the ductxgression) about the grouprule identified by
node_nbrlast_node_nhrand qualifier.

I grouprule first_node_nbr last_node_nbr
This command lists all grouprules for the indicated group.

EXAMPLES
a pan 18 tcp/saturn.nasa.gov:5011 udp/*,saturn.nasa.gov:5012 tcp/saturn.nasa.gov:5011 3
Declares the gress plan to use for transmission from the local node to neighboring nod&eny8.
bundle for which the computethext hop’ node is node 18 will be queued for transmission to Internet
host saturn.nasa.gousing udp if the bndle is real-tima&ssStraffic and tcp otherwise; faSsStraffic,
custodial retransmission will be initiated after 3 seconds if no custody acknowledgmentisirecei

a panrule 18 * 9 tcp/saturn.nasa.gov:5011 udp/*,saturn.nasa.gov:5012 tcp/neptune.nasa.gov:5011
Declares an egress plaveride that applies to transmission to node 18 gftamdle whose source is
node 9, rgardless of the service that was the source of tmelle. Eactsuch bundle must be queued
for transmission to Internet host neptune.nasagther than default host saturn.naswe, @t is non-
real-timeBSsStraffic.

perl v5.18.2 2016-09-07 3

BSSRC(5) BReonfiguration files BSSRC(5)

a goup 1 999 dtn://stgete
Declares a default route for bundles destined for all nodes whose numbers are in the range 1 through
999 inclusve: absent ag other routing decision, such bundles are to be forwarded to “dtngéstar

SEE ALSO
bssadmir{l)

perl v5.18.2 2016-09-07 4

DTN2RC(5) BPconfiguration files DTN2RC(5)

NAME
dtn2rc — "dtn" scheme configuration commands file

DESCRIPTION
“dtn” scheme configuration commands are passeditt@admin either in a file of text lines or
interactvely at dtn2admin’s command prompt (:).Commands are interpreted line-by line, wittaetly
one command per line.

“dtn” scheme configuration commands mainly establish static routing rules foartbng bundles to
“ dtn”"-scheme destination endpoints, identified by node names and demux names.

Static routes are expressedptemns in the ‘dtn”’-scheme routing databas@ plan that is established for a
given node name associates a default routlitgctive with the named node, and that @t directve may
be overridden by more narrowly scopedles in gecific circumstances: a different direetimay apply
when the destination endpoibt specifies a particular demux name.

Each directie is a sring of one of two possible forms:
f endpoint_ID
...Or...

X protocol_nam#utduct_namlgdestination_induct_narhe

The former form signifies that the bundle is to be forwarded to the indicated endpoint, requiring that it be
re-queued for processing by the forwarder for that endpoint (which migthtigled not, be identified by
another ‘dtn”-scheme endpointD). The latter form signifies that theubdle is to be queued for
transmission via the indicated s@rgence layer protocol outductdestination_induct_namenust be
provided when the indicated outduct ‘isrbmiscuous; i.e., not configured for transmission only to a single
neighboring node; this is protocol-specific.

The node names and demux names cited in dtn2rc plansemidiag rules may bewild-carded’. That

is, when the last character of a node name is either * or ™ (thesentld-card characters are egdient

for this purpose), the plan or rule applies to all nodes whose names are identical to the wild-carded node
name up to the wild-card character; wild-carded demux names function in the agmiowexample, a

bundle whose destinatioBID’s node name is'//foghorn” would be routed by plans citing the folling

node names:/ffoghorn”, ‘‘//fogh*’, *‘/lffog™’, *‘/[*''. When multiple plans are all applicable to the same
destinationEID, the one citing the longest (i.e., most naigotargeted) node name will be applied; when
multiple rules oerriding the same plan are all applicable to the same destir&ftiprihe one citing the

longest demux name will be applied.

The formats and effects of til@N scheme configuration commands are describedvbelo

GENERAL COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by dtn2admin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

h Thehelp command. Thisill display a listing of the commands and their formats. It is the same as
the? command.

PLAN COMMANDS
a plan node_name default_directive
The add plan command. Thicommand establishes a static route for thedies destined for the
node identified bynode_name A general plan must be in place for a node befoyenaore specific
routing rules are declared.

perl v5.18.2 2016-09-07 1

DTN2RC(5) BPconfiguration files DTN2RC(5)

d plan node_name
The delete plan command. Thiscommand deletes the static route for the node identified by
node_namgincluding all associated rules.

i plan node_name
This command will print information (the default direetiand all specific rules) about the static route
for the node identified byode_name

I plan
This command lists all static routes established imbif¢ database for the local node.

RULE COMMANDS
a rule node_name demux_name directive
The add rule command. Thizommand establishes a rule, i.e., a divecthat overrides the defult
directive d the plan for the node identified Impde _nameén the eent that the demux name of the
subject bundles destination endpoinD matcheslemux_name

c rule node_name demux_name directive
Thechange rulecommand. Thifommand changes the direetifor the indicated rule.

d rule node_name demux_name
Thedelete rulecommand. Thisommand deletes the rule identifiedimde _namenddemux_name

i rule node_name demux_name
This command will print information (the direet) about the rule identified byode_nameand
demux_name

| rule node_name
This command lists all rules in the plan for the indicated node.

EXAMPLES
a pan //bbn2 fipn:8.41
Declares a static route from the local node to ngtéoh2”. By default, ary bundle destined for an
endpoint whose node name is “//bbn&ill be forwarded to endpoint “ipn:8.41".

a dan //mitrel x Itp/6
Declares a static route from the local node to ndtfaitrel”. By default, ary bundle destined for
ary endpoint whose node name is “mitrewill be queued for transmission amP outduct 6.

a rule //mitrel fwd x Itp/18
Declares an werriding static routing rule for gnbundle destined for nodé//mitrel” whose
destination demux name iéwd’’. Eachsuch lundle must be queued for transmissiorLoR outduct
18 rather than the defaulfT(P outduct 6).

SEE ALSO
dtn2admin(1)

perl v5.18.2 2016-09-07 2

IMCRC(5) BPconfiguration files IMCRC(5)

NAME
imcrc — IMC scheme configuration commands file

DESCRIPTION
IMC scheme configuration commands are passgzht@min either in a file of tet lines or interactiely at
ipnadmin’s command prompt (:).Commands are interpreted line-by line, with exactly one command per
line.

IMC scheme configuration commands simply establish which nodes are the loca peéets and
children within a singleMC multicast tree. This single spanning tree, aprlay on a single BP-based
network, is used to comy dl multicast group membership assertions and cancellations in therkefar
all groups. Each node petely tracks which of its immediat&élatives” in the tree are members of which
multicast groups and on this basis selehtiforwards — directlyto dl (and only) interested relas —
the bundles destined for the members of each group.

Note that all of a nods’immediate relaties in the multicast treenust be among its immediate neighbors
in the underlying netark. Thisis because multicasuhdles can only be correctly forwarded within the
tree if each forwarding node knows the identity of the reddtiat passed the bundle to it, so that thedbe

is not passed back to that relaticeating a routing loopThe identity of that prior forwarding node can
only be known if the forwarding node was a neighlbecause no prior forarding node (aside from the

source) other than the immediate proximate (neighboring) sender of\eddaeidle is ger known.

IMC group IDs are unsigned integers, justri$¢ node IDs are unsigned iggers. Themembers of a group
are nodes identified by node numbard the multicast tree parent and children of a node are neighboring
nodes identified by node number.

The formats and effects of tiidC scheme configuration commands are describedvbelo

GENERAL COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by ipnadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

h Thehelp command. Thisvill display a listing of the commands and their formats. It is the same as
the? command.

KINSHIP COMMANDS
anode_nb{1]|0}
The add kin command. Thiscommand adds the neighboring node identifiednbgle_nbras an
immediate relatie o the local node. The Boolean value that follows the node number indicates
whether or not this node is the local nedarent within the tree.

cnhode nb{1|0}
The change kin command. Thiscommand changes the parentage status of the indicatederelati
according to Boolean value that follows the node nupdsemted for theadd kin command.

d node_nbr
The delete kincommand. Thixommand deletes the immediate multicast tree velddientified by
node_nbr That node still exists but it is no longer a parent or child of the local node.

i node_nbr
This command will print information (the parentage switch) for the multicast treeveditigntified by
node_nbr

I This command lists all of the local nodefulticast tree relaties, indicating which one is its parent in
the tree.

perl v5.18.2 2016-09-07 1

IMCRC(5) BPconfiguration files IMCRC(5)

EXAMPLES
a®s31
Declares that 983 is the local naglgarent in the network’multicast tree.

SEE ALSO
imcadmin(1)

perl v5.18.2 2016-09-07 2

IPNRC(5) BPconfiguration files IPNRC(5)

NAME
ipnrc — IPN scheme configuration commands file

DESCRIPTION
IPN scheme configuration commands are passgehtmin either in a file of text lines or interaatly at
ipnadmin’s command prompt (:).Commands are interpreted line-by line, with exactly one command per
line.

IPN scheme configuration commands (a) establish egress plans for direct transmission to neighboring nodes
that are members of endpoints identified in thE" URI scheme and (b) establish static default routing
rules for forwarding bundles to specified destination nodes.

The @ressplan established for a gén node associates a defaufiressduct expressionwith that node,

and that default duct expression may bha&riedden by more narkly scopedplanrules in ecific
circumstances: a different egress dugpression may apply when the source endpoint for the subject
bundle identifies a specific node, a specific service, or both.

Each duct expression is a string of the forprotocol_namfutduct_namjgdestination_induct_narfie
signifying that the bundle is to be queued for transmission via the indicateergeorte layer protocol
outduct. destination_induct_nammust be provided when the indicated outducipi®omiscuous, i.e., not
configured for transmission only to a single neighboring node; this is protocol-specific.

The circumstances that characterize a specific rule within a general plaxpegssed in aualifier, a
string of the form Souice_service_number sa& node_numbéwhere eithelsource_service_number
source_node_numberay be an asterisk character (*) signifying “all”.

Note that egress plamsust be established for all neighboring nodegjardless of whether or not contact
graph routing is used for computing dynamic routes to distant nodes. This is by definition: if there isn’
egess plan to a node, it cabe mnsidered a neighbor.

Static defult routes are declared esits in the ipn-scheme routing database. An exit is a range of node
numbers identifying a set of nodes for which defined default routing behavior is estabWéhedeer a
bundle is to be forwarded to a node whose number is inxities @de number rangand it has not been
possible to compute a dynamic route to that node from the contact schedulesetmthgprovided to the
local nodeand that node is not a neighbor to which the bundle can be directly transraftad) forward

the bundle to thgatewaynode associated with thigie The gaeway node for a exit is identified by an
endpointiD, which might or might not be an ipn-sche®®; regadless, directing a bundle to thatgvay

for an exit causes thaubdle to be re-forwarded to that intermediate destination endpoint. Mulkitée e
may encompass the same node nupibevhich case theaevay associated with the most restricti ext

(the one with the smallest range) iwayfs selected.

Note that ‘exits” were termed‘groups’ in earlier versions olON. The term ‘exit’’ has been adopted
instead, to minimize anpossible confusion with multicast group®o protect backward compatibilitghe
keywords ‘group” and “grouprule’ continue to be accepted by ipnadmin as aliases for thekegvords
“exit’” and “exitrule”, but the older terminology is deprecated.

The formats and effects of tifeN scheme configuration commands are describedvbelo

GENERAL COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1]0}
Echo control. Setting echo to 1 causes all output printed by ipnadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

h Thehelp command. Thisvill display a listing of the commands and their formats. It is the same as
the? command.

perl v5.18.2 2016-09-07 1

IPNRC(5) BPconfiguration files IPNRC(5)

PLAN COMMANDS
a plan node_nbr default_duct_expression
The add plan command. Thiscommand establishes an egress plan for the bundles that must be
transmitted to the neighboring node identifiednmde nbr A general plan must be in place for a
node before anmore specific rules are declared.

¢ plan node_nbr default_duct_expression
The change plancommand. Thizommand changes the default duct expression for the indicated
plan.

d plan node_nbr
The delete plan command. Thiscommand deletes the egress plan for the node identified by
node_nbyincluding all associated rules.

i plan node_nbr
This command will print information (the default duct expression and all specific rules) about the
egess plan for the node identified bgde_nbr

I plan
This command lists all egress plans established irPthhdatabase for the local node.

PLANRULE COMMANDS
a planrule node_nbr qualifier duct_expression
The add planrule command. Thiscommand establishes a planrule, i.e., a dupression that
overrides the default duct expression of thgress plan for the node identified hgde_nbrin the
event that the source endpoiit of the subject bundle matchesalifier.

¢ planrule node_nbr qualifier duct_expression
The change planrule command. Thiscommand changes the duct expression for the indicated
planrule.

d planrule node_nbr qualifier
The delete planrule command. Thiscommand deletes the planrule identified tyde_nbrand
qualifier.

i planrule node_nbr qualifier
This command will print information (the duct expression) about the planrule identifieddey nbr
andqualifier.

| planrule node_nbr
This command lists all planrules in the plan for the indicated node.

EXIT COMMANDS
a exit first_node_nbr last_node_nbr gateway_endpoint_ID
The add exit command. Thicommand establishes dexit’’ for static dediult routing as described
above.

c exit first_node_nbr last_node_nbr gateway_endpoint_ID
The change exitcommand. Thixommand changes thatgvay node number for thexé identified
by first_ node_nbandlast_node_nbr

d exit first_node_nbr last_node_nbr
The delete exit command. Thiscommand deletes the exit identified Wiyst node_nbrand
last_node_nhr

i exit first_node_nbr last_node_nbr
This command will print information (theatevay endpoint ID) about the it identified by
first_node_nbrndlast_node_nhr

| exit
This command lists all exits defined in tR&l database for the local node.

perl v5.18.2 2016-09-07 2

IPNRC(5) BPconfiguration files IPNRC(5)

EXITRULE COMMANDS
a exitrule first_node_nbr last_node_nbr qualifier gateway_endpoint_ID
The add exitrule command. Thisommand establishes an exitrule, i.e.,ategay endpointID that
overrides the defaultagavay endpointiD of the exit identified byirst_ node_nbandlast_node_nbim
the event that the source endpoiit of the subject bundle matchegsalifier.

c exitrule first_node_nbr last_node_nbr qualifier gateway_endpoint_ID
Thechange exitrulecommand. Thisommand changes the gasy EID for the indicated exitrule.

d exitrule first_node_nbr last_node_nbr qualifier
The delete exitrule command. Thiscommand deletes thexigule identified byfirst_node_nbr
last_node_nhrand qualifier.

i exitrule first_node_nbr last_node_nbr qualifier
This command will print information (the duct expression) about xiteuke identified bynode_nby
last_node_nhrand qualifier.

| exitrule first_node_nbr last_node_nbr
This command lists all exitrules for the indicated exit.

EXAMPLES
apan 18 Itp/18
Declares the egress plan to use for transmission from the local node to neighboring n&ge 18.
default, ary bundle for which the computednéxt hop’ node is node 18 will be queued for
transmission onTP outduct 18.

a panrule 18 * 9 tcp/119.31.01.18:4016
Declares an egress plaveide that applies to transmission to node 18 gflamdle whose source is
node 9, rgardless of the service thatas the source of thaibdle. Eachsuch bundle must be queued
for transmission orrCP outduct 119.31.01.18:4016 rather than the default (transmissidan
outduct 18).

a it 1 999 dtn://stagate
Declares a default route fouibdles destined for all nodes whose numbers are in the range 1 through
999 inclusve: absent ag other routing decision, such bundles are to be forwarded to “dtngsar

SEE ALSO
ipnadmin(1)

perl v5.18.2 2016-09-07 3

LGFILE(5) BPconfiguration files LGFILE(5)

NAME
Igfile — ION Load/Go source file

DESCRIPTION
ThelON Load/Go system enables theseution ofION administratve programs at remote nodes:

Thelgsendprogram reads a Load/Go source file from a local file system, encapsulates the text of that
source file in a bundle, and sends the bundle to a desigpiEiteeindpoint on the remote node.

An lIgagent task running on the remote node, which has openedDhidt endpoint for indle
reception, recees the extracted payload of thermdle — thetext of the Load/Go source file- and
processes it.

Load/Go source file content is limited to newline-terminated linesS@fil characters. Morspecifically,

the text of ag Load/Go source file is a sequencdinnd setsof two types:file capsulesanddirectives Any
Load/Go source file may contain yamumber of file capsules and yamumber of directies, freely
intermingled in ap order, but the typical structure of a Load/Go source file is simply a single file capsule
followed by a single direate.

Eachfile capsulds structured as a single start-of-capsule line, followed by zero or more capsule text lines,
followed by a single end-of-capsule line. Each start-of-capsule line is of this form:
[file_name
Each capsule text line can beydime of ASCII text that does not begin with an opening ([) or closing (])
bracket character.
A text line that begins with a closing bracket character (]) is interpreted as an end-of-capsule line.
A directiveis ary line of text that is not one of the lines of a file capsule and that is of this form:
Idirective_text

Whenlgagentidentifies a file capsule, it copies all of the capsuist lines to a ne file namedile_name

that it creates in the currenbvking directory Whenlgagentidentifies a directie, it executes the directe

by passinglirective_texto thepseudoshell(junction (seglatform(3)). Igagentprocesses the line sets of

a Load/Go source file in the order in whichytteppear in the file, so thdirective_textbf a directve may
reference a file thatag created as the result of processing a prior file capsule line set in the same source
file.

Note that Igfile directies ae passed tpseudoshell()which on a VxWorks platform will aays spawn a

new task; the first argument dhirective_teximust be a symbol that Vxks can resokr to a finction, not

a shell command.Also note that the arguments directive_textwill be actual task arguments, not shell
command-line arguments, so yhaould neer be enclosed in double-quote characters (However, any

argument that contains embedded whitespace must be enclosed in single-quote characters (') so that
pseudoshell(¥an parse it correctly.

EXAMPLES
Presenting the following lines of source file texigsend

[ecmd33.bprc
X protocol Itp
]
Ibpadmin cmd33.bprc
should cause the receiving node to halt the operation @ff theorvergence-layer protocol.

SEE ALSO
lgsend1), lgagent (1), platform(3)

perl v5.18.2 2016-09-07 1

BSSPRC(5) BSSPBonfiguration files BSSPRC(5)

NAME
bssprc — Bundle Streaming Service Protocol management commands file

DESCRIPTION
BSSP management commands are passetisgpadmin either in a file of tet lines or interactiely at
bsspadmiris command prompt (:). Commands are interpreted line-by line, wahbtly one command per
line. Theformats and effects of tt®SSPmanagement commands are describednbelo

COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by bsspadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

1 est_max_nbr_of_sessions
The initialize command. Untithis command is»ecuted,BSSPis not in operation on the locBDN
node and mogisspadmircommands will fail.

The command usesst_max_nbr_of_sessiottsconfigure the hashtable it will use to manage access to
transmission sessions that are currently in progredsor optimum performance,
est_max_nbr_of sessioskould normally equal orxeeed the summation ohax_nbr_of sessions
over dl spans as discussed be&lo

a span peer_engine_nbr max_nbr_of sessions maxkbkize BE-BSO_commandRL-BSO_command
[queuing_latendy
The add spancommand. Thiscommand declares thatspanof potentialBSSPdata interchange
exists between the localssPengine and the indicated (neighbori@HSPengine.

The max_block_sizés expressed as a number of bytes of datax_block_sizés used to configure
transmission buffer sizes; as such, it limits client data item size.

max_nbr_of _sessiormnstitutes, in effect, the loc8iSSPengine$ retransmission‘window” for
this span. The retransmission windows of the spans imposaecfiatrol on BSSP transmission,
reducing the chance ofx allocation of allaitable space in théON nodes data store toBSSP
transmission sessions.

BE-BSO_commanis script tet that will be eecuted wherBSSPis started on this node, to initiate
operation of the bestfefts transmission channel task for this span. Note tha€el_engine_nbr
will automatically be appended tBE-BSO_commandy bsspadmin before the command is
executed, so only the link-service-specific portion of the command should bhédguloin the
LSO_commanditring itself.

RL-BSO_commanib script text that will bexecuted wherBSSPis started on this node, to initiate
operation of the reliable transmission channel task for this sidate that "peer_engine_nbBrwill
automatically be appended RL—-BSO_commantby bsspadminbefore the command isecuted, so
only the link-service-specific portion of the command should beiged in theLSO_commandtring
itself.

queuing_latencys the estimated number of seconds that weeet to lapse between reception of a
sgment at this node and transmission of an acknowledgipges®, due to processing delay in the
node. (Se¢he 'm ownqgtime’ command belo) The default value is 1.

If queuing latency negdive rumber the absolute value of this number is used as the actual queuing
lateny and session purging is enabled; otherwise sessiogimuuis disabled. If session purging is
enabled for a span then at the end of geriod of transmissionver this span all of the spané&xport

perl v5.18.2 2016-09-07 1

BSSPRC(5) BSSPBonfiguration files BSSPRC(5)

sessions that are currently in progress are automatically canceled. Notionally this forceamdirfgrw
of theDTN bundles in each sessiantlock, to aoid having to wait for the restart of transmission on
this span before those bundles can be successfully transmitted.

¢ Ypan peer_engine_nbr max_nbr_of sessions maxkbkize' BE-BSO_commandRL-BSO_command
[queuing_latendy
The change sparcommand. Thisommand sets the indicated sgaginfiguration parameters to the
values provided as arguments.

d span peer_engine_nbr
The delete spancommand. Thiscommand deletes the span identified gger_engine_nbr The
command will fail if ay outbound segments for this span are pending transmissiory ontzound
blocks from the peer engine are incomplete.

i span peer_engine_nbr
This command will print information (all configuration parameters) about the span identified by
peer_engine_nbr

| span
This command lists all declar@$SPdata interchange spans.

s’'BE-BSI_commarnd RL-BSI_commarid
The start command. Thisommand starts reliable and bedtdt link service output tasks for all
BSSPspans (to remote engines) from the Id8aEPengine, and it starts the reliable and befsirtf
link service input tasks for the local engine.

m owngtime own_queuing_latency
The manage own queuing timecommand. Thicommand sets the number of seconds of predicted
additional lateny attributable to processing delay within the local engine itself that should be included
wheneer BSSPcomputes the nominal round-trip time for an exchange of data wjttearote engine.
The default value is 1.

X Thestop command. Thicommand stops all link service input and output tasks for the ResiP
engine.

w {0]| 1] <activity_spec>}
TheBSSPwatch command. Thigommand enables and disables production of a continuous stream of
user-selecte@SSPactiity indication charactersA watch parameter ofl’’ selects allBSSPactivity
indication characters,0’’ de-selects alBSSPactuity indication characters; smother activity _spec
such as‘'df="" selects all activity indication characters in the string, de-selecting all otae&Pwill
print each selected activity indication characterstdout evey time a processingvent of the
associated type occurs:

d bssp send completed

e bssp block constructed for issuance

f bssp block issued

g bssp block popped from best-efforts transmission queue
h positive ACK receved for bssp block, session ended

S bssp block receed

t bssp block popped from reliable transmission queue

= unacknowledged best-efforts block requeued for reliable transmission

{ session canceled locally by sender

h Thehelp command. Thisvill display a listing of the commands and their formats. It is the same as
the? command.

perl v5.18.2 2016-09-07 2

BSSPRC(5) BSSPBonfiguration files BSSPRC(5)

EXAMPLES
a an 19 20 4096 'udpbso nodel9.ohio.edu:5001" 'tcpbso nodel9.ohio.edu:5001"
Declares a data interchange span between the BSS#engine and the remote engin®N node)
numbered 19. There can be at most 20 concurrent sessiBaSRiransmission activity to this node.
Maximum block size for this span is set to 4096 bytes, and the edseind reliable link service
output tasks that are initiated whB8SPis started on the loc&bN node will execute theudpbsoand
tcpbsoprograms as indicated.

m owvngtime 2
Sets local queuing delay alance to 2 seconds.

SEE ALSO
bsspadmirfl), udpbsi(1), udpbsql), tcpbsi(1), tcpbsa(1)

perl v5.18.2 2016-09-07 3

CFDPRC(5)

NAME

CFDRonfiguration files CFDPRC(5)

cfdprc — CCSDS File Delery Protocol management commands file

DESCRIPTION
CFDP management commands are passedfdpadmin either in a file of text lines or interaatly at
cfdpadmin’s command prompt (). Commands are interpreted line-by line, with exactly one command per

line.

Theformats and effects of theFDPmanagement commands are describedmbelo

COMMANDS

?

The help command. Thiswill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by cfdpadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

1 Theinitialize command. Untithis command is»&cuted,CFDPis not in operation on the locEDN

node and mostfdpadmincommands will fail.

a entity > <entity nbr> T protocol name> UT endpoint name> <rtt> <incstype> <outcstype>

The add entity command. Thiscommand will add a ne remote CFDP entity to the CFDP
management information bas¥alid UT protocol names are bp and tcp. Endpoint nangOgor bp,
soclet spec 1P addresgport numbe) for tcp. RTT is round-trip time, used to set ackviedgement
timers. incstype is the type of checksum to use wiadidating data receed from this entity; alid
values are 0 (modular checksum) andCR€3). outcstypeis the type of checksum to use when
computing the checksum for transmitting data to this entity.

C entity > <entity nbr> T protocol name> {T endpoint name> <rtt> <incstype> <outcstype>

The change entity command. Thicommand will change information associated with aistiag
entity in theCFDPmanagement information base.

d entity > <entity nbr>

Thedelete entitycommand. Thigommand will delete arxisting entity from theCFDPmanagement
information base.

i [<entity nbr>]

The info command. Wherentity nbr is provided, this command will print information about the
indicate entity Otherwise this command will print information about the current state of the local
CFDPentity, including the current settings of all parameters that can be managed as descnhed belo

s’UTsScommand

Thestart command. Thigommand starts the UT-layer service task for the lOE@IPentity.

m discard{0| 1}

The manage discardcommand. Thiscommand enables or disables the discarding of partially
receved files upon cancellation of a file reception.

m requirecrc{0 |1}

The manage CRC data integrity command. Thizommand enables or disables the attachment of
CRCs to all PDUs issued by the loc#DPentity.

m fillchar file_fill_character

perl v5.18.2

The manage fill character command. Thiscommand establishes the fill character to use for the
portions of an incoming file that ¥xa rot yet been receed. Thefill character is normally»@ressed
in hex, e.g., Oxaa.

2016-09-07 1

CFDPRC(5) CFDRonfiguration files CFDPRC(5)

m ckperiod check_cycle period
The manage check inteval command. Thigommand establishes the number of secondsafiitp
reception of th&eOF PDU — or following expiration of a prior checkycle — afterwhich the local
CFDPwill check for completion of a file that is being resi.

m maxtimeoutscheck_cycle_limit
Themanage check limitcommand. Thigommand establishes the number of check cyqéeations
after which the locaCFDP entity will invoke the check cycle expiration fault handler upepigation
of a check cycle.

m maxtrnbr max_transaction_number
The manage transaction numberscommand. Thiscommand establishes the largest possible
transaction number used by the loc&bP entity for file transmission transactions. After this number
has been used, the transaction number assigned to the next transaction will be 1.

m segsizemax_bytes_per_file_data_segment
The manage segment sizeommand. Thixommand establishes the number of bytes of file data in
each file datePDU transmitted by the locatFDP entity in the absence of an application-supplied
reader function.

m inactivity inactivity _period
The manage inactvity period command. This command establishes the number of seconds that a
CFDPfile transfer is allowed to go idle before being canceled for inactiMity default is one day.

X Thestopcommand. Thigommand stops the UT-layer service task for the I0E@IPengine.

w{0|1 | <activity_spec>}
The CFDP watch command. Thixommand enables and disables production of a continuous stream
of userselectedCFDP actvity indication charactersA watch parameter of1” selects allCFDP
actvity indication characters;'0"’ de-selects allCFDP actwvity indication characters; gnother
activity_specsuch as'p’’ selects all activity indication characters in the string, de-selecting all others.
CFDPwiIll print each selected activity indication charactestiout evey time a processingvent of
the associated type occurs:

p CFDP PDUtransmitted
q CFDP PDUreceied
h Thehelp command. Thisill display a listing of the commands and their formats. It is the same as
the? command.
EXAMPLES

m requirecrc 1
Initiates attachment of CRCs to all subsequently isQu@PPDUSs.

SEE ALSO
cfdpadmin(1), bputa(1)

perl v5.18.2 2016-09-07 2

DTPCRC(5) DTPQonfiguration files DTPCRC(5)

NAME
dtpcrc — Delay-Tolerant Payload Conditioning management commands file

DESCRIPTION
DTPC management commands are passedtpcadmin either in a file of text lines or interagtly at
dtpcadmin’s command prompt (). Commands are interpreted line-by line, with exactly one command per
line. Theformats and effects of tHBTPC management commands are describedwbelo

COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by dtpcadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

1 Theinitialize command. Untithis command isx@cuted,DTPC is not in operation on the locEDN
node and mogtpcadmincommands will fail.

a profile profilelD maxRtx ggrSizeLimit ggrTimeLimit TTL class_of_service eport_to_endpointlD
[statusReportFlags
The add profile command. Thisommand notes the definition of a singlRTC transmission profile.
A transmission profile asserts tAe andDTPC configuration parametemiues that will be applied to
all application data items (encapsulatediPC application data units and transmitted in bundles) that
are issued subject to this profil@ransmission profiles are globally defined; all transmission profiles
must be provided, with identical parameter values, to all inter-communicatih@protocol entities.

profilelD must be the posite integer that uniquely defines the profile.

maxRtxis the maximum number of timesyasingle DTPC ADU transmitted subject to the indicated
profile may be retransmitted by tbaPC entity. If maxRtxis zero, then th®TPC transport service
features (in-order deféry, end-to-end acknowledgment, etc.) are disabled for this profile.

agg SizeLimitis the size threshold for concluding aggaén of an outbounchDU and requesting
transmission of thadDU. If aggSizeLimitis zero, then th®TPC transmission optimization features
(aggredion and elision) are disabled for this profile.

agg TimeLimitis the time threshold for concluding aggsgon of an outbound\DU and requesting
transmission of thaaDU. If aggTimeLimitis zero, then th®TPC transmission optimization features
(aggredion and elision) are disabled for this profile.

class_of_services the class-of-service string as defineddjptrace(1).

report_to_endpointiDidentifies theBP endpoint to which all status reports generated framdkes
transmitted subject to this profile will be sent.

statusReportFlagsf present, must be a sequence of status report flags, separated by commas, with no
embedded whitespace. Each status report flag must be one of the followieg:fred, dlv, del.

d profile profileld
The delete profile command. Thisommand erases the definition of th&PC transmission profile
identified byprofileld.

i profile profileld
This command will print information (all configuration parameters) about the profile identified by
profileld.

perl v5.18.2 2016-09-07 1

DTPCRC(5)

DTPQonfiguration files DTPCRC(5)

| profile

S

X

This command lists all knowbTPCtransmission profiles.
Thestart command. Thigommand starts tHeTPC clock and daemon tasks for the loB&node.

Thestop command. Thiommand stops allTPCtasks and notifies allTPC applications thaDTPC
service has been stopped.

w{0| 1| <activity_spec>}

The DTPC watch command. Thigommand enables and disables production of a continuous stream
of userselectedDTPC activity indication charactersA watch parameter of1’’ selects allDTPC
actvity indication characters;'0’’ de-selects allDTPC actvity indication characters; snother
activity_specsuch as‘o<r>" selects all activity indication characters in the string, de-selecting all
others. DTPC will print each selected activity indication charactestdout evey time a processing
event of the associated type occurs:

0 new aggregator created for profile and destination endpoint
\< newADU aggreation initiated

r application data item added to agggtéon

\> aggregaion complete, outboundlDU created

- outboundADU sent viaBP

I ADU end-to-end acknowledgment sent
m ADU deleted due toTL expiration

n ADU gqueued for retransmission

i inboundADU collector created

u inboundADU receied
% ADU sequence gap detected
? inboundADU discarded
* ADU sequence gap deleted due to impendiby TTL expiration
$ inboundADU collector reset
h Thehelp command. Thisill display a listing of the commands and their formats. It is the same as
the? command.
EXAMPLES

a profile 5 6 1000000 5 3600 0.1 dtn:none

SEE ALSO

Notes the definition dbTPCtransmission profile 5: transport services are enabled, with an end-to-end
retransmission limit of 5; transmission optimization service is enabled, initiatimgjébtransmission
whenever the aggrgaion of data items queued for transmission subject to this profile exceeds one
million bytes or is more than fiveeconds old; the transmittediftdles will hae ane-hour lifetime,

will not be subject to custody transfevill be sent at‘standard’ priority, and will not be tracked by

ary bundle status report production.

dtpcadmin(1), bptrace(1)

perl v5.18.2

2016-09-07 2

IONCONFIG(5) ICIconfiguration files IONCONFIG(5)

NAME
ionconfig — ION node configuration parameters file

DESCRIPTION
ION node configuration parameters are passéahimdmin in a file of parameter name/value pairs:

parameter_name parameter_value
Any line of the file that begins with a '# character is considered a comment and is ignored.

ionadmin supplies default values for yarparameters for which no value is provided in the node
configuration parameters file.

The applicable parameters are as follows:

sdrName
This is the character string by which th@®N node’sSDR database will be identified. (Note that the

SDR database infrastructure enables multiple databases to be constructed on a single host)computer
The default value is “ion”.

sdrwWmsSize
This is the size of the block of dynamic memory that will be reserved\asepworking memory for
the SDR system itself. A block of system memory of this size will be allocated (e.g.miajloc() at
the time thesSDR system is initialized on the host comput&he default value is 2000000 (1 million
bytes).

configFlags
This is the bitwise'OR” (i.e., the sum) of the flagalues that characterize t8®R database to use for
this ION node. The default value is 13 (that is,SDR_IN_DRAM | SDR_REVERSIBLE |
SDR_BOUNDED. TheSDRconfiguration flags are documented in detaddn(3). To recap:

SDR_IN_DRAMs0(1)

TheSDRis implemented in a region of shared memdBossibly with write-through to a file, for
fault tolerance.]

SDR_IN_FILESO0(2)

The SDRis implemented as a file. [Possibly cached in a region of shared mdordaster data
retrieval.]

SDR_REVERSIBLEs0(4)
Transactions in theDR are written ahead to a log, making thewersible.

SDR_BOUNDEDs0(8)
SDRheap updates are not allowed to cross object boundaries.
heapkey
This is the shared-memoryek by which the pre-allocated block of shared dynamic memory to be

used as heap space for tl§BR can be located, if applicable. The default value is -1, i.e., not
specified and not applicable.

pathName
This is the fully qualified path name of the directory in which are located (a) the file to be used as heap
space for thiSDR (which will be created, if it doesnélready exist), in thevent that theSDRis to be
implemented in a file, and (b) the file to be used to log the database updatesrteamsaction,
in the eent that transactions in th&DRare to be neersible. Thedefault value igtmp.

heapWords
This is the number of words (of 32 bits each on a 32-bit machine, 64 bits each on a 64-bit machine)
of nominally non-volatile storage to use f@N’s SDR database. Ithe SDRis to be implemented in
shared memory and nweaplkeyis specified, a block of shared memory of this size will be allocated
(e.g., bymalloc() at the time the node is created. If thBRis to be implemented in a file and no file
namedion.sdr exists in the directory identified yathNamethen a file of this name and size will be
created in this directory and initialized to all binary zero€ke default value is 250000 words (1

perl v5.18.2 2016-09-07 1

IONCONFIG(5) ICIconfiguration files IONCONFIG(5)

million bytes on a 32-bit computer).

logSize
This is the number of bytes of shared memory to usedfis SDR transaction log. If zero (the
default), the transaction log is written to a file rather than to membitye log is to be implemented
in shared memory and riogKeyis specified, a block of shared memory of this size will be allocated
(e.g., bymalloc()) at the time the node is created.

logKey
This is the shared-memoryek by which the pre-allocated block of shared dynamic memory to be
used for the transaction log for tl8®R can be located, if applicable. The default value is -1, i.e., not
specified and not applicable.

wmKey
This is the shared-memonek by which thislION nodes working memory will be identified.The

default value is 65281.

wmAddress
This is the address of the block of dynamic memesyvolatile storage, which is not expected to

persist across a system rebeet to use for thisiON nodes working memory If zero, the wrking
memory block will be allocated from system memory (e.gmbjloc()) at the time the localON node
is created. The default value is zero.

wmsSize
This is the size of the block of dynamic memory that will be used fori@Nsnodes working

memory If wmAddresss zero, a block of system memory of this size will be allocated (e.g., by
malloc() at the time the node is created. The default value is 5000000 (5 million bytes).

EXAMPLE

configFlags 1
heapWords 2500000
heapkey -1
pathName /usr/ion
wmSize 5000000
wmAddress 0

SEE ALSO

ionadmin(1)

perl v5.18.2 2016-09-07 2

IONRC(5) ICl configuration files IONRC(5)

NAME
ionrc — ION node management commands file

DESCRIPTION
ION node management commands are passéhsmimin either in a file of tet lines or interactiely at
ionadmin’s command prompt (:).Commands are interpreted line-by line, with exactly one command per
line. Theformats and effects of the@N node management commands are describegvbelo

TIME REPRESENTAT ION
For many ION node management commands, tinradues must be passed aguaments. Egry time \alue
may be represented in either obtformats. Absolutéime is expressed as:

yyyymnidd-hh:mmss

Relatve ime (a number of seconds following the curneférence timewhich defaults to the current time
at the momenibnadminbegan execution tut which can bewerridden by theat command described bek)
is expressed as:

+SS

COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by ionadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

1 node_numbef{ ion_config_filenamg’.’ | " }]
Theinitialize command. Untithis command isxecuted, the localON node does not exist and most
ionadmincommands will fail.

The command configures the local node to be identifietbdg _numbera CBHE node number which
uniquely identifies the node in the delay-tolerant oekw It also configure$ON’s data spaceSDR)
and shared working-memorygien. For this purpose it uses a set of default settings if ganaent
follows node_numberor if the argument follwing node_numberis ”; otherwise it uses the
configuration settings found in a configuration file. If configuration file nanseprovided, then the
configuration files name is implicitly 'hostnamedonconfig"; otherwiseion_config_filenamés taken
to be the explicit configuration file nham®lease se@nconfig(5) for details of the configuration
settings.

For example:
119"

would initialize ION on the local computeessigning the localON node the node number 19 and
using default values to configure the data space and shared working-memory region.

@ time
Theat command. Thiss used to set the reference time that will be used for interpretinyeciate
values from nav until the next revision of reference time. Note that the neference time can be a
relative time, i.e., an offset beyond the current reference time.

a contact start_time stop_time source_node dest_node xmit_datd catédence
Theadd contactcommand. Thisommand schedules a period of data transmissiongoante_node
to dest_node The period of transmission will beginstart_timeand end astop_timeand the rate of
data transmission will bemit_data_ratebytes/second. Owonfidence in the contact @efits to 1.0,
indicating that the contact is scheduled — not that non-occurrence of the contact is impossible, just that

perl v5.18.2 2016-09-07 1

IONRC(5) ICl configuration files IONRC(5)

occurrence of the contact is planned and scheduled rather than merely imputed from past node
behavior In the latter casegonfidenceindicates our estimation of the likelihood of this potential
contact.

d contact start_time source_node dest_node
Thedelete contactcommand. Thicommand deletes the scheduled period of data transmission from
source_nodeo dest_nodestarting atstart_time To delete all contacts between some pair of nodes,
use ' asstart_time

i contact start_time source_node dest_node
This command will print information (the stop time and data rate) about the scheduled period of
transmission fronsource_nodé¢o dest_nodé¢hat starts agtart_time

| contact
This command lists all scheduled periods of data transmission.

arangestart_time stop_time one_node the_other_node distance
The add rangecommand. Thiommand predicts a period of time during which the distance from
one_nodeo the_other_nodevill be constant to within one light second. The period will begin at
start_timeand end astop_time and the distance between the nodes during that time wdidtence
light seconds.

NOTE that the ranges declared by these commands are directi@ildoes not automatically
assume that the distance from node A to node B is the same as the distance from node B to node A.
While this symmetry is certainly true of geographic distance, the range that cor@gris the

lateny in propagting a signal from one node to the other; this latenay be different in dferent
directions because (for example) the signal from B to A might need to be forwarded aldegeatdif
convergence-layer network path from the one used for the signal from A to B.

As a corenience,|ON interprets a range command in which the node number of the first cited node is
numerically less than that of the second cited node as implicitly declaring the same distance in the
reverse directionUNLESS a cond range command is present that cites the sameottes in the
opposite ordemwhich overrides the implicit declarationA range command in which the node number

of the first cited node is numerically greater than that of the second cited node ABSI@SUTELY
NOTHING about the distance in theveese direction.

d rangestart_time one_node the_other_node
Thedelete rangecommand. Thigommand deletes the predicted period of constant distance between
one_nodeandthe_other_nodstarting atstart_time To delete all ranges between some pair of nodes,
use ™ asstart_time

i rangestart_time one_node the_other_node
This command will print information (the stop time and range) about the predicted period of constant
distance betweeone _nodendthe_other_nodéhat starts astart_time

I range
This command lists all predicted periods of constant distance.

m utcdeltalocal_time_sec_after UTC
This management command sE8I’'s understanding of the current difference between cowact
time and the time alues reported by the clock for the lo¢@N nodes computer This delta is
automatically applied to locally obtained time values whien#N needs to kne the current time.
For machines that useTC natively and are synchronized byTP, the value of this delta should be 0,
the default.

m clockerr known_maximum_clock_error
This management command sEsl’s understanding of the accusaof the scheduled start and stop
times of planned contacts, in seconds. The default value \l8hkn revising local data transmission
and reception rateggnadminwill adjust contact start and stop times by this irdéta be sure not to
send bundles that aré before the neighbor expects data \arior to discard bundles that ave
slightly before thg were expected.

perl v5.18.2 2016-09-07 2

IONRC(5) ICl configuration files IONRC(5)

m clocksync[{1]0}]
This management command reports whether or not the computer on which thelocalde is
running has a synchronized clock, as discussed in the description imh@lecklsSynchronized()
function (on (3)).

If a Boolean argument is provided when the commandxé&ueed, the characterization of the
machines dock is revised to conform with the assertadlie. Thedefault value is 1.

m production planned_data_production_rate
This management command skIsl’'s expectation of the mean rate of continuous data origination by
local BP applications throughout the period of timeeowhich congestion forecasts are computed.
For nodes that function only as routers this variable will normally be z&nealue of -1, which is the
default, indicates that the rate of local data production is umkpm that case local data production is
not considered in the computation of congestion forecasts.

m consumption planned_data_consumption_rate
This management command s&\’s expectation of the mean rate of continuous datavetglito
local BP applications throughout the period of timeeowhich congestion forecasts are computed.
For nodes that function only as routers this variable will normally be z&noalue of -1, which is the
default, indicates that the rate of local data consumption is wknin that case local data
consumption is not considered in the computation of congestion forecasts.

m inbound heap_occupancy_limjfile_system_occupancy_lifnit
This management command sets the maximum number gdogtes of storage space IION’s SDR
non-\olatile heap, and/or in the local file system, that can be used for the storage of inboundyero-cop
objects. Avalue of -1 for either limit signifiesleave unchanged. The default heap limit is 30% of
the SDRdata space’iotal heap size. The default file system limit is 1 Terabyte.

m outbound heap_occupancy_limjfile_system_occupancy_lifit
This management command sets the maximum number gdbgtes of storage space li@N’'s SDR
non-\wlatile heap, and/or in the local file system, that can be used for the storage of outbound zero-
copy objects. Avaue of -1 for either limit signifiesléave uinchanged. The default heap limit is
30% of theSDR data space’'iotal heap size. The default file system limit is 1 Terabyte.

m horizon { 0 | end_time_for_congestion_forecakts
This management command sets the end time for computed congestion for8ettstg. congestion
forecast horizon to zero sets the congestion forecast end time to infinite time in the future: if there is
ary predicted net growth in bundle storage space occypanall, following the end of the last
scheduled contact, theneatual congestion will be predictedhe default value is zero, i.e., no end
time.

m alarm ’congestion_alarm_command
This management command establishes a command which will automaticakgchéed wheneer
ionadminpredicts that the node will become congested at some future time. By default, there is no
alarm command.

m usage
This management command simply prin@N's current data space occupgnf{the number of
megabytes of space in th8DR non-wlatile heap and file system that are occupied by inbound and
outbound zero-cgpobjects), the total zero-copy-object space occupaeding, and the maximum
level of occupanyg predicted by the most receiohadmincongestion forecast computation.

r ’command_tekt
The run command. Thicommand will &ecute command_texas if it had been typed at a console
prompt. Itis used to, for example, run another administeggrogram.

s Thestart command. Thisommand starts théxclocktask on the localON node.
Thestopcommand. Thisommand stops théxclocktask on the localON node.

The help command. Thiwill display a listing of the commands and their formats. It is the same as
the? command.

perl v5.18.2 2016-09-07 3

IONRC(5) ICl configuration files IONRC(5)

EXAMPLES
@ 2008/10/05-11:30:00
Sets the reference time to 1130rC) on 5 Cctober 2008.

arange +1 2009/01/01-00:00:00 1 2 12
Predicts that the distance between nodes 1 and 2 (endpoint IDs ipn:1.0 and ipn:2.0) will remain
constant at 12 light secondgenthe interval that begins 1 second after the reference time and ends at
the end of calendar year 2009.

a wntact +60 +7260 1 2 10000
Schedules a period of transmission at 10,000 bytes/second from node 1 to node 2, starting 60 seconds
after the reference time and ending exactly baurs (7200 seconds) after it starts.

SEE ALSO
ionadmin(1), rfxclock(1), ion(3)

perl v5.18.2 2016-09-07 4

IONSECRC(5) IClconfiguration files IONSECRC(5)

ionsecrc — ION security polftmanagement commands file

DESCRIPTION

ION security poliy management commands are passeimsecadmineither in a file of text lines or
interactvely at ionsecadmiris command prompt (:).Commands are interpreted line-by line, wittaetly
one command per line. The formats anféat of thelON security polig management commands are
described belw.

A parameter identifed as a&id_expris an ‘endpointID expressiori. For all commands, whewer the last
character of an endpoifd expression is the wild-card character '*', an applicable endpDiritmatches”
this EID expression if all characters of the endpaibtexpression prior to the last one are equal to the
corresponding characters of that endpoint Otherwise an applicable endpoilt “ matches’the EID
expression only when all characters of B1B andEID expression are identical.

ION’s security poligy management encompasses bBkhsecurity and.TP authentication.ION has bgun
supporting the proposed ‘streamlined” Bundle Security Protocol (Internet Draft
draft-birrane—dtn—-sbsp-00) in place of standard Bundle Security Proeeol6257. SinceSBSPis not

yet a publishedRFC, IONs Bundle Protocol security mechanisms will not necessarily interoperate with
those of otheBP implementations. Thiss unfortunate but (we hope) temporasg SBSPrepresents a
major impravement in bundle securitylt is possible that thesBSP specification will change sonwwbat
between ne and the timeSBSPis published as aRFC,andION will be revised as necessary to conform to
those changes, but in the meantime we belieat the adantages oEBSPmalke it more suitable thaRFC
6257as a foundation for the ddopment and deployment of secl&N applications.

COMMANDS

? Thehelp command. Thiswill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.
e{1|0}

Echo control. Setting echo to 1 causes all output printed by ionsecadmin to be logged as well as sent

to stdout. Setting echo to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

1 Theinitialize command. Untilthis command isxecuted, the localON node has no security pojic
database and masinsecadmircommands will fail.

a key key_name file_name
Theadd key command. Thicommand adds a namedykwalue to the security poljcdatabase. The
content offile_nameis taken as the value of theyk Named leys can be referenced by other elements
of the security polig database.

¢ keykey_name file_name
Thechange ley command. Thisommand changes thalue of the nameddy; obtaining the ne key
value from the content dfle_name

d key key_name
Thedelete keycommand. Thisommand deletes thek identified byname

i keykey_name
This command will print information about the nameg, k.e., the length of its current value.

I key
This command lists alldys in the security polig database.

a bspbabrule sender_eid_expr receiver_eid_expt [ciphersuite_namedy name }
The add bspbabrulecommand. Thixommand adds a rule specifying the manner in which Bundle
Authentication Block BAB) validation will be applied to all bundles sent fromyamde whose
endpoints’ IDs matchsender_eid_expand receied at aiy node whose endpoints’ IDs match

perl v5.18.2 2016-09-07 1

IONSECRC(5) IClconfiguration files IONSECRC(5)

receiver_eid_expr Both sender_eid_exprand receiver_eid_exprshould terminate in wild-card
characters, because both the security source and security destinat@xBodi@ actually nodes rather
than individual endpoints.

If a zero-length string (") is indicated instead otighersuite_naméhenBAB validation is disabled
for this sender/recedr EID expression pair: all indles sent from nodes with matching administeati
endpoint IDs to nodes with matching administratiendpoint IDs will be immediately deemed
authentic. Otherwisey bundle from a node with matching administvatendpointID to a node with
matching administrate endpointiD will only be deemed authentic if it contain®aB computed via
the ciphersuite named lmyjphersuite_namesing a ey value that is identical to the current value of
the key ramedkey _namaen the local security policdatabase.

NOTE: if the security polig database contains nBAB rules at all, therBAB authentication is
disabled; all bundles resed from all neighboring nodes are considered authem@iterwise,BAB
rulesmust be defined for all nodes from which bundles are to bewesieall bundles receed from
ary node for which n@AB rule is defined are considered inauthentic and are discarded.

¢ bspbabrule sender_eid_expr receiver_eid_expt [ciphersuite_namedy name }
Thechange bspbabrulecommand. Thigommand changes the ciphersuite name aneforme for
the BAB rule pertaining to the sender/rec®iEID expression pair identified bgender_eid_expand
receiver_eid_expr Note that theeid_exps must exactly match those of the rule that is to be modified,
including ary terminating wild-card character.

d bspbabrule sender_eid_expr receiver_eid_expr
The delete bspbabrule command. Thiscommand deletes th®AB rule pertaining to the
sender/recger EID expression pair identified bgender_eid_expandreceiver_eid_expr Note that
the eid_exps nust exactly match those of the rule that is to be deleted, includingeeminating
wild-card character.

i bspbabrule sender_eid_expr receiver_eid_expr
This command will print information (the ciphersuite amy kames) about thBAB rule pertaining to
sender_eid_expandreceiver_eid_expr

| bspbabrule
This command lists aBAB rules in the security poljcdatabase.

a bspbibrule source_eid_expr destination_eid_expr block_type_numbéciphersuite_namedy name }
The add bspbibrule command. Thicommand adds a rule specifying the manner in which Block
Integrity Block (BIB) validation will be applied to blocks of tyg#ock_type_numbefor all bundles
sourced at annode whose administrat endpointID matchessource_eid_expand destined for an
node whose administraé endpointID ID matcheglestination_eid_expr

If a zero-length string (") is indicated instead afiphersuite_naméenBIB validation is disabled for
this source/destinatioBID expression pair: blocks of the type indicatedbbgck type numbedn all
bundles sourced at nodes with matching adminisgaéhdpoint IDs and destined for nodes with
matching administrate endpoint IDs will be immediately deemealid. Otherwisea Hock of the
indicated type that is attached to a bundle sourced at a node with matching admessidatint|D
and destined for a node with matching administeathdpointiD will only be deemed valid if the
bundle contains a correspondiBtB computed via the ciphersuite nameddyhersuite_namaesing a
key value that is identical to the current value of tkg kaemedkey namein the local security polic
database.

¢ bspbibrule source_eid_expr destination_eid_expr block_type_numbéciphersuite_namedy name }
The change bspbibrulecommand. Thiommand changes the ciphersuite name anéfprdme for
theBIB rule pertaining to the source/destinatiEid expression pair identified bgource_eid_expand
destination_eid_expand the block identified blklock_type numberNote that theeid _exps must
exactly match those of the rule that is to be modified, includiggeaminating wild-card character.

perl v5.18.2 2016-09-07 2

IONSECRC(5) IClconfiguration files IONSECRC(5)

d bspbibrule source_eid_expr destination_eid_expr block_type_number
The delete bspbibrule command. Thiscommand deletes the&IB rule pertaining to the
source/destinatioID expression pair identified bgender_eid_expand receiver_eid_expiand the
block identified byblock type numberNote that theeid_exps must exactly match those of the rule
that is to be deleted, includingyaterminating wild-card character.

i bspbibrule source_eid_expr destination_eid_expr block_type number
This command will print information (the ciphersuite amy kames) about thBIB rule pertaining to
source_eid_expdestination_eid_expend block _type number

| bspbibrule
This command lists aBIB rules in the security poljcdatabase.

a bspbcbrule source_eid pr destination_eid_expr block_type_number|{ciphersuite_namedy name

}
The add bspbcbrule command. Thixommand adds a rule specifying the manner in which Block
Confidentiality Block BCB) encryption will be applied to blocks of tygdock type numbefor all
bundles sourced at gmode whose administrag endpointiD matchessource_eid_expand destined
for ary node whose administrag endpointiD ID matcheslestination_eid_expr

If a zero-length string '’ is indicated instead of eiphersuite_naméenBCB encryption is disabled
for this source/destinatioBID expression pair: blocks of the type indicatedigck type numben

all bundles sourced at nodes with matching adminisgagidpoint IDs and destined for nodes with
matching administrate endpoint IDs will be sent in plain e Otherwisea Hock of the indicated
type that is attached to aitdle sourced at a node with matching adminisgaéhdpoint ID and
destined for a node with matching administ@tendpointID can only be deemed decrypted if the
bundle contains a correspondiBgB computed via the ciphersuite nameddiyhersuite_namesing

a key wvalue that is identical to the current value of teg knmedkey _namen the local security polic
database.

¢ bspbcbrule source_eid_epr destination_eid_expr block_type _number|{ciphersuite_name dy name
}
Thechange bspbcbrulecommand. Thigommand changes the ciphersuite name anéfporkme for
the BCB rule pertaining to the source/destinatiBib expression pair identified bgource_eid_expr
and destination_eid_expand the block identified bplock_type_numberNote that theeid_exps
must exactly match those of the rule that is to be modified, includipgeaminating wild-card
character.

d bspbcbrule source_eid_expr destination_eid_expr block_type _number
The delete bspbcbrule command. Thiscommand deletes th&CB rule pertaining to the
source/destinatioEID expression pair identified byender_eid_expand receiver_eid_expand the
block identified byblock type numberNote that theeid_exps must exactly match those of the rule
that is to be deleted, includingyaterminating wild-card character.

i bspbcbrule source_eid_expr destination_eid_expr block_type number
This command will print information (the ciphersuite amy kames) about thBCB rule pertaining to
source_eid_expdestination_eid_expend block_type _number

| bspbcbrule
This command lists aBCB rules in the security poljcdatabase.

a Itprecvauthrule Itp_engine_id ciphersuite_nbré¢k name]
Theadd Itprecvauthrule command. Thi€ommand adds a rule specifying the manner in whic¢h
segment authentication will be applied T segments recegd from the indicatedTP engine.

A segment from the indicated TP engine will only be deemed authentic if it contains an
authentication extension computed via the ciphersuite identifiectifiyersuite_nbrusing the
applicable ky value. Ifciphersuite_nbiis 255 then the applicablek value is a hard-coded constant
and key_namemust be omitted; otherwideey nameis required and the applicablek\alue is the
current value of thedy ramedkey _namaen the local security policdatabase.

perl v5.18.2 2016-09-07 3

IONSECRC(5) IClconfiguration files IONSECRC(5)

Valid values ofciphersuite_nbare:

0: HMAC-SHA1-80 1: RSA-SHA256 255: NULL

c Itprecvauthrule Itp_engine_id ciphersuite_nbré¢lk name]

The change Itprecvauthrule command. Thisommand changes the parameters ofLifresegment
authentication rule for the indicate@P engine.

d Itprecvauthrule Itp_engine_id

Thedelete Itprecvauthrule command. Thigommand deletes tha P sggment authentication rule for
the indicated.TP engine.

i Itprecvauthrule Itp_engine_id

This command will print information (ther P engine id, ciphersuite numbend key rame) about the
LTP segment authentication rule for the indicat€# engine.

| Itprecvauthrule

This command lists allTP segment authentication rules in the security palatabase.

a Itpxmitauthrule Itp_engine_id ciphersuite_nbrélg name]

The add Itpxmitauthrule command. Thi€ommand adds a rule specifying the manner in which
segments transmitted to the indicat®@® engine must be signed.

Signing a segment destined for the indicafe® engine entails computing an authenticatigtersion
via the ciphersuite identified yiphersuite_nbiusing the applicabledy value. If ciphersuite_nbis
255 then the applicablesk value is a hard-coded constant &ed namemust be omitted; otherwise
key_nameis required and the applicabley\walue is the currentalue of the ky ramedkey_namen
the local security policdatabase.

Valid values ofciphersuite_nbare:

0: HMAC_SHA1-80 1: RSA_SHA256 255: NULL

¢ Itpxmitauthrule Itp_engine_id ciphersuite_nbr¢ly name]

The change Itpxmitauthrule command. Thixommand changes the parameters ofLifresegment
signing rule for the indicateldr P engine.

d Itpxmitauthrule Itp_engine_id

The delete Itpxmitauthrule command. Thiommand deletes tha P seggment signing rule for the
indicatedLTP engine.

i Itpxmitauthrule Itp_engine_id

This command will print information (therP engine id, ciphersuite numbend key rame) about the
LTP segment signing rule for the indicatelP engine.

| [tpxmitauthrule

This command lists allTP segment signing rules in the security pplilatabase.

x[{"| sender_eid_expr}[{" | receiver_eid_expr}[{ | bab | pib | pcb|esb}]]]

This command will clear all rules for the indicated type widie security block between the indicated
security source and security destination. If block type is omitted it defadltsigoifying “all BSP
blocks’. If both block type and security destination are omitted, security destination defaults to
signifying “all BSP security destinations’ If all three command-line parameters are omitted, then
security source defaults Tsignifying “all BSPsecurity sources”.

h Thehelp command. Thisill display a listing of the commands and their formats. It is the same as
the? command.
EXAMPLES

a key BABKEY ./babley.txt

perl v5.18.2

Adds a nev key rmmed ‘BABKEY” whose value is the content of the file “./balkxt”.

2016-09-07 4

IONSECRC(5) IClconfiguration files IONSECRC(5)

a bspbabrule ipn:19.* ipn:11 AMAC_SHA1 BABKEY
Adds aBAB rule requiring that all bundles sent from node number 19 to node number 11 contain
Bundle Authentication Blocks computed via tH®IAC_SHA1 ciphersuite using ady \alue that is
identical to the current value of theykramed “BABKEY” in the local security policdatabase.

¢ bspbabrule ipn:19.* ipn:11.*”
Changes th&AB rule pertaining to all bundles sent from node number 19 to node humbeaB1.
checking is disabled; these bundles will be automatically deemed authentic.

SEE ALSO
ionsecadmirfl)

perl v5.18.2 2016-09-07 5

LTPRC(5) TP configuration files LTPRC(5)

NAME
Itprc — Licklider Transmission Protocol management commands file

DESCRIPTION
LTP management commands are passedtpadmin either in a file of tet lines or interactiely at
Itpadmin’s command prompt (:). Commands are interpreted line-by line, witletly one command per
line. Theformats and effects of tha& P management commands are describedabelo

COMMANDS
? Thehelp command. Thiwill display a listing of the commands and their formats. It is the same as
theh command.

Comment line. Lines beginning withare not interpreted.

e{1|0}
Echo control. Setting echo to 1 causes all output printed by Itpadmin to be logged as well as sent to
stdout. Settingcho to 0 disables this behavior.

v Version number Prints out the version dfON currently installed.HINT: combine withe 1 command
to log the version number at startup.

1 est_max_export_sessions
The initialize command. Untilthis command isxecuted,LTP is not in operation on the loc&N
node and modtpadmincommands will fail.

The command usesst_max_export_sessiaiosconfigure the hashtable it will use to manage access to
export transmission sessions that are currently in progress. optimum performance,
est_max_export_sessioshould normally equal or exceed the summatiormaik_export_sessions
over dl spans as discussed be&lo

Appropriate values for the parameters configuring e&pan’ of potential LTP data e&change
between the localTP and neighboring engines are non-trivial to determiSee thelON LTP
configuration spreadsheet and accompanying documentation for details.

a Fan peer_engine_nbr max_export_sessions max_import_sessions gmgnsesize
aggegation_size_limit ggregation_time_limit LSO_commarid queuing_latendy
Theadd spancommand. Thigommand declares thatspanof potentialLTP data interchangexests
between the localTP engine and the indicated (neighboringp engine.

The max_segment_sizand aggegation_size_limitare expressed as numbers of bytes of data.
max_segment_sitieits the size of each of the segments into which each outbountldekavill be
divided; typically this limit will be the maximum number of bytes that can be encapsulated within a
single transmission frame of the underlylimk service

aggegation_size_limitlimits the number ofLTP service data units (e.g., bundles) that can be
aggregaed into a single block: when the sum of the sizes of all service data unitgaegrato a
block exceeds this limit, aggydion into this block must cease and the block must gmeated and
transmitted.

aggegation_time_limitalternatvely limits the number of seconds thatyasingle export session block
for this span will sait aggregaion before it is segmented and transmittegndiess of size.The
aggregdion time limit prevents undue delay before the transmission of data during periodsvof lo
activity.

max_export_sessiortonstitutes, in effect, the localP engines retransmission‘window’ for this
span. Theetransmission windows of the spans impose flontrol onLTP transmission, reducing the
chance of allocation of allvailable space in thBDN nodes data store taTP transmission sessions.

max_import_sessions simply the neighoring engiree’ovn value for the correspondingcport
session parameter; it is the neighboring engireiransmission winde size for this span. It reduces
the chance of allocation of alalable space in theDN nodes data store taTP reception sessions.

LSO_commands script text that will be »ecuted whenLTP is started on this node, to initiate

perl v5.18.2 2016-09-07 1

LTPRC(5) TP configuration files LTPRC(5)

operation of a link service output task for this sphiote that "peer_engine_nBrwill automatically
be appended t€SO_commandy Itpadmin before the command isxecuted, so only the link-
service-specific portion of the command should be provided ibSe commandtring itself.

queuing_latencys the estimated number of seconds that weeet to lapse between reception of a
segment at this node and transmission of an acknowledgimmes#, due to processing delay in the
node. (Se¢he 'm ownqgtime’ command belo) The default value is 1.

If queuing latency negdive rumber the absolute value of this number is used as the actual queuing
latengy and session purging is enabled; otherwise sessioginmuis disabled. If session purging is
enabled for a span then at the end of period of transmissionver this span all of the span&xport
sessions that are currently in progress are automatically canceled. Notionally this forceamirigrw

of theDTN bundles in each sessia@ntiock, to aoid having to wait for the restart of transmission on
this span before those bundles can be successfully transmitted.

c an peer_engine_nbr max_export_sessions max_import_sessions gmensesize
aggegation_size_limit ggregation_time_limit LSO_commarid queuing_latendy
The change sparcommand. Thigommand sets the indicated sgaginfiguration parameters to the
values provided as arguments.

d span peer_engine_nbr
The delete spancommand. Thiscommand deletes the span identified gger_engine_nbr The
command will fail if aiy outbound segments for this span are pending transmissiory éntzound
blocks from the peer engine are incomplete.

i span peer_engine_nbr
This command will print information (all configuration parameters) about the span identified by
peer_engine_nbr

| span
This command lists all declaré@P data interchange spans.

s’'LSIcommand
The start command. Thiscommand starts link service output tasks forlalP spans (to remote
engines) from the locallP engine, and it starts the link service input task for the local engine.

m heapmaxmax_database_heap_per_block
Themanage heap for block acquisitiorcommand. Thigommand declares the maximum number of
bytes ofSDR heap space that will be occupied by the acquisition pfsargle LTP block. All data
acquired in excess of this limit will be written to a temporary file penditgetion and dispatching
of the acquired blockDefault is the minimum allowed value (560 bytes), which is the approximate
size of azCOfile reference object; this is the minimB8DR heap space occupanit the event that all
acquisition is into a file.

m screening{y|n}
The manage sceeningcommand. Thiommand enables or disables the screening ofveecet P
seggments per the periods of scheduled reception in the sianigact graph. By default, screening is
disabled — thats, LTP segments from a gen remoteLTP engine [ON node) may be accepteden
when thg arrive during an interal when the contact graph says the data rate from that engine to the
local LTP engine is zero. When screening is enabled, sugimeets are silently discarded. Note that
when screening is enabled the ranges declared in the contact graph must be accurate and clocks must
be synchronized; otherwise, segments will bevimgi at times other than the scheduled contact
intervals and will be discarded.

m owngtime own_queuing_latency
The manage avn queuing time command. Thicommand sets the number of seconds of predicted
additional lateng attributable to processing delay within the local engine itself that should be included
wheneer LTP computes the nominal round-trip time for an exchange of data wjtheamote engine.
The default value is 1.

perl v5.18.2 2016-09-07 2

LTPRC(5) TP configuration files LTPRC(5)

m maxber max_expected_hit_error_rate
The manage max bit error ratecommand. Thisommand sets thexgected maximum bit error rate
that LTP should preide for in computing the maximum number of transmission efforts to initiate in
the transmission of a\gn block. (Notethat this computation is also sensitito data segment size
and to the size of the block that is to be transmitted.) The default value is .000001 (10°-6).

X The stop command. Thicommand stops all link service input and output tasks for the local
engine.

w{0| 1| <activity_spec>}
The LT P watch command. Thigommand enables and disables production of a continuous stream of
user-selected TP activity indication charactersA watch parameter of1’’ selects allLTP activity
indication characters;0"’ de-selects alLTP actiity indication characters; gnother activity _spec
such as‘df{]’ * selects all actiity indication characters in the string, de-selecting all other®. will
print each selected activity indication characterstdout evey time a processingvent of the
associated type occurs:

d bundle appended to block for next session

e segment of block is queued for transmission

f block has been fully segmented for transmission

g segment popped from transmission queue

h positive ACK receved for block, session ended

S segment receed

t block has been fully reocesd

@ negative ACK receved for block, segments retransmitted

unacknowledged checkpoint was retransmitted

+ unacknowledged report segment was retransmitted
{ export session canceled locally (by sender)
} import session canceled by remote sender
[import session canceled locally (by reee)
] export session canceled by remote reerei
h Thehelp command. Thisill display a listing of the commands and their formats. It is the same as
the? command.
EXAMPLES

aan 19 20 5 1024 32768 2 'udplso nodel9.ohio.edu:5001’
Declares a data interchange span between the Uo€akngine and the remote engin®N node)
numbered 19. There can be at most 20 concurrent sessiotoadf &ctivity to this nodeCorversely,
node 19 can ha& & most 5 concurrent sessions ofpert activity to the local hodeMaximum
segment size for this span is set to 1024 bytes, ggtioa size limit is 32768 bytes, aggetion time
limit is 2 seconds, and the link service output task that is initiated Witreis started on the loc&bN
node will xecute theudplsoprogram as indicated.

m screening n
Disables strict enforcement of the contact schedule.

SEE ALSO
Itpadmin(1), udplsi(1), udplso(1)

perl v5.18.2 2016-09-07 3

