
 1

JPL D-48259

Interplanetary Overlay Network (ION)

Design and Operation

V3.4

28 March 2016

 2

Acknowledgment

The very substantial contributions of the ION support staff at Ohio University – and

especially David Young – to the documentation of the ION system are gratefully

acknowledged.

Copyright © 2008-2016 Jet Propulsion Laboratory, California Institute of Technology

 3

Document Owner:
 Approved by:

______________________________ ________
Scott Burleigh Date
DINET Cognizant Engineer for Flight Software

Approved by:

______________________________ ________
Ross Jones Date
DINET Project Manager

Approved by:

_____________________________ ________
André Girerd Date
DINET System Engineer

Approved by:

______________________________ ________
Margaret Lam Date
DINET Software Quality Assurance Engineer

Prepared by:

______________________________ ________
Scott Burleigh Date
DINET Cognizant Engineer for Flight Software

Concurred by:

______________________________ ________
Son Ho Date
DINET Cognizant Engineer for Ground Data System

Concurred by:

______________________________ ________
Leigh Torgerson Date
DINET Cognizant Engineer for Experiment
Operation Center

 4

DOCUMENT CHANGE LOG

Change

Number

Change

Date

Pages

Affected

Changes/

Notes

General

Comments

V3.4 3/28/2016 ION 3.4 release features.

V3.3 3/4/2015 ION 3.3 release features.

V3.2 12/17/2013 ION 3.2 release features.

V3.1 9/28/2012 Document ION 3.1 release

features.

V3.0 3/22/2012 Align with ION 3.0 release

V1.13 10/13/2011 Updates for SourceForge

release

V1.12 6/11/2010 Updates for second open

source release (2.2)

V1.11 12/11/2009 BRS updates, multi-node

config.

V1.10 10/23/2009 Final additions prior to

DINET 2 experiment

V1.9 6/29/2009 Add updates for DINET 2,

including CFDP and

ionsec.

V1.8 2/6/2009 Update discussion of

Contact Graph Routing;

document status msg

formats.

V1.7 12/1/2008 Add documentation for

one-way-light-time

simulators, BP extension

interface.

V1.6 10/03/2008 Add documentation of

sm_SemUnend.

V1.5 09/20/2008 Revisions requested by JPL

SQA.

V1.4 07/31/2008 Add a section on

optimizing an ION-based

network; tuning.

V1.3 07/08/2008 Revised some details of

Contact Graph Routing.

V1.2 05/24/2008 Revised man pages for

bptrace, ltprc, bprc.

V1.1 05/18/2008 Some additional diagrams.

V1.0 04/28/2008 Initial version of the ION

design and operations

manual.

 5

Contents
1 Design ... 8

1.1 Structure and function .. 9

1.2 Constraints on the Design .. 11

1.2.1 Link constraints ... 11

1.2.2 Processor constraints ... 12

1.3 Design Principles.. 12

1.3.1 Shared memory ... 13

1.3.2 Zero-copy procedures ... 13

1.3.3 Highly distributed processing ... 14

1.3.4 Portability .. 14

1.4 Organizational Overview ... 14

1.5 Resource Management in ION ... 17

1.5.1 Working Memory.. 17

1.5.2 Heap .. 18

1.6 Package Overviews .. 19

1.6.1 Interplanetary Communication Infrastructure (ICI) 19

1.6.2 Licklider Transmission Protocol (LTP) .. 21

1.6.3 Bundle Protocol (BP) .. 22

1.6.4 Asynchronous Message Service (AMS) ... 22

1.6.5 Datagram Retransmission (DGR) ... 23

1.6.6 CCSDS File Delivery Protocol (CFDP) ... 23

1.6.7 Bundle Streaming Service (BSS) .. 23

1.7 Acronyms ... 24

1.8 Network Operation Concepts ... 24

1.8.1 Fragmentation and Reassembly .. 25

1.8.2 Bandwidth Management ... 26

1.8.3 Contact Plans .. 27

1.8.4 Route Computation ... 29
1.8.4.1 Unicast ... 30

1.8.4.2 Multicast .. 31

1.8.5 Delivery Assurance ... 32

1.8.6 Rate Control .. 33

1.8.7 Flow Control ... 34

1.8.8 Storage Management .. 34

1.8.9 Optimizing an ION-based network ... 37

1.9 BP/LTP detail – how it works .. 41

1.9.1 Databases .. 42

1.9.2 Control and data flow.. 43

1.10 Contact Graph Routing (CGR) ... 46
1.10.1 Contact Plan Messages ... 46

1.10.2 Routing Tables .. 47

1.10.3 Key Concepts .. 47

1.10.4 Dynamic Route Selection Algorithm .. 50
1.10.5 Exception Handling .. 52

 6

1.10.6 Remarks .. 53

1.11 LTP Timeout Intervals.. 55

1.12 CFDP .. 57

1.13 Additional Figures for Manual Pages ... 58

1.13.1 list data structures (lyst, sdrlist, smlist) ... 58

1.13.2 psm partition structure .. 58

1.13.3 psm and sdr block structures ... 59

1.13.4 sdr heap structure .. 59

2 Operation... 60

2.1 Interplanetary Communication Infrastructure (ICI) ... 60

2.1.1 Compile-time options.. 60

2.1.2 Build .. 64

2.1.3 Configure .. 64

2.1.4 Run .. 65

2.1.5 Test .. 66

2.2 Licklider Transmission Protocol (LTP) ... 67

2.2.1 Build .. 67

2.2.2 Configure .. 67

2.2.3 Run .. 67

2.2.4 Test .. 68

2.3 Bundle Protocol (BP) ... 69

2.3.1 Compile-time options.. 69

2.3.2 Build .. 70

2.3.3 Configure .. 70

2.3.4 Run .. 70

2.3.5 Test .. 71

2.4 Datagram Retransmission (DGR) .. 72

2.4.1 Build .. 72

2.4.2 Configure .. 72

2.4.3 Run .. 72

2.4.4 Test .. 72

2.5 Asynchronous Message Service (AMS) .. 73

2.5.1 Compile-time options.. 73

2.5.2 Build .. 73

2.5.3 Configure .. 73

2.5.4 Run .. 74

2.5.5 Test .. 74

2.6 CCSDS File Delivery Protocol (CFDP) ... 75

2.6.1 Compile-time options.. 75

2.6.2 Build .. 75

2.6.3 Configure .. 75

2.6.4 Run .. 75

2.6.5 Test .. 76

2.7 Bundle Streaming Service (BSS) ... 77

2.7.1 Compile-time options.. 77
2.7.2 Build .. 77

 7

2.7.3 Configure .. 77

2.7.4 Run .. 77

2.7.5 Test .. 77

Figures

Figure 1 DTN protocol stack ... 8

Figure 2 ION inter-task communication ... 13

Figure 3 ION software functional dependencies .. 15

Figure 4 Main line of ION data flow .. 15

Figure 5 ION heap space use ... 18

Figure 6 RFX services in ION ... 27

Figure 7 ION node functional overview .. 41

Figure 8 Bundle protocol database .. 42

Figure 9 Licklider transmission protocol database .. 42

Figure 10 BP forwarder ... 43

Figure 11 BP convergence layer output ... 43

Figure 12 LTP transmission metering.. 44

Figure 13 LTP link service output ... 44

Figure 14 LTP link service input ... 45

Figure 15 A CFDP-ION entity ... 57

Figure 16 ION list data structures .. 58

Figure 17 psm partition structure ... 58

Figure 18 psm and sdr block structures ... 59

Figure 19 sdr heap structure ... 59

 8

1 Design

The Interplanetary Overlay Network (ION) software distribution is an implementation of

Delay-Tolerant Networking (DTN) architecture as described in Internet RFC 4838. It is

designed to enable inexpensive insertion of DTN functionality into embedded systems

such as robotic spacecraft. The intent of ION deployment in space flight mission systems

is to reduce cost and risk in mission communications by simplifying the construction and

operation of automated digital data communication networks spanning space links,

planetary surface links, and terrestrial links.

A comprehensive overview of DTN is beyond the scope of this document. Very briefly,

though, DTN is a digital communication networking technology that enables data to be

conveyed between two communicating entities automatically and reliably even if one or

more of the network links in the end-to-end path between those entities is subject to very

long signal propagation latency and/or prolonged intervals of unavailability.

The DTN architecture is much like the architecture of the Internet, except that it is one

layer higher in the familiar ISO protocol “stack”. The DTN analog to the Internet

Protocol (IP), called “Bundle Protocol” (BP), is designed to function as an “overlay”

network protocol that interconnects “internets” – including both Internet-structured

networks and also data paths that utilize only space communication links as defined by

the Consultative Committee for Space Data Systems (CCSDS) – in much the same way

that IP interconnects “subnets” such as those built on Ethernet, SONET, etc. By

implementing the DTN architecture, ION provides communication software configured

as a protocol stack that looks like this:

User application, e.g., data manager

UT adapter

CFDP

(unacknowledged

mode)

AOS Prox-1

R/F, optical

TCP, BRS,

UDP, DGR

Ethernet

wire

LTP

BP DTN routing

encapsulation

packets

AMS

messaging

Remote AMS

bridging

IP Internet routing

802.11

Convergence layer adapters

1

2

3

4

Figure 1 DTN protocol stack

Data traversing a DTN are conveyed in DTN bundles – which are functionally analogous

to IP packets – between BP endpoints which are functionally analogous to sockets.

Multiple BP endpoints may reside on the same computer – termed a node – just as

multiple sockets may reside on the same computer (host or router) in the Internet.

 9

BP endpoints are identified by Universal Record Identifiers (URIs), which are ASCII text

strings of the general form:

scheme_name:scheme_specific_part

For example:

dtn://topquark.caltech.edu/mail

But for space flight communications this general textual representation might impose

more transmission overhead than missions can afford. For this reason, ION is optimized

for networks of endpoints whose IDs conform more narrowly to the following scheme:

ipn:node_number.service_number

This enables them to be abbreviated to pairs of unsigned binary integers via a technique

called Compressed Bundle Header Encoding (CBHE). CBHE-conformant BP endpoint

IDs (EIDs) are not only functionally similar to Internet socket addresses but also

structurally similar: node numbers are roughly analogous to Internet node numbers (IP

addresses), in that they typically identify the flight or ground data system computers on

which network software executes, and service numbers are roughly analogous to TCP

and UDP port numbers.

More generally, the node numbers in CBHE-conformant BP endpoint IDs are one

manifestation of the fundamental ION notion of network node number: in the ION

architecture there is a natural one-to-one mapping not only between node numbers and

BP endpoint node numbers but also between node numbers and:

 LTP engine IDs

 AMS continuum numbers

 CFDP entity numbers

Starting with version 3.1 of ION, this endpoint naming rule is experimentally extended to

accommodate bundle multicast, i.e., the delivery of copies of a single transmitted bundle

to multiple nodes at which interest in that bundle’s payload has been expressed.

Multicast in ION – “Interplanetary Multicast” (IMC) – is accomplished by simply issuing

a bundle whose destination endpoint ID conforms to the following scheme:

imc:group_number.service_number

A copy of the bundle will automatically be delivered at every node that has registered in

the destination endpoint.

(Note: for now, the operational significance of a given group number must be privately

negotiated among ION users. If this multicast mechanism proves useful, IANA may at

some point establish a registry for IMC group numbers.)

1.1 Structure and function

The ION distribution comprises the following software packages:

 ici (Interplanetary Communication Infrastructure), a set of general-purpose

libraries providing common functionality to the other packages. The ici package

 10

includes a security policy component that supports the implementation of security

mechanisms at multiple layers of the protocol stack.

 ltp (Licklider Transmission Protocol), a core DTN protocol that provides

transmission reliability based on delay-tolerant acknowledgments, timeouts, and

retransmissions. The LTP specification is defined in Internet RFC 5326.

 bp (Bundle Protocol), a core DTN protocol that provides delay-tolerant

forwarding of data through a network in which continuous end-to-end

connectivity is never assured, including support for delay-tolerant dynamic

routing. The BP specification is defined in Internet RFC 5050.

 dgr (Datagram Retransmission), an alternative implementation of LTP that is

designed for use in the Internet. Equipped with algorithms for TCP-like

congestion control, DGR enables data to be transmitted via UDP with reliability

comparable to that provided by TCP. The dgr system is provided primarily for

the conveyance of Meta-AMS (see below) protocol traffic in an Internet-like

environment.

 ams (Asynchronous Message Service), an application-layer service that is not part

of the DTN architecture but utilizes underlying DTN protocols. AMS comprises

three protocols supporting the distribution of brief messages within a network:

o The core AAMS (Application AMS) protocol, which does message

distribution on both the publish/subscribe model and the client/server

model, as required by the application.

o The MAMS (Meta-AMS) protocol, which distributes control information

enabling the operation of the Application AMS protocol.

o The RAMS (Remote AMS) protocol, which performs aggregated message

distribution to end nodes that may be numerous and/or accessible only

over very expensive links, using an aggregation tree structure similar to

the distribution trees used by Internet multicast technologies.

 cfdp (CCSDS File Delivery Protocol), another application-layer service that is not

part of the DTN architecture but utilizes underlying DTN protocols. CFDP

performs the segmentation, transmission, reception, reassembly, and delivery of

files in a delay-tolerant manner. ION’s implementation of CFDP conforms to the

“class 1” definition of the protocol in the CFDP standard, utilizing DTN (BP,

nominally over LTP) as its “unitdata transport” layer.

 bss (Bundle Streaming Service), a system for efficient data streaming over a

delay-tolerant network. The bss package includes (a) a convergence-layer

protocol (bssp) that preserves in-order arrival of all data that were never lost en

route, yet ensures that all data arrive at the destination eventually, and (b) a library

for building delay-tolerant streaming applications, which enables low-latency

presentation of streamed data received in real time while offering

rewind/playback capability for the entire stream including late-arriving

retransmitted data.

 11

Taken together, the packages included in the ION software distribution constitute a

communication capability characterized by the following operational features:

 Reliable conveyance of data over a delay-tolerant network (dtnet), i.e., a network

in which it might never be possible for any node to have reliable information

about the detailed current state of any other node.

 Built on this capability, reliable data streaming, reliable file delivery, and reliable

distribution of short messages to multiple recipients (subscribers) residing in such

a network.

 Management of traffic through such a network, taking into consideration:

o requirements for data security

o scheduled times and durations of communication opportunities

o fluctuating limits on data storage and transmission resources

o data rate asymmetry

o the sizes of application data units

o and user-specified final destination, priority, and useful lifetime for those

data units.

 Facilities for monitoring the performance of the network.

 Robustness against node failure.

 Portability across heterogeneous computing platforms.

 High speed with low overhead.

 Easy integration with heterogeneous underlying communication infrastructure,

ranging from Internet to dedicated spacecraft communication links.

1.2 Constraints on the Design

A DTN implementation intended to function in an interplanetary network environment –

specifically, aboard interplanetary research spacecraft separated from Earth and one

another by vast distances – must operate successfully within two general classes of

design constraints: link constraints and processor constraints.

1.2.1 Link constraints

All communications among interplanetary spacecraft are, obviously, wireless. Less

obviously, those wireless links are generally slow and are usually asymmetric.

The electrical power provided to on-board radios is limited and antennae are relatively

small, so signals are weak. This limits the speed at which data can be transmitted

intelligibly from an interplanetary spacecraft to Earth, usually to some rate on the order

of 256 Kbps to 6 Mbps.

The electrical power provided to transmitters on Earth is certainly much greater, but the

sensitivity of receivers on spacecraft is again constrained by limited power and antenna

 12

mass allowances. Because historically the volume of command traffic that had to be sent

to spacecraft was far less than the volume of telemetry the spacecraft were expected to

return, spacecraft receivers have historically been engineered for even lower data rates

from Earth to the spacecraft, on the order of 1 to 2 Kbps.

As a result, the cost per octet of data transmission or reception is high and the links are

heavily subscribed. Economical use of transmission and reception opportunities is

therefore important, and transmission is designed to enable useful information to be

obtained from brief communication opportunities: units of transmission are typically

small, and the immediate delivery of even a small part (carefully delimited) of a large

data object may be preferable to deferring delivery of the entire object until all parts have

been acquired.

1.2.2 Processor constraints

The computing capability aboard a robotic interplanetary spacecraft is typically quite

different from that provided by an engineering workstation on Earth. In part this is due,

again, to the limited available electrical power and limited mass allowance within which

a flight computer must operate. But these factors are exacerbated by the often intense

radiation environment of deep space. In order to minimize errors in computation and

storage, flight processors must be radiation-hardened and both dynamic memory and non-

volatile storage (typically flash memory) must be radiation-tolerant. The additional

engineering required for these adaptations takes time and is not inexpensive, and the

market for radiation-hardened spacecraft computers is relatively small; for these reasons,

the latest advances in processing technology are typically not available for use on

interplanetary spacecraft, so flight computers are invariably slower than their Earth-

bound counterparts. As a result, the cost per processing cycle is high and processors are

heavily subscribed; economical use of processing resources is very important.

The nature of interplanetary spacecraft operations imposes a further constraint. These

spacecraft are wholly robotic and are far beyond the reach of mission technicians; hands-

on repairs are out of the question. Therefore the processing performed by the flight

computer must be highly reliable, which in turn generally means that it must be highly

predictable. Flight software is typically required to meet “hard” real-time processing

deadlines, for which purpose it must be run within a hard real-time operating system

(RTOS).

One other implication of the requirement for high reliability in flight software is that the

dynamic allocation of system memory may be prohibited except in certain well-

understood states, such as at system start-up. Unrestrained dynamic allocation of system

memory introduces a degree of unpredictability into the overall flight system that can

threaten the reliability of the computing environment and jeopardize the health of the

vehicle.

1.3 Design Principles

The design of the ION software distribution reflects several core principles that are

intended to address these constraints.

 13

ION Inter-task Communication

sender receiverM

2. enqueue

2. lock3. unlock

4. unlock

Linked list

Shared memory

S

1. lock

4. give 1. take

3. dequeue

Figure 2 ION inter-task communication

1.3.1 Shared memory

Since ION must run on flight processors, it had to be designed to function successfully

within an RTOS. Many real-time operating systems improve processing determinism by

omitting the support for protected-memory models that is provided by Unix-like

operating systems: all tasks have direct access to all regions of system memory. (In

effect, all tasks operate in kernel mode rather than in user mode.) ION therefore had to

be designed with no expectation of memory protection.

But universally shared access to all memory can be viewed not only as a hazard but also

as an opportunity. Placing a data object in shared memory is an extremely efficient

means of passing data from one software task to another.

ION is designed to exploit this opportunity as fully as possible. In particular, virtually all

inter-task data interchange in ION follows the model shown in Figure 2:

 The sending task takes a mutual exclusion semaphore (mutex) protecting a linked

list in shared memory (either DRAM or non-volatile memory), appends a data

item to the list, releases the mutex, and gives a “signal” semaphore associated

with the list to announce that the list is now non-empty.

 The receiving task, which is already pended on the linked list’s associated signal

semaphore, resumes execution when the semaphore is given. It takes the

associated mutex, extracts the next data item from the list, releases the mutex, and

proceeds to operate on the data item from the sending task.

Semaphore operations are typically extremely fast, as is the storage and retrieval of data

in memory, so this inter-task data interchange model is suitably efficient for flight

software.

1.3.2 Zero-copy procedures

Given ION’s orientation toward the shared memory model, a further strategy for

processing efficiency offers itself: if the data item appended to a linked list is merely a

pointer to a large data object, rather than a copy, then we can further reduce processing

overhead by eliminating the cost of byte-for-byte copying of large objects.

 14

Moreover, in the event that multiple software elements need to access the same large

object at the same time, we can provide each such software element with a pointer to the

object rather than its own copy (maintaining a count of references to assure that the

object is not destroyed until all elements have relinquished their pointers). This serves to

reduce somewhat the amount of memory needed for ION operations.

1.3.3 Highly distributed processing

The efficiency of inter-task communications based on shared memory makes it practical

to distribute ION processing among multiple relatively simple pipelined tasks rather than

localize it in a single, somewhat more complex daemon. This strategy has a number of

advantages:

 The simplicity of each task reduces the sizes of the software modules, making

them easier to understand and maintain, and thus it can somewhat reduce the

incidence of errors.

 The scope of the ION operating stack can be adjusted incrementally at run time,

by spawning or terminating instances of configurable software elements, without

increasing the size or complexity of any single task and without requiring that the

stack as a whole be halted and restarted in a new configuration. In theory, a

module could even be upgraded with new functionality and integrated into the

stack without interrupting operations.

 The clear interfaces between tasks simplify the implementation of flow control

measures to prevent uncontrolled resource consumption.

1.3.4 Portability

Designs based on these kinds of principles are foreign to many software developers, who

may be far more comfortable in development environments supported by protected

memory. It is typically much easier, for example, to develop software in a Linux

environment than in VxWorks 5.4. However, the Linux environment is not the only one

in which ION software must ultimately run.

Consequently, ION has been designed for easy portability. POSIX™ API functions are

widely used, and differences in operating system support that are not concealed within

the POSIX abstractions are mostly encapsulated in two small modules of platform-

sensitive ION code. The bulk of the ION software runs, without any source code

modification whatsoever, equally well in Linux™ (Red Hat®, Fedora™, and Ubuntu™,

so far), FreeBSD®, Solaris® 9, Microsoft Windows (the MinGW environment), OS/X®,

VxWorks® 5.4, and RTEMS™, on both 32-bit and 64-bit processors. Developers may

compile and test ION modules in whatever environment they find most convenient.

1.4 Organizational Overview

Two broad overviews of the organization of ION may be helpful at this point. First, here

is a summary view of the main functional dependencies among ION software elements:

 15

Operating System

PSM
SmList

BP, LTP Bundle Protocol and Licklider Transmission Protocol libraries and daemons

ZCO Zero-copy objects capability: minimize data copying up and down the stack

SDR Spacecraft Data Recorder: persistent object database in shared

memory, using PSM and SmList

SmList linked lists in shared memory using PSM

SmRbt red-black trees in shared memory using PSM

PSM Personal Space Management: memory management within a

pre-allocated memory partition

Platform common access to O.S.: shared memory, system time, IPC mechanisms

Operating System POSIX thread spawn/destroy, file system, time

Implementation Layers

SDR
ZCO

BP, LTP

Platform

SmRbt

Figure 3 ION software functional dependencies

That is, BP and LTP invoke functions provided by the sdr, zco, psm, and platform

elements of the ici package, in addition to functions provided by the operating system

itself; the zco functions themselves also invoke sdr, psm, and platform functions; and so

on.

Second, here is a summary view of the main line of data flow in ION’s DTN protocol

implementations:

Application

bp_send() bp_receive()

ipnfw

ltpclo ltpcli

traffic database

ltp_send() ltpmeter

<LSO> <LSI>

ION General Processing Flow

routing table

forwarding

queue

nodes,

routes,

hops

plans,

rules,

groups

forwarding database

transmission

queue

service data units

(outbound block)

LTP

segments

LTP segments

(inbound block>

delivery

queue

Figure 4 Main line of ION data flow

 16

Note that data objects residing in shared memory, many of them in a nominally non-

volatile SDR data store, constitute the central organizing principle of the design. Here as

in other diagrams showing data flow in this document:

 Ordered collections of data objects are shown as cylinders.

 Darker greyscale data entities indicate data that are managed in the SDR data

store, while lighter greyscale data entities indicate data that are managed in

volatile DRAM to improve performance.

 Rectangles indicate processing elements (tasks, processes, threads), sometimes

with library references specifically identified.

A few notes on this main line data flow:

 For simplicity, the data flow depicted here is a “loopback” flow in which a single

BP “node” is shown sending data to itself (a useful configuration for test

purposes). To depict typical operations over a network we would need two

instances of this node diagram, such that the <LSO> task of one node is shown

sending data to the <LSI> task of the other and vice versa.

 A BP application or application service (such as Remote AMS) that has access to

the local BP node – for our purposes, the “sender” – invokes the bp_send

function to send a unit of application data to a remote counterpart. The

destination of the application data unit is expressed as a BP endpoint ID (EID).

The application data unit is encapsulated in a bundle and is queued for

forwarding.

 The forwarder task identified by the “scheme” portion of the bundle’s destination

EID removes the bundle from the forwarding queue and computes a route to the

destination EID. The first node on the route, to which the local node is able to

transmit data directly via some underlying “convergence layer” (CL) protocol, is

termed the “proximate node” for the computed route. The forwarder appends the

bundle to one of the transmission queues for the CL-protocol-specific interface to

the proximate node, termed an outduct. Each outduct is serviced by some CL-

specific output task that communicates with the proximate node – in this case, the

LTP output task ltpclo. (Other CL protocols supported by ION include TCP and

UDP.)

 The output task for LTP transmission to the selected proximate node removes the

bundle from the transmission queue and invokes the ltp_send function to

append it to a block that is being assembled for transmission to the proximate

node. (Because LTP acknowledgment traffic is issued on a per-block basis, we

can limit the amount of acknowledgment traffic on the network by aggregating

multiple bundles into a single block rather than transmitting each bundle in its

own block.)

 The ltpmeter task for the selected proximate node divides the aggregated block

into multiple segments and enqueues them for transmission by underlying link-

layer transmission software, such as an implementation of the CCSDS AOS

protocol.

 17

 Underlying link-layer software at the sending node transmits the segments to its

counterpart at the proximate node (the receiver), where they are used to

reassemble the transmission block.

 The receiving node’s input task for LTP reception extracts the bundles from the

reassembled block and dispatches them: each bundle whose final destination is

some other node is queued for forwarding, just like bundles created by local

applications, while each bundle whose final destination is the local node is queued

for delivery to whatever application “opens” the BP endpoint identified by the

bundle’s final destination endpoint ID. (Note that a multicast bundle may be both

queued for forwarding, possibly to multiple neighboring nodes, and also queued

for delivery.)

 The destination application or application service at the receiving node opens the

appropriate BP endpoint and invokes the bp_receive function to remove the

bundle from the associated delivery queue and extract the original application

data unit, which it can then process.

Finally, note that the data flow shown here represents the sustained operational

configuration of a node that has been successfully instantiated on a suitable computer.

The sequence of operations performed to reach this configuration is not shown. That

startup sequence will necessarily vary depending on the nature of the computing platform

and the supporting link services. Broadly, the first step normally is to run the ionadmin

utility program to initialize the data management infrastructure required by all elements

of ION. Following this initialization, the next steps normally are (a) any necessary

initialization of link service protocols, (b) any necessary initialization of convergence-

layer protocols (e.g., LTP – the ltpadmin utility program), and finally (c) initialization of

the Bundle Protocol by means of the bpadmin utility program. BP applications should

not try to commence operation until BP has been initialized.

1.5 Resource Management in ION

Successful Delay-Tolerant Networking relies on retention of bundle protocol agent state

information – including protocol traffic that is awaiting a transmission opportunity – for

potentially lengthy intervals. The nature of that state information will fluctuate rapidly as

the protocol agent passes through different phases of operation, so efficient management

of the storage resources allocated to state information is a key consideration in the design

of ION.

Two general classes of storage resources are managed by ION: volatile “working

memory” and non-volatile “heap”.

1.5.1 Working Memory

ION’s “working memory” is a fixed-size pool of shared memory (dynamic RAM) that is

allocated from system RAM at the time the bundle protocol agent commences operation.

Working memory is used by ION tasks to store temporary data of all kinds: linked lists,

red-black trees, transient buffers, volatile databases, etc. All intermediate data products

and temporary data structures that ought not to be retained in the event of a system power

cycle are written to working memory.

 18

Data structures residing in working memory may be shared among ION tasks or may be

created and managed privately by individual ION tasks. The dynamic allocation of

working memory to ION tasks is accomplished by the Personal Space Management

(PSM) service, described later. All of the working memory for any single ION bundle

protocol agent is managed as a single PSM “partition”. The size of the partition is

specified in the wmSize parameter of the ionconfig file supplied at the time ION is

initialized.

1.5.2 Heap

ION’s “heap” is a fixed-size pool of notionally non-volatile storage that is likewise

allocated at the time the bundle protocol agent commences operation. This notionally

non-volatile space may occupy a fixed-size pool of shared memory (dynamic RAM,

which might or might not be battery-backed), or it may occupy only a single fixed-size

file in the file system, or it may occupy both. In the latter case, all heap data are written

both to memory and to the file but are read only from memory; this configuration offers

the reliable non-volatility of file storage coupled with the high performance of retrieval

from dynamic RAM.

We characterize ION’s heap storage as “notionally” non-volatile because the heap may

be configured to reside only in memory (or, for that matter, in a file that resides in the file

system of a RAM disk). When the heap resides only in memory, its contents are truly

non-volatile only if that memory is battery-backed. Otherwise heap storage is in reality

as volatile as working memory: heap contents will be lost upon a system power cycle

(which may in fact be the preferred behavior for any given deployment of ION).

However, the heap should not be thought of as "memory" even when it in fact resides

only in DRAM, just as a disk device should not be thought of as "memory" even when it

is in fact a RAM disk.

Margin

Reserved for Infrastructure Operations

Available for zero-copy objects

SDR heap

heapWords

* word size

Figure 5 ION heap space use

The ION heap is used for storage of data that (in at least some deployments) would have

to be retained in the event of a system power cycle to ensure the correct continued

operation of the node. For example, all queues of bundles awaiting route computation,

 19

transmission, or delivery reside in the node’s heap. So do the non-volatile databases for

all of the protocols implemented within ION, together with all of the node’s persistent

configuration parameters.

The dynamic allocation of heap space to ION tasks is accomplished by the Simple Data

Recorder (SDR) service, described later. The entire heap for any single ION bundle

protocol agent is managed as a single SDR “data store”.

Space within the ION heap is apportioned as shown in Figure 5. The total number of

bytes of storage space in the heap is computed as the product of the size of a “word” on

the deployment platform (normally the size of a pointer) multiplied by the value of the

heapWords parameter of the ionconfig file supplied at the time ION is initialized. Of

this total, 20% is normally reserved as margin and another 20% is normally reserved for

various infrastructure operations. (Both of these percentages are macros that may be

overridden at compile time.) The remainder is available for storage of protocol state data

in the form of “zero-copy objects”, described later. At any given moment, the data

encapsulated in a zero-copy object may “belong” to any one of the protocols in the ION

stack (AMS, CFDP, BP, LTP), depending on processing state; the available heap space is

a single common resource to which all of the protocols share concurrent access.

Because the heap is used to store queues of bundles awaiting processing, blocks of LTP

data awaiting transmission or reassembly, etc., the heap for any single ION node must be

large enough to contain the maximum volume of such data that the node will be required

to retain during operations. Demand for heap space is substantially mitigated if most of

the application data units passed to ION for transmission are file-resident, as the file

contents themselves need not be copied into the heap. In general, however, computing

the optimum ION heap size for a given deployment remains a research topic.

1.6 Package Overviews

1.6.1 Interplanetary Communication Infrastructure (ICI)

The ICI package in ION provides a number of core services that, from ION’s point of

view, implement what amounts to an extended POSIX-based operating system. ICI

services include the following:

1. Platform

The platform system contains operating-system-sensitive code that enables ICI to present

a single, consistent programming interface to those common operating system services

that multiple ION modules utilize. For example, the platform system implements a

standard semaphore abstraction that may invisibly be mapped to underlying POSIX

semaphores, SVR4 IPC semaphores, Windows Events, or VxWorks semaphores,

depending on which operating system the package is compiled for. The platform system

also implements a standard shared-memory abstraction, enabling software running on

operating systems both with and without memory protection to participate readily in

ION’s shared-memory-based computing environment.

2. Personal Space Management (PSM)

 20

Although sound flight software design may prohibit the uncontrolled dynamic

management of system memory, private management of assigned, fixed blocks of system

memory is standard practice. Often that private management amounts to merely

controlling the reuse of fixed-size rows in static tables, but such techniques can be

awkward and may not make the most efficient use of available memory. The ICI

package provides an alternative, called PSM, which performs high-speed dynamic

allocation and recovery of variable-size memory objects within an assigned memory

block of fixed size. A given PSM-managed memory block may be either private or

shared memory.

3. Memmgr

The static allocation of privately-managed blocks of system memory for different

purposes implies the need for multiple memory management regimes, and in some cases

a program that interacts with multiple software elements may need to participate in the

private shared-memory management regimes of each. ICI’s memmgr system enables

multiple memory managers – for multiple privately-managed blocks of system memory –

to coexist within ION and be concurrently available to ION software elements.

4. Lyst

The lyst system is a comprehensive, powerful, and efficient system for managing doubly-

linked lists in private memory. It is the model for a number of other list management

systems supported by ICI; as noted earlier, linked lists are heavily used in ION inter-task

communication.

5. Llcv

The llcv (Linked-List Condition Variables) system is an inter-thread communication

abstraction that integrates POSIX thread condition variables (vice semaphores) with

doubly-linked lists in private memory.

6. Smlist

Smlist is another doubly-linked list management service. It differs from lyst in that the

lists it manages reside in shared (rather than private) DRAM, so operations on them must

be semaphore-protected to prevent race conditions.

7. SmRbt

The SmRbt service provides mechanisms for populating and navigating “red/black trees”

(RBTs) residing in shared DRAM. RBTs offer an alternative to linked lists: like linked

lists they can be navigated as queues, but locating a single element of an RBT by its

“key” value can be much quicker than the equivalent search through an ordered linked

list.

8. Simple Data Recorder (SDR)

SDR is a system for managing non-volatile storage, built on exactly the same model as

PSM. Put another way, SDR is a small and simple “persistent object” system or “object

database” management system. It enables straightforward management of linked lists

(and other data structures of arbitrary complexity) in non-volatile storage, notionally

within a single file whose size is pre-defined and fixed.

 21

SDR includes a transaction mechanism that protects database integrity by ensuring that

the failure of any database operation will cause all other operations undertaken within the

same transaction to be backed out. The intent of the system is to assure retention of

coherent protocol engine state even in the event of an unplanned flight computer reboot

in the midst of communication activity.

9. Sptrace

The sptrace system is an embedded diagnostic facility that monitors the performance of

the PSM and SDR space management systems. It can be used, for example, to detect

memory “leaks” and other memory management errors.

10. Zco

ION’s zco (zero-copy objects) system leverages the SDR system’s storage flexibility to

enable user application data to be encapsulated in any number of layers of protocol

without copying the successively augmented protocol data unit from one layer to the

next. It also implements a reference counting system that enables protocol data to be

processed safely by multiple software elements concurrently – e.g., a bundle may be both

delivered to a local endpoint and, at the same time, queued for forwarding to another

node – without requiring that distinct copies of the data be provided to each element.

11. Rfx

The ION rfx (R/F Contacts) system manages lists of scheduled communication

opportunities in support of a number of LTP and BP functions.

12. Ionsec

The IONSEC (ION security) system manages information that supports the

implementation of security mechanisms in the other packages: security policy rules and

computation keys.

1.6.2 Licklider Transmission Protocol (LTP)

The ION implementation of LTP conforms fully to RFC 5326, but it also provides two

additional features that enhance functionality without affecting interoperability with other

implementations:

 The service data units – nominally bundles – passed to LTP for transmission may

be aggregated into larger blocks before segmentation. By controlling block size

we can control the volume of acknowledgment traffic generated as blocks are

received, for improved accommodation of highly asynchronous data rates.

 The maximum number of transmission sessions that may be concurrently

managed by LTP (a protocol control parameter) constitutes a transmission

“window” – the basis for a delay-tolerant, non-conversational flow control service

over interplanetary links.

In the ION stack, LTP serves effectively the same role that is performed by an LLC

protocol (such as IEEE 802.2) in the Internet architecture, providing flow control and

retransmission-based reliability between topologically adjacent bundle protocol agents.

 22

All LTP session state is safely retained in the ION heap for rapid recovery from a

spacecraft or software fault.

1.6.3 Bundle Protocol (BP)

The ION implementation of BP conforms fully to RFC 5050, including support for the

following standard capabilities:

 Prioritization of data flows

 Proactive bundle fragmentation

 Bundle reassembly from fragments

 Flexible status reporting

 Custody transfer, including re-forwarding of custodial bundles upon timeout

interval expiration or failure of nominally reliable convergence-layer transmission

The system also provides three additional features that enhance functionality without

affecting interoperability with other implementations:

 Rate control provides support for congestion forecasting and avoidance.

 Bundle headers are encoded into compressed form (CBHE, as noted earlier)

before issuance, to reduce protocol overhead and improve link utilization.

 Bundles may be “multicast” to all nodes that have registered within a given

multicast group endpoint.

In addition, ION BP includes a system for computing dynamic routes through time-

varying network topology assembled from scheduled, bounded communication

opportunities. This system, called “Contact Graph Routing,” is described later in this

Guide.

In short, BP serves effectively the same role that is performed by IP in the Internet

architecture, providing route computation, forwarding, congestion avoidance, and control

over quality of service.

All bundle transmission state is safely retained in the ION heap for rapid recovery from a

spacecraft or software fault.

1.6.4 Asynchronous Message Service (AMS)

The ION implementation of the CCSDS AMS standard conforms fully to CCSDS 735.0-

B-1. AMS is a data system communications architecture under which the modules of

mission systems may be designed as if they were to operate in isolation, each one

producing and consuming mission information without explicit awareness of which other

modules are currently operating. Communication relationships among such modules are

self-configuring; this tends to minimize complexity in the development and operations of

modular data systems.

A system built on this model is a “society” of generally autonomous inter-operating

modules that may fluctuate freely over time in response to changing mission objectives,

modules’ functional upgrades, and recovery from individual module failure. The purpose

 23

of AMS, then, is to reduce mission cost and risk by providing standard, reusable

infrastructure for the exchange of information among data system modules in a manner

that is simple to use, highly automated, flexible, robust, scalable, and efficient.

A detailed discussion of AMS is beyond the scope of this Design Guide. For more

information, please see the AMS Programmer’s Guide.

1.6.5 Datagram Retransmission (DGR)

The DGR package in ION is an alternative implementation of LTP that is designed to

operate responsibly – i.e., with built-in congestion control – in the Internet or other IP-

based networks. It is provided as a candidate “primary transfer service” in support of

AMS operations in an Internet-like (non-delay-tolerant) environment. The DGR design

combines LTP’s concept of concurrent transmission transactions with congestion control

and timeout interval computation algorithms adapted from TCP.

1.6.6 CCSDS File Delivery Protocol (CFDP)

The ION implementation of CFDP conforms fully to Service Class 1 (Unreliable

Transfer) of CCSDS 727.0-B-4, including support for the following standard capabilities:

 Segmentation of files on user-specified record boundaries.

 Transmission of file segments in protocol data units that are conveyed by an

underlying Unitdata Transfer service, in this case the DTN protocol stack. File

data segments may optionally be protected by CRCs. When the DTN protocol

stack is configured for reliable data delivery (i.e., with BP custody transfer

running over a reliable convergence-layer protocol such as LTP), file delivery is

reliable; CFDP need not perform retransmission of lost data itself.

 Reassembly of files from received segments, possibly arriving over a variety of

routes through the delay-tolerant network. The integrity of the delivered files is

protected by checksums.

 User-specified fault handling procedures.

 Operations (e.g., directory creation, file renaming) on remote file systems.

All CFDP transaction state is safely retained in the ION heap for rapid recovery from a

spacecraft or software fault.

1.6.7 Bundle Streaming Service (BSS)

The BSS service provided in ION enables a stream of video, audio, or other continuously

generated application data units, transmitted over a delay-tolerant network, to be

presented to a destination application in two useful modes concurrently:

 In the order in which the data units were generated, with the least possible end-to-

end delivery latency, but possibly with some gaps due to transient data loss or

corruption.

 24

 In the order in which the data units were generated, without gaps (i.e., including

lost or corrupt data units which were omitted from the real-time presentation but

were subsequently retransmitted), but in a non-real-time “playback” mode.

1.7 Acronyms

BP Bundle Protocol

BSP Bundle Security Protocol

BSS Bundle Streaming Service

CCSDS Consultative Committee for Space Data Systems

CFDP CCSDS File Delivery Protocol

CGR Contact Graph Routing

CL convergence layer

CLI convergence layer input

CLO convergence layer output

DTN Delay-Tolerant Networking

ICI Interplanetary Communication Infrastructure

ION Interplanetary Overlay Network

LSI link service input

LSO link service output

LTP Licklider Transmission Protocol

OWLT one-way light time

RFC request for comments

RFX Radio (R/F) Contacts

RTT round-trip time

TTL time to live

1.8 Network Operation Concepts

A small number of network operation design elements – fragmentation and reassembly,

bandwidth management, and delivery assurance (retransmission) – can potentially be

addressed at multiple layers of the protocol stack, possibly in different ways for different

reasons. In stack design it’s important to allocate this functionality carefully so that the

effects at lower layers complement, rather than subvert, the effects imposed at higher

layers of the stack. This allocation of functionality is discussed below, together with a

discussion of several related key concepts in the ION design.

 25

1.8.1 Fragmentation and Reassembly

To minimize transmission overhead and accommodate asymmetric links (i.e., limited

“uplink” data rate from a ground data system to a spacecraft) in an interplanetary

network, we ideally want to send “downlink” data in the largest possible aggregations –

coarse-grained transmission.

But to minimize head-of-line blocking (i.e., delay in transmission of a newly presented

high-priority item) and minimize data delivery latency by using parallel paths (i.e., to

provide fine-grained partial data delivery, and to minimize the impact of unexpected link

termination), we want to send “downlink” data in the smallest possible aggregations –

fine-grained transmission.

We reconcile these impulses by doing both, but at different layers of the ION protocol

stack.

First, at the application service layer (AMS and CFDP) we present relatively small

application data units (ADUs) – on the order of 64 KB – to BP for encapsulation in

bundles. This establishes an upper bound on head-of-line blocking when bundles are de-

queued for transmission, and it provides perforations in the data stream at which

forwarding can readily be switched from one link (route) to another, enabling partial data

delivery at relatively fine, application-appropriate granularity.

(Alternatively, large application data units may be presented to BP and the resulting large

bundles may be proactively fragmented at the time they are presented to the convergence-

layer adapter. This capability is meant to accommodate environments in which the

convergence-layer adapter has better information than the application as to the optimal

bundle size, such as when the residual capacity of a contact is known to be less than the

size of the bundle.)

Then, at the BP/LTP convergence layer adapter lower in the stack, we aggregate these

small bundles into blocks for presentation to LTP:

Any continuous sequence of bundles that are to be shipped to the same LTP

engine and all require assured delivery may be aggregated into a single block, to

reduce overhead and minimize report traffic.

However, this aggregation is constrained by a block size limit rule: each block

must contain an integral number N – where N is greater than zero – complete

bundles, but N can only exceed 1 when the sum of the sizes of all N bundles does

not exceed the nominal block size declared for the applicable span (the

relationship between the local node and the receiving LTP engine) during LTP

protocol configuration via ltpadmin.

Given a preferred block acknowledgment period – e.g., an acknowledgment traffic limit

of one report per second – nominal block size is notionally computed as the amount of

data that can be sent over the link to the receiving LTP engine in a single block

acknowledgment period at the planned outbound data rate to that engine.

Taken together, application-level fragmentation (or BP proactive fragmentation) and LTP

aggregation place an upper limit on the amount of data that would need to be re-

transmitted over a given link at next contact in the event of an unexpected link

 26

termination that caused delivery of an entire block to fail. For example, if the data rate is

1 Mbps and the nominal block size is 128 KB (equivalent to 1 second of transmission

time), we would prefer to avoid the risk of having wasted five minutes of downlink in

sending a 37.5 MB file that fails on transmission of the last kilobyte, forcing

retransmission of the entire 37.5 MB. We therefore divide the file into, say, 1200

bundles of 32 KB each which are aggregated into blocks of 128 KB each: only a single

block failed, so only that block (containing just 4 bundles) needs to be retransmitted. The

cost of this retransmission is only 1 second of link time rather than 5 minutes. By

controlling the cost of convergence-layer protocol failure in this way, we avoid the

overhead and complexity of “reactive fragmentation” in the BP implementation.

Finally, within LTP itself we fragment the block as necessary to accommodate the

Maximum Transfer Unit (MTU) size of the underlying link service, typically the transfer

frame size of the applicable CCSDS link protocol.

1.8.2 Bandwidth Management

The allocation of bandwidth (transmission opportunity) to application data is requested

by the application task that’s passing data to DTN, but it is necessarily accomplished only

at the lowest layer of the stack at which bandwidth allocation decisions can be made –

and then always in the context of node policy decisions that have global effect.

The “outduct” interface to a given neighbor in the network is actually three queues of

outbound bundles rather than one: one queue for each of the defined levels of priority

(“class of service”) supported by BP. When an application presents an ADU to BP for

encapsulation in a bundle, it indicates its own assessment of the ADU’s priority. Upon

selection of a proximate forwarding destination node for that bundle, the bundle is

appended to whichever of the neighbor interface queues corresponds to the ADU’s

priority.

Normally the convergence-layer output (CLO) task servicing a given outduct – e.g., the

LTP output task ltpclo – extracts bundles in strict priority order from the heads of the

outduct’s three queues. That is, the bundle at the head of the highest-priority non-empty

queue is always extracted.

However, if the ION_BANDWIDTH_RESERVED compiler option is selected at the

time ION is built, the convergence-layer output (CLO) task servicing a given outduct

extracts bundles in interleaved fashion from the heads of the outduct’s three queues:

 Whenever the priority-2 (“express”) queue is non-empty, the bundle at the head of

that queue is the next one extracted.

 At all other times, bundles from both the priority-1 queue and the priority-0 queue

are extracted, but over a given period of time twice as many bytes of priority-1

bundles will be extracted as bytes of priority-0 bundles.

CLO tasks other than ltpclo simply segment the extracted bundles as necessary and

transmit them using the underlying convergence-layer protocol. In the case of ltpclo, the

output task aggregates the extracted bundles into blocks as described earlier and a second

daemon task named ltpmeter waits for aggregated blocks to be completed; ltpmeter,

rather than the CLO task itself, segments each completed block as necessary and passes

 27

the segments to the link service protocol that underlies LTP. Either way, the transmission

ordering requested by application tasks is preserved.

1.8.3 Contact Plans

In the Internet, protocol operations can be largely driven by currently effective

information that is discovered opportunistically and immediately, at the time it is needed,

because the latency in communicating this information over the network is negligible:

distances between communicating entities are small and connectivity is continuous. In a

DTN-based network, however, ad-hoc information discovery would in many cases take

so much time that it could not be completed before the information lost currency and

effectiveness. Instead, protocol operations must be largely driven by information that is

pre-placed at the network nodes and tagged with the dates and times at which it becomes

effective. This information takes the form of contact plans that are managed by the R/F

Contacts (rfx) services of ION’s ici package.

bpdb

outducts

neighbors

contacts

ranges

iondb nodes

retransmit

events

spans

ltpdb

inducts

ipnfw

cli

ionadmin

rfxclock

rfxclock

ltpmeter

bpclock

ltpclock

clo

Bundle: size,

destination, TTL

Computed

proximate

destination(s)

Congestion forecast

Production &

consumption plans
LTP block

Start/stop
xmit

Retransmit

on timeout

Suspend
& resume
timers

OWLT, toggle xmit

& recv rates = 0

OWLT

Computed
timeout
intervals

purge

purge

Set xmit & recv rates

Set OWLT

Xmit &

recv rates

Consume xmit capacity

Consume recv capacity

Rate control

[Set nominal xmit & recv

rates. Restore capacities.]

Enqueue bundle

for transmission

Contact plan

routes

hops

contacts

ranges

Routing table

timeline

libcgr

Figure 6 RFX services in ION

The structure of ION’s RFX (contact plan) database, the rfx system elements that

populate and use that data, and affected portions of the BP and LTP protocol state

databases are shown in Figure 6. (For additional details of BP and LTP database

management, see the BP/LTP discussion later in this document.)

To clarify the notation of this diagram, which is also used in other database structure

diagrams in this document:

 28

 Data objects of defined structure are shown as circles. Dark greyscale indicates

notionally non-volatile data retained in “heap” storage, while lighter greyscale

indicates volatile data retained in dynamic random access memory.

 Solid arrows connecting circles indicate one-to-many cardinality.

 A dashed arrow between circles indicates a potentially many-to-one reference

mapping.

 Arrows from processing elements (rectangles) to data entities indicate data

production, while arrows from data entities to processing elements indicate data

retrieval.

A contact is here defined as an interval during which it is expected that data will be

transmitted by DTN node A (the contact’s transmitting node) and most or all of the

transmitted data will be received by node B (the contact’s receiving node). Implicitly, the

transmitting mode will utilize some “convergence-layer” protocol underneath the Bundle

Protocol to effect this direct transmission of data to the receiving node. Each contact is

characterized by its start time, its end time, the identities of the transmitting and receiving

nodes, and the rate at which data are expected to be transmitted by the transmitting node

throughout the indicated time period.

(Note that a contact is specifically not an episode of activity on a link. Episodes of

activity on different links – e.g., different radio transponders operating on the same

spacecraft – may well overlap, but contacts by definition cannot; they are bounded time

intervals and as such are innately “tiled”. For example, suppose transmission on link X

from node A to node B, at data rate RX, begins at time T1 and ends at time T2; also,

transmission on link Y from node A to node B, at data rate RY begins at time T3 and

ends at time T4. If T1 = T3 and T2 = T4, then there is a single contact from time T1 to

time T2 at data rate RX + RY. If T1 < T3 and T2 = T4, then there are two contiguous

contacts: one from T1 to T3 at data rate RX, then one from T3 to T2 at data rate RX +

RY. If T1 < T3 and T3<T2 < T4, then there are three contiguous contacts: one from T1

to T3 at data rate RX, then one from T3 to T2 at data rate RX + RY, then one from T2 to

T4 at data rate RY. And so on.)

A range interval is a period of time during which the displacement between two nodes A

and B is expected to vary by less than 1 light second from a stated anticipated distance.

(We expect this information to be readily computable from the known orbital elements of

all nodes.) Each range interval is characterized by its start time, its end time, the

identities of the two nodes to which it pertains, and the anticipated approximate distance

between those nodes throughout the indicated time period, to the nearest light second.

The topology timeline at each node in the network is a time-ordered list of scheduled or

anticipated changes in the topology of the network. Entries in this list are of two types:

• Contact entries characterize scheduled contacts.

• Range entries characterize anticipated range intervals.

Each node to which, according to the RFX database, the local node transmits data directly

via some convergence-layer protocol at some time is termed a neighbor of the local node.

Each neighbor is associated with an outduct – a set of outbound transmission queues – for

 29

the applicable BP convergence-layer (CL) protocol adapter, so bundles that are to be

transmitted directly to this neighbor can simply be queued for transmission via that CL

protocol (as discussed in the Bandwidth Management notes above).

At startup, and at any time while the system is running, ionadmin inserts and removes

Contact and Range entries in the topology timeline of the RFX database. Inserting or

removing a Contact or Range entry will cause routing tables to be recomputed for the

destination nodes of all subsequently forwarded bundles, as described in the discussion of

Contact Graph Routing below.

Once per second, the rfxclock task (which appears in multiple locations on the diagram

to simplify the geometry) applies all topology timeline events (Contact and Range start,

stop, purge) with effective time in the past. Applying a Contact event that cites a

neighboring node revises the transmission or reception data rate between the local node

and that Neighbor. Applying a Range event that cites a neighboring node revises the

OWLT between the local node and that neighbor. Setting data rate or OWLT for a node

with which the local node will at some time be in direct communication may entail

creation of a Neighbor object.

1.8.4 Route Computation

ION’s computation of a route for a given bundle with a given destination endpoint is

accomplished by one of several methods, depending on the destination. In every case,

the result of successful routing is the insertion of the bundle into an outbound

transmission queue (selected according to the bundle’s priority) for one or more

neighboring nodes.

But before discussing these methods it will be helpful to establish some terminology:

Egress plans

ION can only forward bundles to a neighboring node by queuing them on some

explicitly specified outduct. Specifications that associate neighboring nodes with

outducts – possibly varying depending on the node numbers and/or service

numbers of bundles’ source entity IDs – are termed egress plans. They are

retained in ION’s unicast forwarding database.

Static routes

ION can be configured to forward to some specified node all bundles that are

destined for a given node to which no dynamic route can be discovered from an

examination of the contact graph, as described later. Static routing is

implemented by means of the “group” mechanism described below.

Unicast

When the destination of a bundle is a single node that is registered within a

known “singleton endpoint” (that is, an endpoint that is known to have exactly

one member), then transmission of that bundle is termed unicast. For this

purpose, the destination endpoint ID must be a URI formed in either the “dtn”

scheme (e.g., dtn://bobsmac/mail) or the “ipn” scheme (e.g., ipn:913.11).

Unicast Groups

 30

When unicast routes must be computed to nodes for which no contact plan

information is known (e.g., the size of the network makes it impractical to

distribute all Contact and Range information for all nodes to every node, or the

destination nodes don’t participate in Contact Graph Routing at all), the job of

computing routes to all nodes may be partitioned among multiple gateway nodes.

Each gateway is responsible for managing routing information (for example, a

comprehensive contact graph) for some subset of the total network population – a

group, comprising all nodes whose node numbers fall within the range of node

numbers assigned to the gateway. A bundle destined for a node for which no

dynamic route can be computed from the local node’s contact graph may be

routed to the gateway node for the group within whose range the destination’s

node number falls. Unicast groups are retained in ION’s unicast forwarding

database. (Note that the group mechanism implements static routes in CGR in

addition to improving scalability.)

Multicast

When the destination of a bundle is all nodes that are registered within a known

“multicast endpoint” (that is, an endpoint that is not known to have exactly one

member), then transmission of that bundle is termed multicast. For this purpose

(in ION), the destination endpoint ID must be a URI formed in the “imc” scheme

(e.g., imc:913.11).

Multicast Groups

A multicast group is the set of all nodes in the network that are members of a

given multicast endpoint. Forwarding a bundle to all members of its destination

multicast endpoint is the responsibility of all of the multicast-aware nodes of the

network. These nodes are additionally configured to be nodes of a single

multicast spanning tree overlaid onto the dtnet. A single multicast tree serves to

forward bundles to all multicast groups: each node of the tree manages petitions

indicating which of its “relatives” (parent and children) are currently interested in

bundles destined for each multicast endpoint, either natively (due to membership

in the indicated group) or on behalf of more distant relatives.

1.8.4.1 Unicast

We begin unicast route computation by attempting to compute a dynamic route to the

bundle’s final destination node. The details of this algorithm are described in the section

on Contact Graph Routing, below.

If no dynamic route can be computed, but the final destination node is a “neighboring”

node that is directly reachable, then we assume that taking this direct route is the best

strategy unless the outduct to that neighbor is flagged as “blocked” due to a lapse in

convergence-layer functionality .

Otherwise we must look for a static route. If the bundle’s destination node number is in

the range of node numbers assigned to the gateways for one or more groups, then we

forward the bundle to that gateway node for the smallest such group. (If the gateway

node is a neighbor and the outduct to that neighbor is not blocked, we simply queue the

 31

bundle on that outduct; otherwise we similarly look up the static route for the gateway

until eventually we resolve to some egress plan.)

If we can determine neither a dynamic route nor a static route for this bundle, but the

reason for this failure was outduct blockage that might be resolved in the future, then the

bundle is placed in a “limbo” list for future re-forwarding when some outduct is

“unblocked.”

Otherwise, the bundle cannot be forwarded. If custody transfer is requested for the

bundle, we send a custody refusal to the bundle’s current custodian; in any case, we

discard the bundle.

1.8.4.2 Multicast

Multicast route computation is much simpler.

 The topology of the single network-wide multicast distribution tree is established

in advance by invoking tree management library functions that declare the

children and parents of each node. These functions are currently invoked only

from the imcadmin utility program. (Manual configuration of the multicast tree

seems manageable for very small and generally static networks, such as the space

flight operations networks we’ll be seeing over the next few years, but eventually

an automated tree management protocol will be required.) Each relative of each

node in the tree must also be a neighbor in the underlying dtnet: multicast routing

loops are avoided at each node by forwarding each bundle only to relatives other

than the one from which the bundle was received, and currently the only

mechanism in ION for determining the node from which a bundle was received is

to match the sender’s convergence-layer endpoint ID to a plan in the unicast

forwarding database – i.e., to a neighbor.

 When an endpoint for the “imc” scheme is added on an ION node – that is, when

the node joins that multicast endpoint – BP administrative records noting the

node’s new interest in the application topic corresponding to the endpoint’s group

number are passed to all of the node’s immediate relatives in the multicast tree.

On receipt of such a record, each relative notes the sending relative’s interest and

forwards the record to all of its immediate relatives other than the one from which

the record was received, and so on. (Deletion of endpoints results in similar

propagation of cancelling administrative records.)

 A bundle whose destination endpoint cites a multicast group, whether locally

sourced or received from another node:

o Is delivered immediately, if the local node is a member of the indicated

endpoint.

o Is queued for direct transmission to every immediate relative in the

multicast tree other than the one from which the bundle was received (if

any).

 32

1.8.5 Delivery Assurance

End-to-end delivery of data can fail in many ways, at different layers of the stack. When

delivery fails, we can either accept the communication failure or retransmit the data

structure that was transmitted at the stack layer at which the failure was detected. ION is

designed to enable retransmission at multiple layers of the stack, depending on the

preference of the end user application.

At the lowest stack layer that is visible to ION, the convergence-layer protocol, failure to

deliver one or more segments due to segment loss or corruption will trigger segment

retransmission if a “reliable” convergence-layer protocol is in use: LTP “red-part”

transmission or TCP (including Bundle Relay Service, which is based on TCP)1.

Segment loss may be detected and signaled via NAK by the receiving entity, or it may

only be detected at the sending entity by expiration of a timer prior to reception of an

ACK. Timer interval computation is well understood in a TCP environment, but it can be

a difficult problem in an environment of scheduled contacts as served by LTP. The

round-trip time for an acknowledgment dialogue may be simply twice the one-way light

time (OWLT) between sender and receiver at one moment, but it may be hours or days

longer at the next moment due to cessation of scheduled contact until a future contact

opportunity. To account for this timer interval variability in retransmission, the ltpclock

task infers the initiation and cessation of LTP transmission, to and from the local node,

from changes in the current xmit and recv data rates in the corresponding Neighbor

objects. This controls the dequeuing of LTP segments for transmission by underlying

link service adapter(s) and it also controls suspension and resumption of timers, removing

the effects of contact interruption from the retransmission regime. For a further

discussion of this mechanism, see the section below on LTP Timeout Intervals.

Note that the current OWLT in Neighbor objects is also used in the computation of the

nominal expiration times of timers and that ltpclock is additionally the agent for LTP

segment retransmission based on timer expiration.

It is, of course, possible for the nominally reliable convergence-layer protocol to fail

altogether: a TCP connection might be abruptly terminated, or an LTP transmission

might be canceled due to excessive retransmission activity (again possibly due to an

unexpected loss of connectivity). In this event, BP itself detects the CL protocol failure

and re-forwards all bundles whose acquisition by the receiving entity is presumed to have

been aborted by the failure. This re-forwarding is initiated in different ways for different

CL protocols, as implemented in the CL input and output adapter tasks. If immediate re-

forwarding is impossible because all potentially usable outducts are blocked, the affected

bundles are placed in the limbo list for future re-forwarding when some outduct is

unblocked.

In addition to the implicit forwarding failure detected when a CL protocol fails, the

forwarding of a bundle may be explicitly refused by the receiving entity, provided the

1 In ION, reliable convergence-layer protocols (where available) are by default used for every bundle. The

application can instead mandate selection of “best-effort” service at the convergence layer by setting the

BP_BEST_EFFORT flag in the “extended class of service flags” parameter, but this feature is an ION

extension that is not supported by other BP implementations at the time of this writing.

 33

bundle is flagged for custody transfer service. A receiving node’s refusal to take custody

of a bundle may have any of a variety of causes: typically the receiving node either (a)

has insufficient resources to store and forward the bundle, (b) has no route to the

destination, or (c) will have no contact with the next hop on the route before the bundle’s

TTL has expired. In any case, a “custody refusal signal” (packaged in a bundle) is sent

back to the sending node, which must re-forward the bundle in hopes of finding a more

suitable route.

Alternatively, failure to receive a custody acceptance signal within some convergence-

layer-specified or application-specified time interval may also be taken as an implicit

indication of forwarding failure. Here again, when BP detects such a failure it attempts

to re-forward the affected bundle, placing the bundle in the limbo list if re-forwarding is

currently impossible.

In the worst case, the combined efforts of all the retransmission mechanisms in ION are

not enough to ensure delivery of a given bundle, even when custody transfer is requested.

In that event, the bundle’s “time to live” will eventually expire while the bundle is still in

custody at some node: the bpclock task will send a bundle status report to the bundle’s

report-to endpoint, noting the TTL expiration, and destroy the bundle. The report-to

endpoint, upon receiving this report, may be able to initiate application-layer

retransmission of the original application data unit in some way. This final

retransmission mechanism is wholly application-specific, however.

1.8.6 Rate Control

In the Internet, the rate of transmission at a node can be dynamically negotiated in

response to changes in level of activity on the link, to minimize congestion. On deep

space links, signal propagation delays (distances) may be too great to enable effective

dynamic negotiation of transmission rates. Fortunately, deep space links are

operationally reserved for use by designated pairs of communicating entities over pre-

planned periods of time at pre-planned rates. Provided there is no congestion inherent in

the contact plan, congestion in the network can be avoided merely by adhering to the

planned contact periods and data rates. Rate control in ION serves this purpose.

While the system is running, transmission and reception of bundles is constrained by the

current capacity in the throttle of each outduct and induct. Completed bundle

transmission or reception activity reduces the current capacity of the applicable duct by

the capacity consumption computed for that bundle. This reduction may cause the duct’s

current capacity to become negative. Once the current capacity of the applicable duct’s

throttle goes negative, activity is blocked until non-negative capacity has been restored

by bpclock.

Once per second, the bpclock task increases the current capacity of each induct and

outduct throttle by one second’s worth of traffic at the nominal data rate for that duct,

thus enabling some possibly blocked bundle transmission and reception to proceed.

The nominal data rate for any duct of any CL protocol other than LTP (e.g., TCP) is a

constant, established at the time the protocol was declared during ION initialization. For

LTP, however, bpclock revises all ducts’ nominal data rates once per second in accord

with the current data rates in the corresponding Neighbor objects, as adjusted by rfxclock

 34

per the contact plan. This contact-plan-based adjustment is currently not possible for CL

protocols other than LTP because at present there is no straightforward mechanism for

mapping from Neighbor node number to protocol duct ID for any CL protocol other than

LTP. So data flow over LTP links may be episodic, but data flow over non-LTP links is

always continuous.

Note that this means that:

 ION’s rate control system will enable data flow over non-LTP links even if there

are no contacts in the contact plan that announce it. In this context the contact

plan serves only to support route computation, and no contact plan is needed at all

if static routes are provided for all destinations.

 ION’s rate control system will enable data flow over LTP links only if there are

contacts in the contact plan that announce it. In this context, announced contacts

are mandatory for at least all neighboring nodes that are reachable by LTP.

1.8.7 Flow Control

A further constraint on rates of data transmission in an ION-based network is LTP flow

control. LTP is designed to enable multiple block transmission sessions to be in various

stages of completion concurrently, to maximize link utilization: there is no requirement to

wait for one session to complete before starting the next one. However, if unchecked this

design principle could in theory result in the allocation of all memory in the system to

incomplete LTP transmission sessions. To prevent complete storage resource exhaustion,

we set a firm upper limit on the total number of outbound blocks that can be concurrently

in transit at any given time. These limits are established by ltpadmin at node

initialization time.

The maximum number of transmission sessions that may be concurrently managed by

LTP therefore constitutes a transmission “window” – the basis for a delay-tolerant, non-

conversational flow control service over interplanetary links. Once the maximum

number of sessions are in flight, no new block transmission session can be initiated –

regardless of how much outduct transmission capacity is provided by rate control – until

some existing session completes or is canceled.

Note that this consideration emphasizes the importance of configuring the aggregation

size limits and session count limits of spans during LTP initialization to be consistent

with the maximum data rates scheduled for contacts over those spans.

1.8.8 Storage Management

Congestion in a dtnet is the imbalance between data enqueuing and dequeuing rates that

results in exhaustion of queuing (storage) resources at a node, preventing continued

operation of the protocols at that node.

In ION, the affected queuing resources are allocated from notionally non-volatile storage

space in the SDR data store and/or file system. The design of ION is required to prevent

resource exhaustion by simply refusing to enqueue additional data that would cause it.

However, a BP router’s refusal to enqueue received data for forwarding could result in

costly retransmission, data loss, and/or the “upstream” propagation of resource

 35

exhaustion to other nodes. Therefore the ION design additionally attempts to prevent

potential resource exhaustion by forecasting levels of queuing resource occupancy and

reporting on any congestion that is predicted. Network operators, upon reviewing these

forecasts, may revise contact plans to avert the anticipated resource exhaustion.

The non-volatile storage used by ION serves several purposes: it contains queues of

bundles awaiting forwarding, transmission, and delivery; it contains LTP transmission

and reception sessions, including the blocks of data that are being transmitted and

received; it contains queues of LTP segments awaiting radiation; it may contain CFDP

transactions in various stages of completion; and it contains protocol operational state

information, such as configuration parameters, static routes, the contact graph, etc.

Effective utilization of non-volatile storage is a complex problem. Static pre-allocation

of storage resources is in general less efficient (and also more labor-intensive to

configure) than storage resource pooling and automatic, adaptive allocation: trying to

predict a reasonable maximum size for every data storage structure and then rigidly

enforcing that limit typically results in underutilization of storage resources and

underperformance of the system as a whole. However, static pre-allocation is mandatory

for safety-critical resources, where certainty of resource availability is more important

than efficient resource utilization.

The tension between the two approaches is analogous to the tension between circuit

switching and packet switching in a network: circuit switching results in underutilization

of link resources and underperformance of the network as a whole (some peaks of

activity can never be accommodated, even while some resources lie idle much of the

time), but dedicated circuits are still required for some kinds of safety-critical

communication.

So the ION data management design combines these two approaches (see 1.5 above for

additional discussion of this topic):

 A fixed percentage of the total SDR data store heap size (by default, 20%) is

statically allocated to the storage of protocol operational state information, which

is critical to the operation of ION.

 Another fixed percentage of the total SDR data store heap size (by default, 20%)

is statically allocated to “margin”, a reserve that helps to insulate node

management from errors in resource allocation estimates.

 The remainder of the heap, plus all pre-allocated file system space, is allocated to

protocol traffic2.

The maximum projected occupancy of the node is the result of computing a congestion

forecast for the node, by adding to the current occupancy all anticipated net increases and

decreases from now until some future time, termed the horizon for the forecast.

The forecast horizon is indefinite – that is, “forever” – unless explicitly declared by

network management via the ionadmin utility program. The difference between the

horizon and the current time is termed the interval of the forecast.

2 Note that, in all occupancy figures, ION data management accounts not only for the sizes of the payloads

of all queued bundles but also for the sizes of their headers.

 36

Net occupancy increases and decreases are of four types:

1. Bundles that are originated locally by some application on the node, which are

enqueued for forwarding to some other node.

2. Bundles that are received from some other node, which are enqueued either for

forwarding to some other node or for local delivery to an application.

3. Bundles that are transmitted to some other node, which are dequeued from some

forwarding queue.

4. Bundles that are delivered locally to an application, which are dequeued from

some delivery queue.

The type-1 anticipated net increase (total data origination) is computed by multiplying the

node’s projected rate of local data production, as declared via an ionadmin command, by

the interval of the forecast. Similarly, the type-4 anticipated net decrease (total data

delivery) is computed by multiplying the node’s projected rate of local data consumption,

as declared via an ionadmin command, by the interval of the forecast. Net changes of

types 2 and 3 are computed by multiplying inbound and outbound data rates,

respectively, by the durations of all periods of planned communication contact that begin

and/or end within the interval of the forecast.

Congestion forecasting is performed by the ionwarn utility program. ionwarn may be

run independently at any time; in addition, the ionadmin utility program automatically

runs ionwarn immediately before exiting if it executed any change in the contact plan,

the forecast horizon, or the node’s projected rates of local data production or

consumption. Moreover, the rfxclock daemon program also runs ionwarn automatically

whenever any of the scheduled reconfiguration events it dispatches result in contact state

changes that might alter the congestion forecast.

If the final result of the forecast computation – the maximum projected occupancy of the

node over the forecast interval – is less than the total protocol traffic allocation, then no

congestion is forecast. Otherwise, a congestion forecast status message is logged noting

the time at which maximum projected occupancy is expected to equal the total protocol

traffic allocation.

Congestion control in ION, then, has two components:

First, ION’s congestion detection is anticipatory (via congestion forecasting)

rather than reactive as in the Internet.

Anticipatory congestion detection is important because the second component –

congestion mitigation – must also be anticipatory: it is the adjustment of

communication contact plans by network management, via the propagation of

revised schedules for future contacts.

(Congestion mitigation in an ION-based network is likely to remain mostly manual for

many years to come, because communication contact planning involves much more than

orbital dynamics: science operations plans, thermal and power constraints, etc. It will,

however, rely on the automated rate control features of ION, discussed above, which

ensure that actual network operations conform to established contact plans.)

 37

Rate control in ION is augmented by admission control. ION tracks the sum of the sizes

of all zero-copy objects currently residing in the heap and file system at any moment.

Whenever any protocol implementation attempts to create or extend a ZCO in such a way

that total heap or file occupancy would exceed an upper limit asserted for the node, that

attempt is rejected.

1.8.9 Optimizing an ION-based network

ION is designed to deliver critical data to its final destination with as much certainty as

possible (and optionally as soon as possible), but otherwise to try to maximize link

utilization. The delivery of critical data is expedited by contact graph routing and bundle

prioritization as described elsewhere. Optimizing link utilization, however, is a more

complex problem.

If the volume of data traffic offered to the network for transmission is less than the

capacity of the network, then all offered data should be successfully delivered3. But in

that case the users of the network are paying the opportunity cost of whatever portion of

the network capacity was not used.

Offering a data traffic volume that is exactly equal to the capacity of the network is in

practice infeasible. TCP in the Internet can usually achieve this balance because it

exercises end-to-end flow control: essentially, the original source of data is blocked from

offering a message until notified by the final destination that transmission of this message

can be accommodated given the current negotiated data rate over the end-to-end path (as

determined by TCP’s congestion control mechanisms). In a delay-tolerant network no

such end-to-end negotiated data rate may exist, much less be knowable, so such precise

control of data flow is impossible.4

The only alternative: the volume of traffic offered by the data source must be greater than

the capacity of the network and the network must automatically discard excess traffic,

shedding lower-priority data in preference to high-priority messages on the same path.

ION discards excess traffic proactively when possible and reactively when necessary.

Proactive data triage occurs when ION determines that it cannot compute a route that will

deliver a given bundle to its final destination prior to expiration of the bundle’s Time To

Live (TTL). That is, a bundle may be discarded simply because its TTL is too short, but

more commonly it will be discarded because the planned contacts to whichever

neighboring node is first on the path to the destination are already fully subscribed: the

queue of bundles awaiting transmission to that neighbor is already so long as to consume

the entire capacity of all announced opportunities to transmit to it. Proactive data triage

causes the bundle to be immediately destroyed as one for which there is “No known route

to destination from here.”

3 Barring data loss or corruption for which the various retransmission mechanisms in ION cannot

compensate.
4 Note that ION may indeed block the offering of a message to the network, but this is local admission

control – assuring that the node’s local buffer space for queuing outbound bundles is not oversubscribed –

rather than end-to-end flow control. It is always possible for there to be ample local buffer space yet

insufficient network capacity to convey the offered data to their final destination, and vice versa.

 38

The determination of the degree to which a contact is subscribed is based not only on the

aggregate size of the queued bundles but also on the estimated aggregate size of the

overhead imposed by all the convergence-layer (CL) protocol data units – at all layers of

the underlying stack – that encapsulate those bundles: packet headers, frame headers, etc.

This means that the accuracy of this overhead estimate will affect the aggressiveness of

ION’s proactive data triage:

 If CL overhead is overestimated, the size of the bundle transmission backlog for

planned contacts will be overstated, unnecessarily preventing the enqueuing of

additional bundles – a potential under-utilization of available transmission

capacity in the network.

 If CL overhead is underestimated, the size of the bundle transmission backlog for

planned contacts will be understated, enabling the enqueuing of bundles whose

transmission cannot in fact be accomplished by the network within the constraints

of the current contact plan. This will eventually result in reactive data triage.

Essentially, all reactive data triage – the destruction of bundles due to TTL expiration

prior to successful delivery to the final destination – occurs when the network conveys

bundles at lower net rates than were projected during route computation. These

performance shortfalls can have a variety of causes:

 As noted above, underestimating CL overhead causes CL overhead to consume a

larger fraction of contact capacity than was anticipated, leaving less capacity for

bundle transmission.

 Conversely, the total volume of traffic offered may have been accurately

estimated but the amount of contact capacity may be less than was promised: a

contact might be started late, stopped early, or omitted altogether, or the actual

data rate on the link might be less than was advertised.

 Contacts may be more subtly shortened by the configuration of ION itself. If the

clocks on nodes are known not to be closely synchronized then a “maximum

clock error” of N seconds may be declared, causing reception episodes to be

started locally N seconds earlier and stopped N seconds later than scheduled, to

avoid missing some transmitted data because it arrived earlier or later than

anticipated. But this mechanism also causes transmission episodes to be started N

seconds later and stopped N seconds earlier than scheduled, to avoid transmitting

to a neighbor before it is ready to receive data, and this contact truncation ensures

transmission of fewer bundles than planned.

 Flow control within the convergence layer underlying the bundle protocol may

constrain the effective rate of data flow over a link to a rate that’s lower than the

link’s configured maximum data rate. In particular, mis-configuration of the LTP

flow control window can leave transmission capacity unused while LTP engines

are awaiting acknowledgments.

 Even if all nodes are correctly configured, a high rate of data loss or corruption

due to unexpectedly high R/F interference or underestimated acknowledgment

round-trip times may cause an unexpectedly high volume of retransmission

 39

traffic. This will displace original bundle transmission, reducing the effective

“goodput” data rate on the link.

 Finally, custody transfer may propagate operational problems from one part of the

network to other nodes. One result of reduced effective transmission rates is the

accumulation of bundles for which nodes have taken custody: the custodial nodes

can’t destroy those bundles and reclaim the storage space they occupy until

custody has been accepted by “downstream” nodes, so abbreviated contacts that

prevent the flow of custody acceptances can increase local congestion. This

reduces nodes’ own ability to take custody of bundles transmitted by “upstream”

custodians, increasing queue sizes on those nodes, and so on. In short, custody

transfer may itself ultimately impose reactive data triage simply by propagating

congestion.

Some level of data triage is essential to cost-effective network utilization, and proactive

triage is preferable because its effects can be communicated immediately to users,

improving user control over the use of the network. Optimizing an ION-based network

therefore amounts to managing for a modicum of proactive data triage and as little

reactive data triage as possible. It entails the following:

1. Estimating convergence-layer protocol overhead as accurately as possible, erring

(if necessary) on the side of optimism – that is, underestimating a little.

As an example, suppose the local node uses LTP over CCSDS Telemetry

to send bundles. The immediate convergence-layer protocol is LTP, but

the total overhead per CL “frame” (in this case, per LTP segment) will

include not only the size of the LTP header (nominally 5 bytes) but also

the size of the encapsulating space packet header (nominally 6 bytes) and

the overhead imposed by the outer encapsulating TM frame.

Suppose each LTP segment is to be wrapped in a single space packet,

which is in turn wrapped in a single TM frame, and Reed-Solomon

encoding is applied. An efficient TM frame size is 1115 bytes, with an

additional 160 bytes of trailing Reed-Solomon encoding and another 4

bytes of leading pseudo-noise code. The frame would contain a 6-byte

TM frame header, a 6-byte space packet header, a 5-byte LTP segment

header, and 1098 bytes of some LTP transmission block.

So the number of “payload bytes per frame” in this case would be 1098

and the number of “overhead bytes per frame” would be 4 + 6 + 6 + 5 +

160 = 181. Nominal total transmission overhead on the link would be 181

/ 1279 = about 14%.

2. Synchronizing nodes’ clocks as accurately as possible, so that timing margins

configured to accommodate clock error can be kept as close to zero as possible.

3. Setting the LTP session limit and block size limit as generously as possible

(whenever LTP is at the convergence layer), to assure that LTP flow control does

not constrain data flow to rates below those supported by BP rate control.

 40

4. Setting ranges (one-way light times) and queuing delays as accurately as possible,

to prevent unnecessary retransmission. Err on the side of pessimism – that is,

overestimate a little.

5. Communicating changes in configuration – especially contact plans – to all nodes

as far in advance of the time they take effect as possible.

6. Providing all nodes with as much storage capacity as possible for queues of

bundles awaiting transmission.

 41

1.9 BP/LTP detail – how it works

Although the operation of BP/LTP in ION is complex in some ways, virtually the entire

system can be represented in a single diagram. The interactions among all of the

concurrent tasks that make up the node – plus a Remote AMS task or CFDP UT-layer

task, acting as the application at the top of the stack – are shown below. (The notation is

as used earlier but with semaphores added. Semaphores are shown as small circles, with

arrows pointing into them signifying that the semaphores are being given and arrows

pointing out of them signifying that the semaphores are being taken.)

ipnfw (BP forwarder)

transmission queues

(bundles)

ltpclo (duct)

session buffer

(bundles)

buffer

closed

buffer

open

transmission

needed

forwarding queue

(bundles) forwarding

needed

rfxadmin

xxxlsi

ltpcli (induct)

session buffer

(segments)

notice

delivery queue

(bundles)

data

delivered
ramsgate or bputa

ltpmeter

segments

xxxlso

segment

enqueued

transmission medium

routing table

nodes,

routes,

hops

ipnadmin
plans,

rules,

groups

forwarding database

Figure 7 ION node functional overview

Further details of the BP/LTP data structures and flow of control and data appear on the

following pages. (For specific details of the operation of the BP and LTP protocols as

implemented by the ION tasks, such as the nature of report-initiated retransmission in

LTP, please see the protocol specifications. The BP specification is documented in

Internet RFC 5050, while the LTP specification is documented in Internet RFC 5326.)

 42

1.9.1 Databases

inducts

inbound

bundles

incomplete

(inbound)

bundles

endpoints

all bundles (waiting

for TTL expiration)

schemes

outducts

outbound

bundles

BP database

timeline

bundles to

forward

CL

protocols

volatile

scheme

state

volatile

endpoint

state

volatile

induct

state

volatile

outduct

state

Figure 8 Bundle protocol database

segments

queued for

transmission

reports

red segments

received

(session assembly

buffer)

spans

events

(pending

retransmissions)

checkpoints

service data

objects [ZCOs]

(session re-xmit

buffer)

LTP database

xmit

sessions

clients

notices

awaiting

delivery

recv

sessions

remote engine ID sender’s session# offset

length

serial#

client IDtime

serial#

own session#

volatile

client

state

volatile

span state

Figure 9 Licklider transmission protocol database

 43

1.9.2 Control and data flow

Bundle Protocol

ipnfw (BP forwarder)

transmission queue

(bundles)
transmission

needed

forwarding queue

(bundles)

1. Waits for forwarding needed semaphore.

2. Gets bundle from queue.

3. Consults routing table and forwarding table to determine all plausible

proximate destinations – routing.

• A plausible proximate destination is the destination node of the

first entry in a contact sequence (a list of concatenated contact

periods) ending in a contact period whose destination node is

the bundle’s destination node and whose start time is less than

the bundle’s expiration time.

4. Appends bundle to transmission queue (based on priority) for best

plausible proximate destination.

5. Gives transmission needed semaphore for that transmission queue.

forwarding

neededrfxadmin

routing table

nodes,

routes,

hops

ipnadmin
plans,

rules,

groups

forwarding database

Figure 10 BP forwarder

transmission queue

(bundles)

ltpclo (outduct)

session buffer

(bundles)

buffer

closed

buffer

open

transmission

needed

1. Waits for buffer open semaphore (indicating that the link’s session

buffer has room for the bundle).

2. Waits for transmission needed semaphore.

3. Gets bundle from queue, subject to priority.

4. Appends bundle to link’s session buffer – aggregation. Buffer size is

notionally limited by aggregation size limit, a persistent attribute of the

Span object: implicitly, the rate at which we want reports to be

transmitted by the destination engine.

5. Gives buffer closed semaphore when buffer occupancy reaches the

aggregation size limit.

Figure 11 BP convergence layer output

 44

LTP

session buffer

(bundles)

ltpmeter

buffer

closed

buffer

open

segments

segment

enqueued

1. Initializes session buffer, gives buffer open semaphore.

2. Waits for buffer closed semaphore (indicating that the session buffer is

ready for transmission).

3. Segments the entire buffer into segments of managed MTU size –

fragmentation.

4. Appends all segments to segments queue for immediate transmission.

5. Gives segment enqueued semaphore.

Figure 12 LTP transmission metering

segments

xxxlso

segment

enqueued

transmission medium

1. Waits for segment enqueued semaphore (indicating that there is now

something to transmit).

2. Gets segment from queue.

3. Sets retransmission timer if necessary.

4. Transmits the segment using link service protocol.

Figure 13 LTP link service output

 45

segments

xxxlsi

transmission medium

1. Receives a segment using link service protocol.

2. If data, generates report segment and appends it to queue – reliability.

Also inserts data into reception session buffer “red part” and, if that

buffer is complete, gives notice semaphore to trigger bundle extraction

and dispatching by ltpcli.

3. If a report, appends acknowledgement to segments queue.

4. If a report of missing data, recreates lost segments and appends them

to queue.

5. Gives segment enqueued semaphore.

segment

enqueued

session buffer

(bundles)

notice

Figure 14 LTP link service input

 46

1.10 Contact Graph Routing (CGR)

CGR is a dynamic routing system that computes routes through a time-varying topology

of scheduled communication contacts in a DTN network. It is designed to support

operations in a space network based on DTN, but it also could be used in terrestrial

applications where operation according to a predefined schedule is preferable to

opportunistic communication, as in a low-power sensor network.

The basic strategy of CGR is to take advantage of the fact that, since communication

operations are planned in detail, the communication routes between any pair of “bundle

agents” in a population of nodes that have all been informed of one another’s plans can

be inferred from those plans rather than discovered via dialogue (which is impractical

over long-one-way-light-time space links).

1.10.1 Contact Plan Messages

CGR relies on accurate contact plan information provided in the form of contact plan

messages that currently are only read from ionrc files and processed by ionadmin, which

retains them in a non-volatile contact plan in the RFX database, in ION’s SDR data store.

Contact plan messages are of two types: contact messages and range messages.

Each contact message has the following content:

 The starting UTC time of the interval to which the message pertains.

 The stop time of this interval, again in UTC.

 The Transmitting node number.

 The Receiving node number.

 The planned rate of transmission from node A to node B over this interval, in

bytes per second.

Each range message has the following content:

 The starting UTC time of the interval to which the message pertains.

 The stop time of this interval, again in UTC.

 Node number A.

 Node number B.

 The anticipated distance between A and B over this interval, in light seconds.

Note that range messages may be used to declare that the “distance” in light seconds

between nodes A and B is different in the BA direction from the distance in the AB

direction. While direct radio communication between A and B will not be subject to such

asymmetry, it’s possible for connectivity established using other convergence-layer

technologies to take different physical paths in different directions, with different signal

propagation delays.

 47

1.10.2 Routing Tables

Each node uses Range and Contact messages in the contact plan to build a "routing table"

data structure.

The routing table constructed locally by each node in the network is a list of route lists,

one route list for every other node D in the network that is cited in any Contact or Range

in the contact plan. Route lists are computed as they are needed, and the maximum

number of route lists resident at a given is the number of nodes that are cited in any

Contacts or Ranges in the contact plan.

Each route in the route list for node D identifies a path to destination node D, from the

local node, that (a) begins with transmission to one of the local node’s neighbors in the

network– the initial receiving node for the route, termed the route’s entry node – and (b)

was computed for a specific payload class.

A payload class is a payload size limit such that any bundle whose payload’s size is less

than that limit is known to be forwardable along any route computed for that class. That

is, a route computed for payload class value N is guaranteed not to include any contact

that has capacity – contact duration multiplied by data transmission rate – less than N and

therefore can theoretically be guaranteed to accommodate any bundle whose payload’s

size is no greater than N.

For any given route, the contact from the local node to the entry node constitutes the

initial transmission segment of the end-to-end path to the destination node. Additionally

noted in each route object are all of the other contacts that constitute the remaining

segments of the route’s end-to-end path.

Each route object also notes the forwarding cost for a bundle that is forwarded along this

route. In this version of ION, CGR is configured to deliver bundles as early as possible,

so best-case final delivery time is used as the cost of a route. Other metrics might be

substituted for final delivery time in other CGR implementations. NOTE, however, that

if different metrics are used at different nodes along a bundle’s end-to-end path it

becomes impossible to prevent routing loops that can result in non-delivery of the data.

Finally, each route object also notes the route’s termination time, the time after which the

route will become moot due to the termination of the earliest-ending contact in the route.

The computed routes for a given destination node are listed in ascending cost order, i.e.,

the most desirable route appears first in the list.

1.10.3 Key Concepts

Expiration time

Every bundle transmitted via DTN has a time-to-live (TTL), the length of time after

which the bundle is subject to destruction if it has not yet been delivered to its

destination. The expiration time of a bundle is computed as its creation time plus its

TTL. When computing the next-hop destination for a bundle that the local bundle agent

is required to forward, there is no point in selecting a route that can't get the bundle to its

final destination prior to the bundle’s expiration time.

 48

OWLT margin

One-way light time (OWLT) – that is, distance – is obviously a factor in delivering a

bundle to a node prior to a given time. OWLT can actually change during the time a

bundle is en route, but route computation becomes intractably complex if we can't

assume an OWLT "safety margin" – a maximum delta by which OWLT between any pair

of nodes can change during the time a bundle is in transit between them.

We assume that the maximum rate of change in distance between any two nodes in the

network is about 150,000 miles per hour, which is about 40 miles per second. (This was

the speed of the Helios spacecraft, the fastest man-made object launched to date.)

At this speed, the distance between any two nodes that are initially separated by a

distance of N light seconds will increase by a maximum of 80 miles per second of transit

(in the event that they are moving in opposite directions). This will result in data arrival

no later than roughly (N + 2Q) seconds after transmission – where the “OWLT margin”

value Q is (40 * N) divided by 186,000 – rather than just N seconds after transmission as

would be the case if the two nodes were stationary relative to each other. When

computing the expected time of arrival of a transmitted bundle we simply use N + 2Q, the

most pessimistic case, as the anticipated total in-transit time.

Capacity

The capacity of a contact is the product of its data transmission rate (in bytes per second)

and its duration (stop time minus start time, in seconds).

Estimated capacity consumption

The size of a bundle is the sum of its payload size and its header size5, but bundle size is

not the only lien on the capacity of a contact. The total estimated capacity consumption

(or “ECC”) for a bundle that is queued for transmission via some outduct is a more

lengthy computation.

For each recognized convergence-layer protocol, we can estimate the number of bytes of

“overhead” (that is, data that serves the purposes of the protocol itself rather than the user

application that is using it) for each frame of convergence-layer protocol transmission. If

the convergence layer protocol were UDP/IP over the Internet, for example, we might

estimate the convergence layer overhead per frame to be 100 bytes – allowing for the

nominal sizes of the UDP, IP, and Ethernet or SONET overhead for each IP packet.

We can estimate the number of bundle bytes per CL protocol frame as the total size of

each frame less the per-frame convergence layer overhead. Continuing the example

begun above, we might estimate the number of bundle bytes per frame to be 1400, which

is the standard MTU size on the Internet (1500 bytes) less the estimated convergence

layer overhead per frame

We can then estimate the total number of frames required for transmission of a bundle of

a given size: this number is the bundle size divided by the estimated number of bundle

bytes per CL protocol frame, rounded up.

5 The minimum size of an ION bundle header is 26 bytes. Adding extension blocks (such as those that

effect the Bundle Security Protocol) will increase this figure.

 49

The estimated total convergence layer overhead for a given bundle is, then, the per-frame

convergence layer overhead multiplied by the total number of frames required for

transmission of a bundle of that size

Finally the ECC for that bundle can be computed as the sum of the bundle’s size and its

estimated total convergence layer overhead.

Residual capacity

The residual capacity of a given contact between the local node and one of its neighbors,

as computed for a given bundle, is the sum of the capacities of that contact and all prior

scheduled contacts between the local node and that neighbor, less the sum of the ECCs of

all bundles with priority equal to or higher than the priority of the subject bundle that are

currently queued on the outduct for transmission to that neighbor.

Plausible opportunity

A plausible opportunity for transmitting a given bundle to some neighboring node is

defined as a contact whose residual capacity is at least equal to the bundle’s ECC. That is,

if the capacity of a given contact is already fully subscribed, when computing routes for

the next bundle there is no purpose served by assuming transmission during that contact.

Excluded neighbors

A neighboring node C that refuses custody of a bundle destined for some remote node D

is termed an excluded neighbor for (that is, with respect to computing routes to) D. So

long as C remains an excluded neighbor for D, no bundles destined for D will be

forwarded to C – except that occasionally (once per lapse of the RTT between the local

node and C) a custodial bundle destined for D will be forwarded to C as a “probe

bundle”. C ceases to be an excluded neighbor for D as soon as it accepts custody of a

bundle destined for D.

Critical bundles

A Critical bundle is one that absolutely has got to reach its destination and, moreover, has

got to reach that destination as soon as is physically possible6.

For an ordinary non-Critical bundle, the CGR dynamic route computation algorithm uses

the routing table to select a single neighboring node to forward the bundle through. It is

possible, though, that due to some unforeseen delay the selected neighbor may prove to

be a sub-optimal forwarder: the bundle might arrive later than it would have if another

neighbor had been selected, or it might not even arrive at all.

For Critical bundles, the CGR dynamic route computation algorithm causes the bundle to

be inserted into the outbound transmission queues for transmission to all neighboring

nodes that can plausibly forward the bundle to its final destination. The bundle is

therefore guaranteed to travel over the most successful route, as well as over all other

6 In ION, all bundles are by default non-critical. The application can indicate that data should be sent in a

Critical bundle by setting the BP_MINIMUM_LATENCY flag in the “extended class of service”

parameter, but this feature is an ION extension that is not supported by other BP implementations at the

time of this writing.

 50

plausible routes. Note that this may result in multiple copies of a Critical bundle arriving

at the final destination.

1.10.4 Dynamic Route Selection Algorithm

Given a bundle whose destination is node D, we proceed as follows.

First, if no contacts in the contact plan identify transmission to node D, then we cannot

use CGR to find a route for this bundle; CGR route selection is abandoned.

Next, if the contact plan has been modified in any way since routes were computed for

any nodes, we discard all routes for all nodes and authorize route recomputaton. (The

contact plan changes may have invalidated any or all of those earlier computations.)

We create an empty list of Proximate Nodes (network neighbors) to send the bundle to.

We create a list of Excluded Nodes, i.e., nodes through which we will not compute a

route for this bundle. The list of Excluded Nodes is initially populated with:

 the node from which the bundle was directly received (so that we avoid cycling

the bundle between that node and the local node) – unless the Dynamic Route

Selection Algorithm is being re-applied due to custody refusal as discussed later;

 all excluded neighbors for the bundle’s final destination node.

If all routes computed for node D have been discarded due to contact plan modification,

then we must compute a new list of all routes from the local node to D. To do so:

 We construct an abstract contact graph, a directed acyclic graph whose root is a

notional contact from the local node to itself and whose other vertices are all other

contacts representing transmission “from” some node such that a contact “to” that

node already exists in the graph, excluding contacts representing transmission

“to” some node such that a contact “from” that node already exists in the graph.

A terminal vertex is also included in the graph, constituting a notional contact

from node D to itself.

 We perform several series of Dijkstra searches within this graph, one series of

searches for each payload class. On each search we find the lowest-cost route that

begins at the root of the graph and ends at the terminal vertex. Each time a route

is computed, we add it to the node’s list of routes and then remove the route’s

initial contact from the contact graph before searching for the next best route.

Each search series is terminated as soon as a search fails to find a route.

o During any search, every contact whose capacity is less than the

applicable payload class for the search is ignored.

o The lowest-cost route computed during a search is the one that is found to

have the earliest best-case delivery time, where the best-case delivery time

characterizing a route is given by the time at which a bundle would arrive

at node D if transmitted at the earliest possible moment of the last contact

in the route prior to the terminal vertex.

o Any contact whose end time is before the earliest possible time that the

bundle could arrive at the contact’s sending node is ignored.

 51

o The earliest possible arrival time for the bundle on a given contact is

pessimistically computed as the sum of the bundle’s earliest possible

transmission time plus the range in light seconds from the contact’s

sending node to its receiving node, plus the applicable one-way light time

margin.

o The earliest possible transmission time for the bundle on a given contact is

the start time of the contact or bundle’s earliest possible arrival time at the

contact’s sending node, whichever is later.

 If node D’s list of routes is still empty, then we cannot use CGR to find a route for

this bundle; CGR route selection is abandoned.

We next examine all of the routes that are currently computed for transmission of bundles

to node D.

 Any route whose termination time is in the past is deleted from the list, and all

contacts in that route whose termination time is in the past are also deleted. But if

the end time of that route’s initial contact is still in the future, we run another

Dijkstra search to compute the best route (for the deleted route’s payload class)

given the remaining contacts, excluding all contacts that are initial contacts of

other routes that have not yet been deleted; if this search finds a route, the new

route is inserted into the appropriate location in the list.

 Any route whose best-case final delivery time is after the bundle’s expiration time

is ignored, as is any route whose entry node is in the list of Excluded Nodes. Any

route that includes a contact whose capacity is less than the bundle’s payload size

is also ignored. Loopback routes are also ignored unless the local node is the

bundle’s final destination.

 For each route, the aggregate radiation time for this bundle on this route is

computed by summing the product of payload size and contact transmission rate

over all contacts in the route. Any route for which the sum of best-case delivery

time and aggregate radiation time is after the bundle’s expiration time is ignored.

For each route that is not ignored:

 We locate in the unicast forwarding database the egress plan for the route’s entry

node. From this directive we infer the convergence-layer “outduct” on which the

bundle would be sent if transmitted to that node. We then determine whether or

not the bundle could be transmitted during the initial contact of this route. There

are three criteria:

o If the outduct is currently “blocked” due to a detected or asserted loss of

connectivity, then the route cannot be selected.

o If the bundle cannot be fragmented and its payload’s size exceeds the

outduct’s payload size limit, then the route cannot be selected.

o If the contact is not a “plausible opportunity” (as defined earlier) for

transmission of this bundle, then the route cannot be selected.

 If the route is eligible for selection:

 52

o If the route’s entry node has not yet been added to the list of Proximate

Nodes for this bundle, then it is added to that list. Associated with the

entry node number in this list entry are the best-case final delivery time of

the route, the total number of “hops” in the route’s end-to-end path, and

the forfeit time for transmission to this node. Forfeit time is the route’s

termination time, the time by which the bundle must have been transmitted

to this node in order to have any chance of being forwarded on this route.

o Otherwise (i.e., this route’s entry node is already in the Proximate Nodes

list), if the route’s best-case final delivery time is earlier than that of the

existing Proximate Nodes list entry for this node, then the earlier time

replaces that later time; if the delivery times are equal but the route’s hop

count is less than that of the existing entry, then the smaller hop count

replaces the larger one; if either of these changes are made, then this

route’s forfeit time replaces the list entry’s current forfeit time.

If, at the end of this procedure, the Proximate Nodes list is empty, then we have been

unable to use CGR to find a route for this bundle; CGR route selection is abandoned.

Otherwise:

 If the bundle is flagged as a critical bundle, then a cloned copy of this bundle is

enqueued for transmission on the outduct to every node in the Proximate Nodes

list.

 Otherwise, the bundle is enqueued for transmission on the outduct to the most

preferred neighbor in the Proximate Nodes list:

o If one of the nodes in this list is associated with a best-case delivery time

that is earlier than that of all other nodes in the list, then it is the most

preferred neighbor.

o Otherwise, if one of the nodes with the earliest best-case delivery time is

associated with a smaller hop count than every other node with the same

best-case delivery time, then it is the most preferred neighbor.

o Otherwise, the node with the smallest node number among all nodes with

the earliest best-case delivery time and smallest hop count is arbitrarily

chosen as the most preferred neighbor.

1.10.5 Exception Handling

Conveyance of a bundle from source to destination through a DTN can fail in a number

of ways, many of which are best addressed by means of the Delivery Assurance

mechanisms described earlier. Failures in Contact Graph Routing, specifically, occur

when the expectations on which routing decisions are based prove to be false. These

failures of information fall into two general categories: contact failure and custody

refusal.

1) Contact failure

A scheduled contact between some node and its neighbor on the end-to-end route

may be initiated later than the originally scheduled start time, or be terminated

 53

earlier than the originally scheduled stop time, or be canceled altogether.

Alternatively, the available capacity for a contact might be overestimated due to,

for example, diminished link quality resulting in unexpectedly heavy

retransmission at the convergence layer. In each of these cases, the anticipated

transmission of a given bundle during the affected contact may not occur as

planned: the bundle might expire before the contact’s start time, or the contact’s

stop time might be reached before the bundle has been transmitted.

For a non-Critical bundle, we handle this sort of failure by means of a timeout: if

the bundle is not transmitted prior to the forfeit time for the selected Proximate

Node, then the bundle is removed from its outbound transmission queue and the

Dynamic Route Computation Algorithm is re-applied to the bundle so that an

alternate route can be computed.

2) Custody refusal

A node that receives a bundle may find it impossible to forward it, for any of

several reasons: it may not have enough storage capacity to hold the bundle, it

may be unable to compute a forward route (static, dynamic, or default) for the

bundle, etc. Such bundles are simply discarded, but discarding any such bundle

that is marked for custody transfer will cause a custody refusal signal to be

returned to the bundle’s current custodian.

When the affected bundle is non-Critical, the node that receives the custody

refusal re-applies the Dynamic Route Computation Algorithm to the bundle so

that an alternate route can be computed – except that in this event the node from

which the bundle was originally directly received is omitted from the initial list of

Excluded Nodes. This enables a bundle that has reached a dead end in the routing

tree to be sent back to a point at which an altogether different branch may be

selected.

For a Critical bundle no mitigation of either sort of failure is required or indeed possible:

the bundle has already been queued for transmission on all plausible routes, so no

mechanism that entails re-application of CGR’s Dynamic Route Computation Algorithm

could improve its prospects for successful delivery to the final destination. However, in

some environments it may be advisable to re-apply the Dynamic Route Computation

Algorithm to all Critical bundles that are still in local custody whenever a new Contact is

added to the contact graph: the new contact may open an additional forwarding

opportunity for one or more of those bundles.

1.10.6 Remarks

The CGR routing procedures respond dynamically to the changes in network topology

that the nodes are able know about, i.e., those changes that are subject to mission

operations control and are known in advance rather than discovered in real time. This

dynamic responsiveness in route computation should be significantly more effective and

less expensive than static routing, increasing total data return while at the same time

reducing mission operations cost and risk.

 54

Note that the non-Critical forwarding load across multiple parallel paths should be

balanced automatically:

 Initially all traffic will be forwarded to the node(s) on what is computed to be the

best path from source to destination.

 At some point, however, a node on that preferred path may have so much

outbound traffic queued up that no contacts scheduled within bundles’ lifetimes

have any residual capacity. This can cause forwarding to fail, resulting in custody

refusal.

 Custody refusal causes the refusing node to be temporarily added to the current

custodian’s excluded neighbors list for the affected final destination node. If the

refusing node is the only one on the path to the destination, then the custodian

may end up sending the bundle back to its upstream neighbor. Moreover, that

custodian node too may begin refusing custody of bundles subsequently sent to it,

since it can no longer compute a forwarding path.

 The upstream propagation of custody refusals directs bundles over alternate paths

that would otherwise be considered suboptimal, balancing the queuing load across

the parallel paths.

 Eventually, transmission and/or bundle expiration at the oversubscribed node

relieves queue pressure at that node and enables acceptance of custody of a

“probe” bundle from the upstream node. This eventually returns the routing

fabric to its original configuration.

Although the route computation procedures are relatively complex they are not

computationally difficult. The impact on computation resources at the vehicles should be

modest.

 55

1.11 LTP Timeout Intervals

Suppose we’ve got Earth ground station ES that is currently in view of Mars but will be

rotating out of view (“Mars-set”) at some time T1 and rotating back into view (“Mars-

rise”) at time T3. Suppose we’ve also got Mars orbiter MS that is currently out of the

shadow of Mars but will move behind Mars at time T2, emerging at time T4. Let's also

suppose that ES and MS are 4 light-minutes apart (Mars is at its closest approach to

Earth). Finally, for simplicity, let’s suppose that both ES and MS want to be

communicating at every possible moment (maximum link utilization) but never want to

waste any electricity.

Neither ES nor MS wants to be wasting power on either transmitting or receiving at a

time when either Earth or Mars will block the signal.

ES will therefore stop transmitting at either T1 or (T2 - 4 minutes), whichever is earlier;

call this time Tet0. It will stop receiving – that is, power off the receiver – at either T1 or

(T2 + 4 minutes), whichever is earlier; call this time Ter0. It will resume transmitting at

either T3 or (T4 - 4 minutes), whichever is later, and it will resume reception at either T3

or (T4 + 4 minutes), whichever is later; call these times Tet1 and Ter1.

Similarly, MS will stop transmitting at either T2 or (T1 - 4 minutes), whichever is earlier;

call this time Tmt0. It will stop receiving – that is, power off the receiver – at either T2 or

(T1 + 4 minutes), whichever is earlier; call this time Tmr0. It will resume transmitting at

either T4 or (T3 - 4 minutes), whichever is later, and it will resume reception at either T4

or (T3 + 4 minutes), whichever is later; call these times Tmt1 and Tmr1.

By making sure that we don’t transmit when the signal would be blocked, we guarantee

that anything that is transmitted will arrive at a time when it can be received. Any

reception failure is due to data corruption en route.

So the moment of transmission of an acknowledgment to any message is always equal to

the moment the original message was sent plus some imputed outbound queuing delay

QO1 at the sending node, plus 4 minutes, plus some imputed inbound and outbound

queuing delay QI1 + QO2 at the receiving node. The nominally expected moment of

reception of this acknowledgment is that moment of transmission plus 4 minutes, plus

some imputed inbound queuing delay QI2 at the original sending node. That is, the

timeout interval is 8 minutes + QO1 + QI1 + QO2 + QO2 – unless this moment of

acknowledgment transmission is during an interval when the receiving node is not

transmitting, for whatever reason. In this latter case, we want to suspend the

acknowledgment timer during any interval in which we know the remote node will not be

transmitting. More precisely, we want to add to the timeout interval the time difference

between the moment of message arrival and the earliest moment at which the

acknowledgment could be sent, i.e., the moment at which transmission is resumed7.

7 If we wanted to be extremely accurate we could also subtract from the timeout interval the imputed

inbound queuing delay QI, since inbound queuing would presumably be completed during the interval in

which transmission was suspended. But since we’re guessing at the queuing delays anyway, this

adjustment doesn’t make a lot of sense.

 56

So the timeout interval Z computed at ES for a message sent to MS at time TX is given

by:

Z = QO1 + 8 + QI1 + ((TA = TX + 4) > Tmt0 && TA < Tmt1) ? Tmt1 – TA: 0) + QI2 +QO2;

This can actually be computed in advance (at time TX) if T1, T2, T3, and T4 are known

and are exposed to the protocol engine.

If they are not exposed, then Z must initially be estimated to be (2 * the one-way light

time) + QI + QO. The timer for Z must be dynamically suspended at time Tmt0 in

response to a state change as noted by ltpclock. Finally, the timer must be resumed at

time Tmt1 (in response to another state change as noted by ltpclock), at which moment the

correct value for Z can be computed.

 57

1.12 CFDP

The ION implementation of CFDP is very simple, because only Class-1

(Unacknowledged) functionality is implemented: the store-and-forward routing

performed by Bundle Protocol makes the CFDP Extended Procedures unnecessary and

the inter-node reliability provided by the CL protocol underneath BP – in particular, by

LTP – makes the CFDP Acknowledged Procedures unnecessary. All that CFDP is

required to do is segment and reassemble files, interact with the underlying Unitdata

Transfer layer – BP/LTP – to effect the transmission and reception of file data segments,

and handle CFDP metadata including filestore requests. CFDP-ION does all this,

including support for cancellation of a file transfer transaction by cancellation of the

transmission of the bundles encapsulating the transaction’s protocol data units.

Note that all CFDP data transmission is “by reference”, via the ZCO system, rather than

“by value”: the retransmission buffer for a bundle containing CFDP file data is an extent

of the original file itself, not a copy retained in the ION database, and data received in

bundles containing CFDP PDU is written immediately to the appropriate location in the

reconstituted file rather than stored in the ION database. This minimizes the space

needed for the database. In general, file transmission via CFDP is the most memory-

efficient way to use ION in flight operations.

forwarding queue

(bundles)

forwarding

needed
delivery queue

(bundles)

data

delivered

bputa

OutFdus Events InFdusExtant PDUsbundle destruction

libcfdp

User application

put, cancel,

suspend, resume transaction, report,

suspended, resumed

get event

files

B

A C

A: EOF Sent, Transaction Finished

B: Fault, Abandoned, Transaction Finished

C: Metadata Recv, File Segment Recv, EOF Recv, Transaction Finished

cfdpclock
copy

needed

Give (on put or resume)

Take

Give

Figure 15 A CFDP-ION entity

 58

1.13 Additional Figures for Manual Pages

1.13.1 list data structures (lyst, sdrlist, smlist)

Linked Lists: lyst, smlist, sdr lists

first count = 3 last

List object:

previous datalist next

previous datalist next

previous datalist next

List element objects:

[list data]

object

object

object

Figure 16 ION list data structures

1.13.2 psm partition structure

PSM Partition

directory partition map

pool of small blocks

pool of large blocks

unassigned space

Figure 17 psm partition structure

 59

1.13.3 psm and sdr block structures

PSM, SDR Blocks

next free
data

word size

0xffffff size
Small:

size dataLarge: start
next free prev free

0xffffffff 0xffffffff

Trailing overhead of large block enables a newly freed block to be

merged with the adjacent free block(s), if any, to minimize fragmentation.

Figure 18 psm and sdr block structures

1.13.4 sdr heap structure

SDR Heap

directory data store map

pool of small blocks

pool of large blocks

unassigned space

directory data store map

pool of small blocks

pool of large blocks

unassigned space

transaction

entries

in-DRAM heap in-file heap
transaction

log

If present, used for all reading. If present, write-through for

persistence across power cycles.

Figure 19 sdr heap structure

 60

2 Operation

One compile-time option is applicable to all ION packages: the platform selection

parameters –DVXWORKS and –DRTEMS affect the manner in which most task

instantiation functions are compiled. For VXWORKS and RTEMS, these functions are

compiled as library functions that must be identified by name in the platform’s symbol

table, while for Unix-like platforms they are compiled as main()functions.

2.1 Interplanetary Communication Infrastructure (ICI)

2.1.1 Compile-time options

Declaring values for the following variables, by setting parameters that are provided to

the C compiler (for example, –DFSWSOURCE or –DSM_SEMBASEKEY=0xff13), will

alter the functionality of ION as noted below.

PRIVATE_SYMTAB

This option causes ION to be built for VxWorks 5.4 or RTEMS with reliance on a small

private local symbol table that is accessed by means of a function named

sm_FindFunction. Both the table and the function definition are, by default, provided

by the symtab.c source file, which is automatically included within the

platform_sm.c source when this option is set. The table provides the address of the

top-level function to be executed when a task for the indicated symbol (name) is to be

spawned, together with the priority at which that task is to execute and the amount of

stack space to be allocated to that task.

PRIVATE_SYMTAB is defined by default for RTEMS but not for VxWorks 5.4.

Absent this option, ION on VxWorks 5.4 must successfully execute the VxWorks

symFindByName function in order to spawn a new task. For this purpose the entire

VxWorks symbol table for the compiled image must be included in the image, and task

priority and stack space allocation must be explicitly specified when tasks are spawned.

FSWLOGGER

This option causes the standard ION logging function, which simply writes all ION status

messages to a file named ion.log in the current working directory, to be replaced (by

#include) with code in the source file fswlogger.c. A file of this name must be in

the inclusion path for the compiler, as defined by –Ixxxx compiler option parameters.

FSWCLOCK

This option causes the invocation of the standard time function within getUTCTime

(in ion.c) to be replaced (by #include) with code in the source file fswutc.c, which

might for example invoke a mission-specific function to read a value from the spacecraft

clock. A file of this name must be in the inclusion path for the compiler.

FSWWDNAME

 61

This option causes the invocation of the standard getcwd function within cfdpInit (in

libcfdpP.c) to be replaced (by #include) with code in the source file wdname.c,

which must in some way cause the mission-specific value of current working directory

name to be copied into cfdpdbBuf.workingDirectoryName. A file of this name

must be in the inclusion path for the compiler.

FSWSYMTAB

If the PRIVATE_SYMTAB option is also set, then the FSWSYMTAB option causes the

code in source file mysymtab.c to be included in platform_sm.c in place of the

default symbol table access implementation in symtab.c. A file named mysymtab.c

must be in the inclusion path for the compiler.

 FSWSOURCE

This option simply causes FSWLOGGER, FSWCLOCK, FSWWDNAME, and

FSWSYMTAB all to be set.

GDSLOGGER

This option causes the standard ION logging function, which simply writes all ION status

messages to a file named ion.log in the current working directory, to be replaced (by

#include) with code in the source file gdslogger.c. A file of this name must be in

the inclusion path for the compiler, as defined by –Ixxxx compiler option parameters.

GDSSOURCE

This option simply causes GDSLOGGER to be set.

ION_OPS_ALLOC=xx

This option specifies the percentage of the total non-volatile storage space allocated to

ION that is reserved for protocol operational state information, i.e., is not available for

the storage of bundles or LTP segments. The default value is 20.

ION_SDR_MARGIN=xx

This option specifies the percentage of the total non-volatile storage space allocated to

ION that is reserved simply as margin, for contingency use. The default value is 20.

The sum of ION_OPS_ALLOC and ION_SDR_MARGIN defines the amount of non-

volatile storage space that is sequestered at the time ION operations are initiated: for

purposes of congestion forecasting and prevention of resource oversubscription, this sum

is subtracted from the total size of the SDR “heap” to determine the maximum volume of

space available for bundles and LTP segments. Data reception and origination activities

fail whenever they would cause the total amount of data store space occupied by bundles

and segments to exceed this limit.

USING_SDR_POINTERS

This is an optimization option for the SDR non-volatile data management system: when

set, it enables the value of any variable in the SDR data store to be accessed directly by

means of a pointer into the dynamic memory that is used as the data store storage

medium, rather than by reading the variable into a location in local stack memory. Note

that this option must not be enabled if the data store is configured for file storage only,

 62

i.e., if the SDR_IN_DRAM flag was set to zero at the time the data store was created by

calling sdr_load_profile. See the ionconfig(5) man page in Appendix A for more

information.

NO_SDR_TRACE

This option causes non-volatile storage utilization tracing functions to be omitted from

ION when the SDR system is built. It disables a useful debugging option but reduces the

size of the executable software.

NO_PSM_TRACE

This option causes memory utilization tracing functions to be omitted from ION when the

PSM system is built. It disables a useful debugging option but reduces the size of the

executable software.

IN_FLIGHT

This option controls the behavior of ION when an unrecoverable error is encountered.

If it is set, then the status message “Unrecoverable SDR error” is logged and the SDR

non-volatile storage management system is globally disabled: the current database access

transaction is ended and (provided transaction reversibility is enabled) rolled back, and

all ION tasks terminate.

Otherwise, the ION task that encountered the error is simply aborted, causing a core

dump to be produced to support debugging.

SM_SEMKEY=0xXXXX

This option overrides the default value (0xee01) of the identifying “key” used in creating

and locating the global ION shared-memory system mutex.

SVR4_SHM

This option causes ION to be built using svr4 shared memory as the pervasive shared-

memory management mechanism. svr4 shared memory is selected by default when ION

is built for any platform other than MinGW, VxWorks 5.4, or RTEMS. (For these latter

operating systems all memory is shared anyway, due to the absence of a protected-

memory mode.)

POSIX1B_SEMAPHORES

This option causes ION to be built using POSIX semaphores as the pervasive semaphore

mechanism. POSIX semaphores are selected by default when ION is built for RTEMS

but are otherwise not used or supported; this option enables the default to be overridden.

SVR4_SEMAPHORES

This option causes ION to be built using svr4 semaphores as the pervasive semaphore

mechanism. svr4 semaphores are selected by default when ION is built for any platform

other than MinGW (for which Windows event objects are used), VxWorks 5.4 (for which

VxWorks native semaphores are the default choice), or RTEMS (for which POSIX

semaphores are the default choice).

SM_SEMBASEKEY=0xXXXX

 63

This option overrides the default value (0xee02) of the identifying “key” used in creating

and locating the global ION shared-memory semaphore database, in the event that svr4

semaphores are used.

SEMMNI=xxx

This option declares to ION the total number of svr4 semaphore sets provided by the

operating system, in the event that svr4 semaphores are used. It overrides the default

value, which is 10 for Cygwin and 128 otherwise. (Changing this value typically entails

rebuilding the O/S kernel.)

SEMMSL=xxx

This option declares to ION the maximum number of semaphores in each svr4 semaphore

set, in the event that svr4 semaphores are used. It overrides the default value, which is 6

for Cygwin and 250 otherwise. (Changing this value typically entails rebuilding the O/S

kernel.)

SEMMNS=xxx

This option declares to ION the total number of svr4 semaphores that the operating

system can support; the maximum possible value is SEMMNI x SEMMSL. It overrides

the default value, which is 60 for Cygwin and 32000 otherwise. (Changing this value

typically entails rebuilding the O/S kernel.)

ION_NO_DNS

This option causes the implementation of a number of Internet socket I/O operations to be

omitted for ION. This prevents ION software from being able to operate over Internet

connections, but it prevents link errors when ION is loaded on a spacecraft where the

operating system does not include support for these functions.

ERRMSGS_BUFSIZE=xxxx

This option set the size of the buffer in which ION status messages are constructed prior

to logging. The default value is 4 KB.

SPACE_ORDER=x

This option declares the word size of the computer on which the compiled ION software

will be running: it is the base-2 log of the number of bytes in an address. The default

value is 2, i.e., the size of an address is 22 = 4 bytes. For a 64-bit machine,

SPACE_ORDER must be declared to be 3, i.e., the size of an address is 23 = 8 bytes.

NO_SDRMGT

This option enables the SDR system to be used as a data access transaction system only,

without doing any dynamic management of non-volatile data. With the NO_SDRMGT

option set, the SDR system library can (and in fact must) be built from the sdrxn.c

source file alone.

DOS_PATH_DELIMITER

 64

This option causes ION_PATH_DELIMITER to be set to ‘\’ (backslash), for use in

construction path names. The default value of ION_PATH_DELIMITER is ‘/’ (forward

slash, as is used in Unix-like operating systems).

2.1.2 Build

To build ICI for a given deployment platform:

1. Decide where you want ION’s executables, libraries, header files, etc. to be

installed. The ION makefiles all install their build products to subdirectories

(named bin, lib, include, man, man/man1, man/man3, man/man5) of an ION

root directory, which by default is the directory named /opt. If you wish to use

the default build configuration, be sure that the default directories (/opt/bin, etc.)

exist; if not, select another ION root directory name – this document will refer to

it as $OPT – and create the subdirectories as needed. In any case, make sure that

you have read, write, and execute permission for all of the ION installation

directories and that:

 The directory /$OPT/bin is in your execution path.

 The directory /$OPT/lib is in your $LD_LOADLIB_PATH.

2. Edit the Makefile in ion/ici:

 Make sure PLATFORMS is set to the appropriate platform name, e.g., x86-

redhat, sparc-sol9, etc.

 Set OPT to your ION root directory name, if other than “/opt”.

3. Then:

cd ion/ici

make

make install

2.1.3 Configure

Three types of files are used to provide the information needed to perform global

configuration of the ION protocol stack: the ION system configuration (or ionconfig)

file, the ION administration command (ionrc) file, and the ION security configuration

(ionsecrc) file. For details, see the man pages for ionconfig(5), ionrc(5), and ionsecrc(5)

in Appendix A.

Normally the instantiation of ION on a given computer establishes a single ION node on

that computer, for which hard-coded values of wmKey and sdrName (see ionconfig(5))

are used in common by all executables to assure that all elements of the system operate

within the same state space. For some purposes, however, it may be desirable to establish

multiple ION nodes on a single workstation. (For example, constructing an entire self-

contained DTN network on a single machine may simplify some kinds of regression

testing.) ION supports this configuration option as follows:

 Multi-node operation on a given computer is enabled if and only if the

environment variable ION_NODE_LIST_DIR is defined in the environment of

 65

every participating ION process. Moreover, the value assigned to this variable

must be the same text string in the environments of all participating ION

processes. That value must be the name (preferably, fully qualified) of the

directory in which the ION multi-node database file “ion_nodes” will reside.

 The definition of ION_NODE_LIST_DIR makes it possible to establish up to one

ION nodes per directory rather than just one ION node on the computer. When

ionadmin is used to establish a node, the ionInitialize() function will get

that node’s wmKey and sdrName from the .ionconfig file, use them to allocate

working memory and create the SDR database, and then write a line to the

ion_nodes file noting the nodeNbr, wmKey, sdrName, and wdName for the node

it just initialized. wdName is the current working directory in which ionadmin

was running at the time it called ionInitialize(); it is the directory within

which the node resides.

 This makes it easy to connect all the node's daemon processes – running within

the same current working directory – to the correct working memory partition and

SDR database: the ionAttach() function simply searches the ion_nodes file

for a line whose wdName matches the current working directory of the process

that is trying to attach, then uses that line's wmKey and sdrName to link up.

 It is also possible to initiate a process from within a directory other than the one in

which the node resides. To do so, define the additional environment variable

ION_NODE_WDNAME in the shell from which the new process is to be

initiated. When ionAttach() is called it will first try to get "current working

directory" (for ION attachment purposes only) from that environment variable;

only if ION_NODE_WDNAME is undefined will it use the actual cwd that it gets

from calling igetcwd().

2.1.4 Run

The executable programs used in operation of the ici component of ION include:

 The ionadmin system configuration utility and ionsecadmin security

configuration utility, invoked at node startup time and as needed thereafter.

 The rfxclock background daemon, which effects scheduled network configuration

events.

 The sdrmend system repair utility, invoked as needed.

 The sdrwatch and psmwatch utilities for resource utilization monitoring,

invoked as needed.

Each time it is executed, ionadmin computes a new congestion forecast and, if a

congestion collapse is predicted, invokes the node’s congestion alarm script (if any).

ionadmin also establishes the node number for the local node and starts/stops the

rfxclock task, among other functions. For further details, see the man pages for

ionadmin(1), ionsecadmin(1), rfxclock(1), sdrmend(1), sdrwatch(1), and psmwatch(1) in

Appendix A.

 66

2.1.5 Test

Six test executables are provided to support testing and debugging of the ICI component

of ION:

 The file2sdr and sdr2file programs exercise the SDR system.

 The psmshell program exercises the PSM system.

 The file2sm, sm2file, and smlistsh programs exercise the shared-memory linked

list system.

For details, see the man pages for file2sdr(1), sdr2file(1), psmshell(1), file2sm(1),

sm2file(1), and smlistsh(1) in Appendix A.

 67

2.2 Licklider Transmission Protocol (LTP)

2.2.1 Build

To build LTP:

1. Make sure that the “ici” component of ION has been built for the platform on

which you plan to run LTP.

2. Edit the Makefile in ion/ltp:

 As for ici, make sure PLATFORMS is set to the name of platform on which

you plan to run LTP.

 Set OPT to the directory containing the bin, lib, include, etc. directories used

for building ici.

3. Then:

cd ion/ltp

make

make install

2.2.2 Configure

The LTP administration command (ltprc) file provides the information needed to

configure LTP on a given ION node. For details, see the man page for ltprc(5) in

Appendix A.

2.2.3 Run

The executable programs used in operation of the ltp component of ION include:

 The ltpadmin protocol configuration utility, invoked at node startup time and as

needed thereafter.

 The ltpclock background daemon, which effects scheduled LTP events such as

segment retransmissions.

 The ltpmeter block management daemon, which segments blocks and effects

LTP flow control.

 The udplsi and udplso link service input and output tasks, which handle

transmission of LTP segments encapsulated in UDP datagrams (mainly for testing

purposes).

ltpadmin starts/stops the ltpclock task and, as mandated by configuration, the udplsi and

udplso tasks.

For details, see the man pages for ltpadmin(1), ltpclock(1), ltpmeter(1), udplsi(1), and

udplso(1) in Appendix A.

 68

2.2.4 Test

Two test executables are provided to support testing and debugging of the LTP

component of ION:

 ltpdriver is a continuous source of LTP segments.

 ltpcounter is an LTP block receiver that counts blocks as they arrive.

For details, see the man pages for ltpdriver(1) and ltpcounter(1) in Appendix A.

 69

2.3 Bundle Protocol (BP)

2.3.1 Compile-time options

Declaring values for the following variables, by setting parameters that are provided to

the C compiler (for example, –DION_NOSTATS or –DBRSTERM=60), will alter the

functionality of BP as noted below.

TargetFFS

Setting this option adapts BP for use with the TargetFFS flash file system on the

VxWorks operating system. TargetFFS apparently locks one or more system semaphores

so long as a file is kept open. When a BP task keeps a file open for a sustained interval,

subsequent file system access may cause a high-priority non-BP task to attempt to lock

the affected semaphore and therefore block; in this event, the priority of the BP task may

automatically be elevated by the inversion safety mechanisms of VxWorks. This

“priority inheritance” can result in preferential scheduling for the BP task – which does

not need it – at the expense of normally higher-priority tasks, and can thereby introduce

runtime anomalies. BP tasks should therefore close files immediately after each access

when running on a VxWorks platform that uses the TargetFFS flash file system. The

TargetFFS compile-time option ensures that they do so.

BRSTERM=xx

This option sets the maximum number of seconds by which the current time at the BRS

server may exceed the time tag in a BRS authentication message from a client; if this

interval is exceeded, the authentication message is presumed to be a replay attack and is

rejected. Small values of BRSTERM are safer than large ones, but they require that

clocks be more closely synchronized. The default value is 5.

ION_NOSTATS

Setting this option prevents the logging of bundle processing statistics in status messages.

KEEPALIVE_PERIOD=xx

This option sets the number of seconds between transmission of keep-alive messages

over any TCP or BRS convergence-layer protocol connection. The default value is 15.

ION_BANDWIDTH_RESERVED

Setting this option overrides strict priority order in bundle transmission, which is the

default. Instead, bandwidth is shared between the priority-1 and priority-0 queues on a

2:1 ratio whenever there is no priority-2 traffic.

ENABLE_BPACS

This option causes Aggregate Custody Signaling source code to be included in the build.

ACS is alternative custody transfer signaling mechanism that sharply reduces the volume

of custody acknowledgment traffic.

ENABLE_IMC

 70

This option causes IPN Multicast source code to be included in the build. IMC is

discussed in section 1.8.4 above.

2.3.2 Build

To build BP:

1. Make sure that the “ici” and “ltp” and “dgr” components of ION have been built

for the platform on which you plan to run BP.

2. Edit the Makefile in ion/bp:

 As for ici, make sure PLATFORMS is set to the name of platform on which

you plan to run BP.

 Set OPT to the directory containing the bin, lib, include, etc. directories used

for building ici.

3. Then:

cd ion/bp

make

make install

2.3.3 Configure

The BP administration command (bprc) file provides the information needed to

configure generic BP on a given ION node. The IPN scheme administration command

(ipnrc) file provides information that configures static and default routes for endpoints

whose IDs conform to the “ipn” scheme. The DTN scheme administration command

(dtn2rc) file provides information that configures static and default routes for endpoints

whose IDs conform to the “dtn” scheme, as supported by the DTN2 reference

implementation. For details, see the man pages for bprc(5), ipnrc(5), and dtn2rc(5) in

Appendix A.

2.3.4 Run

The executable programs used in operation of the bp component of ION include:

 The bpadmin, ipnadmin, and dtn2admin protocol configuration utilities,

invoked at node startup time and as needed thereafter.

 The bpclock background daemon, which effects scheduled BP events such as

TTL expirations and which also implements rate control.

 The ipnfw and dtn2fw forwarding daemons, which compute routes for bundles

addressed to “ipn”-scheme and “dtn”-scheme endpoints, respectively.

 The ipnadminep and dtn2adminep administrative endpoint daemons, which

handle custody acceptances, custody refusals, and status messages.

 The brsscla (server) and brsccla (client) Bundle Relay Service convergence-layer

adapters.

 The tcpcli (input) and tcpclo (output) TCP convergence-layer adapters.

 71

 The udpcli (input) and udpclo (output) UDP convergence-layer adapters.

 The ltpcli (input) and ltpclo (output) LTP convergence-layer adapters.

 The dgrcla Datagram Retransmission convergence-layer adapter.

 The bpsendfile utility, which sends a file of arbitrary size, encapsulated in a

single bundle, to a specified BP endpoint.

 The bpstats utility, which prints a snapshot of currently accumulated BP

processing statistics on the local node.

 The bptrace utility, which sends a bundle through the network to enable a

forwarding trace based on bundle status reports.

 The lgsend and lgagent utilities, which are used for remote administration of ION

nodes.

 The hmackeys utility, which can be used to create hash keys suitable for use in

bundle authentication blocks and BRS convergence-layer protocol connections.

bpadmin starts/stops the bpclock task and, as mandated by configuration, the ipnfw,

dtn2fw, ipnadminep, dtn2adminep, brsscla, brsccla, , tcpcli, tcpclo, udpcli, udpclo,

ltpcli, ltpclo, and dgrcla tasks.

For details, see the man pages for bpadmin(1),ipnadmin(1), dtn2admin(1), bpclock(1),

ipnfw(1), dtn2fw(1), ipnadminep(1), dtn2adminep(1), brsscla(1), brsccla(1), tcpcli(1),

tcpclo(1), udpcli(1), udpclo(1), ltpcli(1), ltpclo(1), dgrcla(1), bpsendfile(1), bpstats(1),

bptrace(1), lgsend(1), lgagent(1), and hmackeys(1) in Appendix A.

2.3.5 Test

Five test executables are provided to support testing and debugging of the BP component

of ION:

 bpdriver is a continuous source of bundles.

 bpcounter is a bundle receiver that counts bundles as they arrive.

 bpecho is a bundle receiver that sends an “echo” acknowledgment bundle back to

bpdriver upon reception of each bundle.

 bpsource is a simple console-like application for interactively sending text strings

in bundles to a specified DTN endpoint, nominally a bpsink task.

 bpsink is a simple console-like application for receiving bundles and printing

their contents.

For details, see the man pages for bpdriver(1), bpcounter(1), bpecho(1), bpsource(1), and

bpsink(1) in Appendix A.

 72

2.4 Datagram Retransmission (DGR)

2.4.1 Build

To build DGR:

1. Make sure that the “ici” component of ION has been built for the platform on

which you plan to run DGR.

2. Edit the Makefile in ion/dgr:

 As for ici, make sure PLATFORMS is set to the name of platform on which

you plan to run DGR.

 Set OPT to the directory containing the bin, lib, include, etc. directories used

for building ici.

3. Then:

cd ion/dgr

make

make install

2.4.2 Configure

No additional configuration files are required for the operation of the DGR component of

ION.

2.4.3 Run

No runtime executables are required for the operation of the DGR component of ION.

2.4.4 Test

Two test executables are provided to support testing and debugging of the DGR

component of ION:

 file2dgr repeatedly reads a file of text lines and sends copies of those text lines

via DGR to dgr2file, which writes them to a copy of the original file.

For details, see the man pages for file2dgr(1) and dgr2file(1) in Appendix A.

 73

2.5 Asynchronous Message Service (AMS)

2.5.1 Compile-time options

Defining the following macros, by setting parameters that are provided to the C compiler

(for example, -DNOEXPAT or –DAMS_INDUSTRIAL), will alter the functionality of

AMS as noted below.

NOEXPAT

Setting this option adapts AMS to expect MIB information to be presented to it in

“amsrc” syntax (see the amsrc(5) man page in Appendix A) rather than in XML syntax,

normally because the expat XML interpretation system is not installed. The default

syntax for AMS MIB information is XML, as described in the amsxml(5) man page in

Appendix A.

AMS_INDUSTRIAL

Setting this option adapts AMS to an “industrial” rather than safety-critical model for

memory management. By default, the memory acquired for message transmission and

reception buffers in AMS is allocated from limited ION working memory, which is fixed

at ION start-up time; this limits the rate at which AMS messages may be originated and

acquired. When –DAMS_INDUSTRIAL is set at compile time, the memory acquired for

message transmission and reception buffers in AMS is allocated from system memory,

using the familiar malloc() and free() functions; this enables much higher message traffic

rates on machines with abundant system memory.

2.5.2 Build

To build AMS:

1. Make sure that the “bp” component of ION has been built for the platform on

which you plan to run AMS.

2. Edit the Makefile in ion/cfdp:

 Just as for bp, make sure PLATFORMS is set to the name of platform on

which you plan to run AMS.

 Set OPT to the directory containing the bin, lib, include, etc. directories used

for building bp.

3. Then:

cd ion/ams

make

make install

2.5.3 Configure

There is no central configuration of AMS; each AMS entity (configuration server,

registrar, or application module) is individually configured at the time its initial MIB is

 74

loaded at startup. For details of MIB file syntax, see the man pages for amsrc(5) and

amsxml(5) in Appendix A.

2.5.4 Run

The executable programs used in operation of the AMS component of ION include:

 The amsd background daemon, which serves as configuration server and/or as the

registrar for a single application cell.

 The ramsgate application module, which serves as the Remote AMS gateway for

a single message space.

 The amsstop utility, which terminates all AMS operation throughout a single

message space.

 The amsmib utility, which announces supplementary MIB information to selected

subsets of AMS entities without interrupting the operation of the message space.

For details, see the man pages for amsd(1), ramsgate(1), amsstop(1), and amsmib(1) in

Appendix A.

2.5.5 Test

Seven test executables are provided to support testing and debugging of the AMS

component of ION:

 amsbenchs is a continuous source of messages.

 amsbenchr is a message receiver that calculates bundle transmission performance

statistics.

 amshello is an extremely simple AMS “hello, world” demo program – a self-

contained distributed application in a single source file of about seventy lines.

 amsshell is a simple console-like application for interactively publishing,

sending, and announcing text strings in messages.

 amslog is a simple console-like application for receiving messages and piping

their contents to stdout.

 amslogprt is a pipeline program that simply prints AMS message contents piped

to it from amslog.

 amspubsub is a pair of functions for rudimentary testing of AMS functionality in

a VxWorks environment.

For details, see the man pages for amsbenchs(1), amsbenchr(1), amshello(1), amsshell(1),

amslog(1), amslogprt(1), amspub(1), and amssub(1) in Appendix A.

For further operational details of the AMS system, please see sections 4 and 5 of the

AMS Programmer’s Guide.

 75

2.6 CCSDS File Delivery Protocol (CFDP)

2.6.1 Compile-time options

Defining the following macro, by setting a parameter that is provided to the C compiler

(i.e., –DTargetFFS), will alter the functionality of CFDP as noted below.

TargetFFS

Setting this option adapts CFDP for use with the TargetFFS flash file system on the

VxWorks operating system. TargetFFS apparently locks one or more system semaphores

so long as a file is kept open. When a CFDP task keeps a file open for a sustained

interval, subsequent file system access may cause a high-priority non-CFDP task to

attempt to lock the affected semaphore and therefore block; in this event, the priority of

the CFDP task may automatically be elevated by the inversion safety mechanisms of

VxWorks. This “priority inheritance” can result in preferential scheduling for the CFDP

task – which does not need it – at the expense of normally higher-priority tasks, and can

thereby introduce runtime anomalies. CFDP tasks should therefore close files

immediately after each access when running on a VxWorks platform that uses the

TargetFFS flash file system. The TargetFFS compile-time option assures that they do so.

2.6.2 Build

To build CFDP:

1. Make sure that the “bp” component of ION has been built for the platform on

which you plan to run CFDP.

2. Edit the Makefile in ion/cfdp:

 Just as for bp, make sure PLATFORMS is set to the name of platform on

which you plan to run CFDP.

 Set OPT to the directory containing the bin, lib, include, etc. directories used

for building bp.

3. Then:

cd ion/cfdp

make

make install

2.6.3 Configure

The CFDP administration command (cfdprc) file provides the information needed to

configure CFDP on a given ION node. For details, see the man page for cfdprc(5) in

Appendix A.

2.6.4 Run

The executable programs used in operation of the CFDP component of ION include:

 76

 The cfdpadmin protocol configuration utility, invoked at node startup time and as

needed thereafter.

 The cfdpclock background daemon, which effects scheduled CFDP events such

as check timer expirations. The cfdpclock task also effects CFDP transaction

cancellations, by canceling the bundles encapsulating the transaction’s protocol

data units.

 The bputa UT-layer input/output task, which handles transmission of CFDP

PDUs encapsulated in bundles.

cfdpadmin starts/stops the cfdpclock task and, as mandated by configuration, the bputa

task.

For details, see the man pages for cfdpadmin(1), cfdpclock(1), and bputa(1) in Appendix

A.

2.6.5 Test

A single executable, cfdptest, is provided to support testing and debugging of the DGR

component of ION. For details, see the man page for cfdptest(1) in Appendix A.

 77

2.7 Bundle Streaming Service (BSS)

2.7.1 Compile-time options

Defining the following macro, by setting a parameter that is provided to the C compiler

(e.g., –DWINDOW=10000), will alter the functionality of BSS as noted below.

WINDOW=xx

Setting this option changes maximum number of seconds by which the BSS database for

a BSS application may be “rewound” for replay. The default value is 86400 seconds,

which is 24 hours.

2.7.2 Build

To build BSS:

 Make sure that the “bp” component of ION has been built for the platform on

which you plan to run BSS.

 Edit the Makefile in ion/bss:

 As for ici, make sure PLATFORMS is set to the name of platform on which you

plan to run BSS.

 Set OPT to the directory containing the bin, lib, include, etc. directories used for

building ici.

 Then:

cd ion/bss

make

make install

2.7.3 Configure

No additional configuration files are required for the operation of the BSS component of

ION.

2.7.4 Run

No runtime executables are required for the operation of the BSS component of ION.

2.7.5 Test

Four test executables are provided to support testing and debugging of the BSS

component of ION:

 bssdriver sends a stream of data to bsscounter for non-interactive testing.

 bssStreamingApp sends a stream of data to bssrecv for graphical, interactive

testing.

 78

For details, see the man pages for bssdriver(1), bsscounter(1), bssStreamingApp(1), and

bssrecv(1) in Appendix A.

Appendix A: ION Manpages

Executables (man section 1)
amsbenchr
amsbenchs
amsd
amshello
amslog
amslogprt
amsmib
amspub
amsshell
amsstop
amssub
ramsgate
acsadmin
acslist
bibeclo
bpadmin
bpcancel
bpchat
bpclock
bpcounter
bpdriver
bpecho
bping
bplist
bpnmtest
bprecvfile
bpsendfile
bpsink
bpsource
bpstats
bpstats2
bptrace
bptransit
brsccla
brsscla
cgrfetch
dccpcli
dccpclo
dgrcla
dtn2admin
dtn2adminep
dtn2fw
hmackeys
imcadmin
imcfw
ipnadmin
ipnadminep
ipnfw
lgagent
lgsend

ltpcli
ltpclo
stcpcli
stcpclo
tcpcli
tcpclo
udpcli
udpclo
bssStreamingApp
bssrecv
bsspadmin
udpbso
bpcp
bpcpd
bputa
cfdpadmin
cfdpclock
cfdptest
dtpcadmin
dtpcclock
dtpcd
dtpcreceive
dtpcsend
file2sdr
file2sm
ionadmin
ionsecadmin
owltsim
owlttb
psmshell
psmwatch
rfxclock
sdr2file
sdrmend
sdrwatch
sm2file
smlistsh
smrbtsh
dccplsi
dccplso
ltpadmin
ltpclock
ltpcounter
ltpdriver
ltpmeter
udplsi
udplso

Libraries (man section 3)
ams
bp

-2-

bpextensions
bss
bssp
cfdp
dgr
dtpc
ion
llcv
lyst
memmgr
platform
psm
sdr
sdrhash
sdrlist
sdrstring
sdrtable
smlist
zco
ltp

Configuration files (man section 5)
amsrc
amsxml
acsrc
bprc
bssrc
dtn2rc
imcrc
ipnrc
lgfile
bssprc
cfdprc
dtpcrc
ionconfig
ionrc
ionsecrc
ltprc

AMSBENCHR(1) AMSexecutables AMSBENCHR(1)

NAME
amsbenchr − Asynchronous Message Service (AMS) benchmarking meter

SYNOPSIS
amsbenchr

DESCRIPTION
amsbenchr is a test program that simply subscribes to subject ‘‘bench’’ and receives messages published
by amsbenchsuntil all messages in the test − as indicated by the count of remaining messages, in in the
first four bytes of each message − have been received. Thenit stops receiving messages, calculates and
prints performance statistics, and terminates.

amsbenchrwill register as an application module in the root unit of the venture identified by application
name ‘‘amsdemo’’ and authority name ‘‘test’’. A configuration server for the local continuum and a
registrar for the root unit of that venture (which may both be instantiated in a singleamsd daemon task)
must be running in order foramsbenchrto commence operations.

EXIT STATUS
−1 amsbenchrfailed, for reasons noted in the ion.log file.

‘‘ 0’’
amsbenchrterminated normally.

FILES
A MIB initialization file with the applicable default name (seeamsrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

amsbenchr can’t register.
amsbenchrfailed to register, for reasons noted in the ion.log file.

amsbenchr: subject ’bench’ is unknown.
amsbenchrcan’t subscribe to test messages; probably an error in theMIB initialization file.

amsbenchr can’t subscribe.
amsbenchrfailed to subscribe, for reasons noted in the ion.log file.

amsbenchr can’t get event.
amsbenchrfailed to receive a message, for reasons noted in the ion.log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amsrc(5)

perl v5.18.2 2016-09-07 1

AMSBENCHS(1) AMSexecutables AMSBENCHS(1)

NAME
amsbenchs − Asynchronous Message Service (AMS) benchmarking driver

SYNOPSIS
amsbenchscount size

DESCRIPTION
amsbenchsis a test program that simply publishescountmessages ofsizebytes each on subject ‘‘bench’’,
then waits while all published messages are transmitted, terminating when the user uses ˆC to interrupt the
program. Theremaining number of messages to be published in the test is written into the first four octets
of each message.

amsbenchswill register as an application module in the root unit of the venture identified by application
name ‘‘amsdemo’’ and authority name ‘‘test’’. A configuration server for the local continuum and a
registrar for the root unit of that venture (which may both be instantiated in a singleamsd daemon task)
must be running in order foramsbenchsto commence operations.

EXIT STATUS
−1 amsbenchsfailed, for reasons noted in the ion.log file.

‘‘ 0’’
amsbenchsterminated normally.

FILES
A MIB initialization file with the applicable default name (seeamsrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

No memory for amsbenchs.
Insufficient available memory for a message content buffer of the indicated size.

amsbenchs can’t register.
amsbenchsfailed to register, for reasons noted in the ion.log file.

amsbenchs can’t set event manager.
amsbenchsfailed to start its background event management thread, for reasons noted in the ion.log
file.

amsbenchs: subject ’bench’ is unknown.
amsbenchscan’t publish test messages; probably an error in theMIB initialization file.

amsbenchs can’t publish message.
amsbenchsfailed to publish, for reasons noted in the ion.log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amsrc(5)

perl v5.18.2 2016-09-07 1

AMSD(1) AMS executables AMSD(1)

NAME
amsd − AMS configuration server and/or registrar daemon

SYNOPSIS
amsd { @ | MIB_source_name} { . | @ | config_server_endpoint_spec} [application_name
authority_name registrar_unit_name]

DESCRIPTION
amsd is a background ‘‘daemon’’ task that functions as anAMS ‘‘ configuration server’’ i n the local
continuum, as anAMS ‘‘ registrar’’ in a specified cell, or both.

If MIB_source_nameis specified, it must name aMIB initialization file in the correct format foramsd,
either amsrc(5) or amsxml(5), depending on whether or not −DNOEXPAT was set at compile time.
Otherwise@ is required; in this case, the built-in defaultMIB is loaded.

If this amsd task isNOT to run as a configuration server then the second command-line argument must be a
’.’ character. Otherwise the second command-line argument must be either ’@’ or
config_server_endpoint_spec. If ’ @’ then the endpoint specification for this configuration server is
automatically computed as the default endpoint specification for the primary transport service as noted in
theMIB: "hostname:2357".

If an AMS module isNOT to be run in a background thread for this daemon (enabling shutdown by
amsstop(1) and/or runtimeMIB update byamsmib(1)), then either the last three command-line arguments
must be omitted or else the ‘‘amsd’’ role must not be defined in theMIB loaded for this daemon.Otherwise
theapplication_nameandauthority_namearguments are required and the ‘‘amsd’’ role must be defined in
theMIB.

If this amsd task isNOT to run as a registrar then the last command-line argument must be omitted.
Otherwise the last three command-line arguments are required and they must identify a unit in anAMS
venture for the indicated application and authority that is known to operate in the local continuum, as noted
in theMIB. Note that the unit name for the ‘‘root unit’’ of a venture is the zero-length string "".

EXIT STATUS
‘‘ 0’’

amsdterminated without error.

−1 amsd terminated due to an anomaly as noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and restartamsd.

FILES
If MIB source nameis specified, then a file of this name must be present.Otherwise aMIB initialization file
with the applicable default name (seeamsrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

amsd can’t loadMIB.
MIB initialization file was missing, unreadable, or invalid.

amsd can’t start CS.
Configuration server initialization failed for reasons noted in ion.log file.

amsd can’t start RS.
Registrar initialization failed for reasons noted in ion.log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amsmib(1), amsstop(1), amsrc(5), amsxml(5)

perl v5.18.2 2016-09-07 1

AMSHELLO(1) AMS executables AMSHELLO(1)

NAME
amshello − Asynchronous Message Service (AMS) demo program for UNIX

SYNOPSIS
amshello

DESCRIPTION
amshello is a sample program designed to demonstrate that an entire (very simple) distributed AMS
application can be written in just a few lines of C code. When started,amshelloforks a second process and
initiates transmission of a ‘‘Hello’ ’ text message from one process to the other, after which both processes
unregister and terminate.

The amshello processes will register as application modules in the root unit of the venture identified by
application name ‘‘amsdemo’’ and authority name ‘‘test’’. A configuration server for the local continuum
and a registrar for the root unit of that venture (which may both be instantiated in a singleamsd daemon
task) must be running in order for theamshelloprocesses to run.

EXIT STATUS
‘‘ 0’’

amshelloterminated normally.

FILES
A MIB initialization file with the applicable default name (seeamsrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
No diagnostics apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amsrc(5)

perl v5.18.2 2016-09-07 1

AMSLOG(1) AMSexecutables AMSLOG(1)

NAME
amslog − Asynchronous Message Service (AMS) test message receiver

SYNOPSIS
amslogunit_name role_name application_name authority_name [{ s | i }]

DESCRIPTION
amslogis a message reception program designed to testAMS functionality.

When amslog is started, it registers as an application module in the unit identified byunit_nameof the
venture identified byapplication_nameandauthority_name; the role in which it registers must be indicated
in role_name. A configuration server for the local continuum and a registrar for the indicated unit of the
indicated venture (which may both be instantiated in a singleamsddaemon task) must be running in order
for amslogto run.

amslog runs as two threads: a background thread that receives AMS messages and logs them to standard
output, together with a foreground thread that acquires operating parameters in lines of console input to
control the flow of messages to the background thread.

When the first character of a line of input from stdin to theamslogforeground thread is ’.’ (period),amslog
immediately terminates.Otherwise, the first character of each line of input from stdin must be either ’+’
indicating assertion of interest in a message subject or ’−’ indicating cessation of interest in a subject.In
each case, the name of the subject in question must begin in the second character of the input line.Note
that ‘‘everything’’ is a valid subject name.

By default, amslog runs in ‘‘subscribe’’ mode: when interest in a message subject is asserted,amslog
subscribes to that subject; when interest in a message subject is rescinded,amslog unsubscribes to that
subject. Thisbehavior can be overridden by providing a third command-line argument toamslog − a
‘‘ mode’’ i ndicator. When mode is ’i’,amslogruns in ‘‘invite’ ’ mode. In‘‘ invite’’ mode, when interest in a
message subject is asserted,amsloginvites messages on that subject; when interest in a message subject is
rescinded,amslogcancels its invitation for messages on that subject.

The ‘‘domain’’ of a subscription or invitation can optionally be specified immediately after the subject
name, on the same line of console input:

Domain continuum name may be specified, or the place-holder domain continuum name ‘‘_’ ’ may be
specified to indicate ‘‘all continua’’.

If domain continuum name (‘‘_’ ’ or otherwise) is specified, then domain unit name may be specified or
the place-holder domain unit name ‘‘_’ ’ may be specified to indicate ‘‘the root unit’’ (i.e., the entire
venture).

If domain unit name (‘‘_’’ or otherwise) is specified, then domain role name may be specified.

Whenamslogruns in VxWorks orRTEMS, the subject and content of each message are simply written to
standard output in a text line for display on the console.Whenamslog runs in aUNIX environment, the
subject name length (a binary integer), subject name (ASCII text), content length (a binary integer), and
content (ASCII text) are written to standard output for redirection either to a file or to a pipe toamslogprt.

Whenever a received message is flagged as a Query, amslogreturns a reply message whose content is the
string ‘‘Got ’’ f ollowed by the first 128 bytes of the content of the Query message, enclosed in single quote
marks and followed by a period.

EXIT STATUS
−1 amslogterminated with an error as noted in the ion.log file.

‘‘ 0’’
amslogterminated normally.

FILES
A MIB initialization file with the applicable default name (seeamsrc(5)) must be present.

perl v5.18.2 2016-09-07 1

AMSLOG(1) AMSexecutables AMSLOG(1)

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
amslog can’t register.

amslogfailed to register, for reasons noted in the ion.log file.

amslog can’t set event manager.
amslogfailed to start its background thread, for reasons noted in the ion.log file.

amslog can’t read from stdin
amslogforeground thread failed to read console input, for reasons noted in the ion.log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amsshell(1), amslogprt(1), amsrc(5)

perl v5.18.2 2016-09-07 2

AMSLOGPRT(1) AMS executables AMSLOGPRT(1)

NAME
amslogprt − UNIX utility program for printing AMS log messages from amslog

SYNOPSIS
amslogprt

DESCRIPTION
amslogprt simply readsAMS activity log messages from standard input (nominally written byamslogand
prints them. When the content of a logged message is judged not to be anASCII text string, the content is
printed in hexadecimal.

amslogprt terminates at the end of input.

EXIT STATUS
‘‘ 0’’

amslogprt terminated normally.

FILES
No files are needed by amslogprt.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
None.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amsrc(5)

perl v5.18.2 2016-09-07 1

AMSMIB(1) AMS executables AMSMIB(1)

NAME
amsmib − Asynchronous Message Service (AMS) MIB update utility

SYNOPSIS
amsmibapplication_name authority_name role_name continuum_name unit_name file_name

DESCRIPTION
amsmib is a utility program that announces relatively brief Management Information Base (MIB) updates
to a select population ofAMS modules. Becauseamsd processes may runAAMS modules in background
threads, and because a singleMIB is shared in common among all threads of any process,amsmib may
update the MIBs used by registrars and/or configuration servers as well.

MIB updates can only be propagated to modules for which the subject ‘‘amsmib’’ was defined in theMIB
initialization files cited at module registration time.All ION AMS modules implicitly invite messages on
subject ‘‘amsmib’’ (from all modules registered in role ‘‘amsmib’’ in all continua of the same venture) at
registration time if subject ‘‘amsmib’’ and role ‘‘amsmib’’ are defined in theMIB.

amsmib registers in the root cell of the message space identified byapplication_nameandauthority_name,
within the local continuum. It registers in the role ‘‘amsmib’’; if this role is not defined in the (initial)MIB
loaded byamsmibat registration time, then registration fails andamsmib terminates.

amsmib then reads into a memory buffer up to 4095 bytes ofMIB update text from the file identified by
file_name. TheMIB update text must conform toamsxml(5) or amsrc(5) syntax, depending on whether or
not the intended recipient modules were compiled with the −DNOEXPAT option.

amsmib then ‘‘announces’’ (seeams_announce()in ams(3)) the contents of the memory buffer to all
modules of this same venture (identified byapplication_nameandauthority_name) that registered in the
indicated role, in the indicated unit of the indicated continuum.If continuum_nameis "" then the message
will be sent to modules in all continua.If role_nameis "" then all modules will be eligible to receive the
message, regardless of the role in which they registered. Ifunit_nameis "" (the root unit) then all modules
will be eligible to receive the message, regardless of the unit in which they registered.

Upon reception of the announced message, each destination module will apply all of theMIB updates in the
content of the message, in exactly the same way that its originalMIB was loaded from theMIB initialization
file when the module started running.

If multiple modules are running in the same memory space (e.g., in different threads of the same process, or
in different tasks on the same VxWorks target) then the updates will be applied multiple times, because all
modules in the same memory space share a singleMIB. MIB updates are idempotent, so this is harmless
(though some diagnostics may be printed).

Moreover, an amsd daemon will have a relevant ‘‘MIB update’’ module running in a background thread if
application_nameandauthority_namewere cited on the command line that started the daemon (provided
the role ‘‘amsd’’ was defined in the initialMIB loaded at the timeamsdbegan running). TheMIB exposed
to the configuration server and/or registrar running in that daemon will likewise be updated upon reception
of the announced message.

The name of the subject of the announced mib update message is ‘‘amsmib’’; if this subject is not defined
in the (initial) MIB loaded byamsmib then the message cannot be announced.Nor can any potential
recipient module receive the message if subject ‘‘amsmib’’ is not defined in that module’sMIB.

EXIT STATUS
‘‘ 0’’

amsmib terminated normally.

‘‘ 1’’
An anomalous exit status, indicating thatamsmib failed to register.

FILES
A MIB initialization file with the applicable default name (seeamsrc(5) andamsxml(5)) must be present.

perl v5.18.2 2016-09-07 1

AMSMIB(1) AMS executables AMSMIB(1)

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

amsmib subject undefined.
Theamsmibutility was unable to announce theMIB update message.

amsmib domain role unknown.
Theamsmibutility was unable to announce theMIB update message.

amsmib domain continuum unknown.
Theamsmibutility was unable to announce theMIB update message.

amsmib domain unit unknown.
Theamsmibutility was unable to announce theMIB update message.

amsmib can’t openMIB file.
Theamsmibutility was unable to construct theMIB update message.

MIB file length > 4096.
TheMIB update text file was too long to fit into theamsmibmessage buffer.

Can’t seek to end ofMIB file.
I/O error in processing theMIB update text file.

Can’t readMIB file.
I/O error in processing theMIB update text file.

amsmib can’t announce ’amsmib’ message.
Theamsmibutility was unable to announce theMIB update message, for reasons noted in the log file.

amsmib can’t register.
Theamsmibutility failed to register, for reasons noted in the log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amsd(1), ams(3), amsrc(5), amsxml(5)

perl v5.18.2 2016-09-07 2

AMSPUB(1) AMSexecutables AMSPUB(1)

NAME
amspub − Asynchronous Message Service (AMS) test driver for VxWorks

SYNOPSIS
amspub"application_name‘‘ , ’’authority_name‘‘ , ’’subject_name‘‘ , ’’message_text"

DESCRIPTION
amspub is a message publication program designed to testAMS functionality in a VxWorks environment.
When anamspub task is started, it registers as an application module in the root unit of the venture
identified by application_nameand authority_name, looks up the subject number forsubject_name,
publishes a single message with contentmessage_texton that subject, unregisters, and terminates.

A configuration server for the local continuum and a registrar for the root unit of the indicated venture
(which may both be instantiated in a singleamsd daemon task) must be running in order foramspub to
run.

EXIT STATUS
−1 amspubterminated with an error as noted in the ion.log file.

‘‘ 0’’
amspubterminated normally.

FILES
Theamspubsource code is in the amspubsub.c source file.

A MIB initialization file with the applicable default name (seeamsrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
amspub can’t register.

amspubfailed to register, for reasons noted in the ion.log file.

amspub: subject is unknown
amspubcan’t publish test messages on the specified subject; possibly an error in theMIB initialization
file.

amspub can’t publish message.
amspubfailed to publish, for reasons noted in the ion.log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amssub(1), amsrc(5)

perl v5.18.2 2016-09-07 1

AMSSHELL(1) AMSexecutables AMSSHELL(1)

NAME
amsshell − Asynchronous Message Service (AMS) test message sender (UNIX)

SYNOPSIS
amsshellunit_name role_name application_name authority_name [{ p | s | q | a }]

DESCRIPTION
amsshellis a message issuance program designed to testAMS functionality.

Whenamsshellis started, it registers as an application module in the unit identified byunit_nameof the
venture identified byapplication_nameandauthority_name; the role in which it registers must be indicated
in role_name. A configuration server for the local continuum and a registrar for the indicated unit of the
indicated venture (which may both be instantiated in a singleamsddaemon task) must be running in order
for amsshellto run.

amsshell runs as two threads: a background thread that receives watches forAMS configuration events
(including shutdown), together with a foreground thread that acquires operating parameters and message
content in lines of console input to control the issuance of messages.

The first character of each line of input from stdin to theamsshellindicates the significance of that line:

= Sets the name of the subject on which all messages are to be issued, until superseded by another ‘‘=’’
line. Thesubject name must begin at the second character of this line.Optionally, subject name may
be followed by a single ’ ’ (space) character and then the text of the first message to be issued on this
subject, which is to be issued immediately.

r Sets the number of the role constraining the domain of message issuance. The role number must begin
at the second character of this line.

c Sets the number of the continuum constraining the domain of message issuance. The continuum
number must begin at the second character of this line.

u Sets the number of the unit constraining the domain of message issuance.The unit number must begin
at the second character of this line.

m Sets the number of the module to which subsequent messages are to be issued. The module number
must begin at the second character of this line.

. Terminatesamsshell.

When the first character of a line of input from stdin is none of the above, the entire line is taken to be the
text of a message that is to be issued immediately, on the previously specified subject, to the previously
specified module (if applicable), and subject to the previously specified domain (if applicable).

By default,amsshellruns in ‘‘publish’’ mode: when a message is to be issued, it is simply published.This
behavior can be overridden by providing a fifth command-line argument toamsshell− a ‘‘mode’’ i ndicator.
The supported modes are as follows:

p This is ‘‘publish’’ mode. Every message is published.

s This is ‘‘send’’ mode. Every message is sent privately to the application module identified by the
specified module, unit, and continuum numbers.

q This is ‘‘query’’ mode. Every message is sent privately to the application module identified by the
specified module, unit, and continuum numbers, andamsshellthen waits for a reply message before
continuing.

a This is ‘‘announce’’ mode. Every message is announced to all modules in the domain established by
the previously specified role, unit, and continuum numbers.

EXIT STATUS
−1 amsshellterminated with an error as noted in the ion.log file.

‘‘ 0’’
amsshellterminated normally.

perl v5.18.2 2016-09-07 1

AMSSHELL(1) AMSexecutables AMSSHELL(1)

FILES
A MIB initialization file with the applicable default name (seeamsrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
amsshell can’t register.

amsshellfailed to register, for reasons noted in the ion.log file.

amsshell can’t set event manager.
amsshellfailed to start its background thread, for reasons noted in the ion.log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amslog(1), amsrc(5)

perl v5.18.2 2016-09-07 2

AMSSTOP(1) AMSexecutables AMSSTOP(1)

NAME
amsstop − Asynchronous Message Service (AMS) message space shutdown utility

SYNOPSIS
amsstopapplication_name authority_name

DESCRIPTION
amsstop is a utility program that terminates the operation of all registrars and all application modules
running in the message space which is that portion of the indicatedAMS venture that is operating in the
local continuum. If one of theamsd tasks that are functioning as registrars for this venture is also
functioning as the configuration server for the local continuum, then that configuration server is also
terminated.

application_nameandauthority_namemust identify anAMS venture that is known to operate in the local
continuum, as noted in theMIB for theamsstopapplication module.

A message space can only be shut down byamsstopif the subject ‘‘amsstop’’ is defined in the MIBs of all
modules in the message spaces.

EXIT STATUS
‘‘ 0’’

amsstopterminated normally.

‘‘ 1’’
An anomalous exit status, indicating thatamsstopwas unable to register and therefore failed to shut
down its message space, for reasons noted in the ion.log file.

FILES
A MIB initialization file with the applicable default name (seeamsrc(5) andamsxml(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

amsstop can’t register.
This message indicates thatamsstopwas unable to register, possibly because the ‘‘amsstop’’ role is
not defined in theMIB initialization file.

amsstop subject undefined.
This message indicates thatamsstopwas unable to stop the message space because the ‘‘amsstop’’
subject is not defined in theMIB initialization file.

amsstop can’t publish ’amsstop’ message.
This message indicates thatamsstopwas unable to publish a message on subject ’amsstop’ for reasons
noted in theion.log log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amsrc(5)

perl v5.18.2 2016-09-07 1

AMSSUB(1) AMSexecutables AMSSUB(1)

NAME
amssub − Asynchronous Message Service (AMS) test message receiver for VxWorks

SYNOPSIS
amssub"application_name‘‘ , ’’authority_name‘‘ , ’’subject_name"

DESCRIPTION
amssub is a message reception program designed to testAMS functionality in a VxWorks environment.
When anamssub task is started, it registers as an application module in the root unit of the venture
identified by application_nameand authority_name, looks up the subject number forsubject_name,
subscribes to that subject, and begins receiving and printing messages on that subject until terminated by
amsstop.

A configuration server for the local continuum and a registrar for the root unit of the indicated venture
(which may both be instantiated in a singleamsd daemon task) must be running in order foramssubto
run.

EXIT STATUS
−1 amssubterminated with an error as noted in the ion.log file.

‘‘ 0’’
amssubterminated normally.

FILES
Theamssubsource code is in the amspubsub.c source file.

A MIB initialization file with the applicable default name (seeamsrc(5)) must be present.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
amssub can’t register.

amssubfailed to register, for reasons noted in the ion.log file.

amssub: subject is unknown
amssubcan’t subscribe to messages on the specified subject; possibly an error in theMIB initialization
file.

amssub can’t subscribe.
amssubfailed to subscribe, for reasons noted in the ion.log file.

amssub can’t get event.
amssubfailed to receive message, for reasons noted in the ion.log file.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
amspub(1), amsrc(5)

perl v5.18.2 2016-09-07 1

RAMSGATE(1) AMSexecutables RAMSGATE(1)

NAME
ramsgate − Remote AMS gateway daemon

SYNOPSIS
ramsgateapplication_name authority_name[bundles_TTL]

DESCRIPTION
ramsgateis a background ‘‘daemon’’ task that functions as a RemoteAMS gateway. application_nameand
authority_namemust identify anAMS venture that is known to operate in the local continuum, as noted in
theMIB for theramsgateapplication module.

ramsgatewill register as an application module in the root unit of the indicated venture, so a configuration
server for the local continuum and a registrar for the root unit of the indicated venture (which may both be
instantiated in a singleamsddaemon task) must be running in order forramsgateto commence operations.

ramsgatewith communicate with otherRAMS gateway modules in other continua by means of theRAMS
network protocol noted in theRAMS gateway endpoint ID for the local continuum, as identified (explicitly
or implicitly) in theMIB.

If the RAMS network protocol is ‘‘bp’’ (i.e., theDTN Bundle Protocol), then anION Bundle Protocol node
must be operating on the local computer and that node must be registered in theBP endpoint identified by
theRAMS gateway endpointID for the local continuum.Moreover, in this case the value ofbundles_TTL−
if specified − will be taken as the lifetime in seconds that is to be declared for all ‘‘bundles’’ i ssued by
ramsgate; bundles_TTLdefaults to 86400 seconds (one day) if omitted.

EXIT STATUS
‘‘ 0’’

ramsgateterminated normally.

‘‘ 1’’
ramsgatefailed, for reasons noted in the ion.log file; the task terminated.

FILES
A MIB initialization file with the applicable default name (seeamsrc(5)) must be present.

ramsgaterecords all ‘‘petitions’’ (requests for data on behalf ofAMS modules in other continua) in a file
named ‘‘petition.log’’. At startup, theramsgatedaemon automatically reads and processes all petitions in
the petition.log file just as if they were received in real time. Note that this means that you can cause
petitions to be, in effect, ‘‘pre-received’’ by simply editing this file prior to startup. This can be an
especially effective way to configure aRAMS network in which long signal propagation times would
otherwise retard real-time petitioning and thus delay the onset of fully functional message exchange.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

ramsgate can’t run.
RAMS gateway functionality failed, for reasons noted in the ion.log file.

BUGS
Note that theAMS design principle of receiving messages immediately and enqueuing them for eventual
ingestion by the application module − rather than imposing application-layer flow control onAMS message
traffic − enables high performance but makes ramsgate vulnerable to message spikes. Sinceproduction
and transmission of bundles is typically slower thanAMS message reception over TCP service, theION
working memory and/or heap space available for AMS ev ent insertion and/or bundle production can be
quickly exhausted if a high rate of application message production is sustained for a long enough time.
Mechanisms for defending against this sort of failure are under study, but for now the best mitigations are
simply to (a) build with compiler option −DAMS_INDUSTRIAL=1, (b) allocate as much space as possible
to ION working memory andSDRheap (seeionconfig(5)) and (c) limit the rate ofAMS message issuance.

Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

RAMSGATE(1) AMSexecutables RAMSGATE(1)

SEE ALSO
amsrc(5), petition_log(5)

perl v5.18.2 2016-09-07 2

ACSADMIN(1) BPexecutables ACSADMIN(1)

NAME
acsadmin − ION Aggregate Custody Signal (ACS) administration interface

SYNOPSIS
acsadmin[commands_filename]

DESCRIPTION
acsadminconfigures aggregate custody signal behavior for the localION node.

It operates in response toACS configuration commands found in the filecommands_filename, if provided; if
not,acsadminprints a simple prompt (:) so that the user may type commands directly into standard input.

The format of commands forcommands_filenamecan be queried fromacsadmin with the ’h’ or ’?’
commands at the prompt. The commands are documented inacsrc(5).

EXIT STATUS
‘‘ 0’’ Successful completion ofACS administration.

EXAMPLES
acsadmin

Enter interactive ACS configuration command entry mode.

acsadmin host1.acs
Execute all configuration commands inhost1.acs, then terminate immediately.

FILES
Seeacsrc(5) for details of theACS configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the acsrc file on a Windows machine, be sure touse dos2unix to convert it to Unix text f ormat
before presenting it toacsadmin. Otherwiseacsadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

acsadmin can’t attach toION.
There is noSDR data store foracsadminto use. You should runionadmin(1) first, to set up anSDR
data store forION.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causeacsadmin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleasesee
acsrc(5) for details.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ionadmin(1), bpadmin(1), acsrc(5)

perl v5.18.2 2016-09-07 1

ACSLIST(1) BPexecutables ACSLIST(1)

NAME
acslist − Aggregate Custody Signals (ACS) utility for checking custody IDs.

SYNOPSIS
acslist[−s|−−stdout]

DESCRIPTION
acslist is a utility program that lists all mappings from bundleID to custodyID currently in the local bundle
agent’sACS ID database, in no specific order. A bundle ID (defined inRFC5050) is the tuple of (sourceEID,
creation time, creation count, fragment offset, fragment length).A custody ID (defined in draft-jenkins-
aggregate-custody-signals) is an integer that the local bundle agent will be able to map to a bundle ID for
the purposes of aggregating and compressing custody signals.

The format for mappings is:

(ipn:13.1,333823688,95,0,0)−>(26)

While listing,acslistalso checks the custodyID database for self-consistency, and if it detects any errors it
will print a line starting with ‘‘Mismatch:’’ and describing the error.

−s|−−stdout tellsacslistto print results to stdout, rather than to theION log.

EXIT STATUS
‘‘ 0’’

acslistterminated after verifying the consistency of the custodyID database.

‘‘ 1’’
acslistwas unable to attach to theACS database, or it detected an inconsistency.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued:

Can’t attach toACS.
acsadminhas not yet initializedACS operations.

Mismatch: (description of the mismatch)
acslistdetected an inconsistency in the database; this is a bug inACS.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
acsadmin(1), bplist(1)

perl v5.18.2 2016-09-07 1

BIBECLO(1) BPexecutables BIBECLO(1)

NAME
bibeclo − BP convergence layer output task using bundle−in−bundle encapsulation

SYNOPSIS
bibeclo

DESCRIPTION
bibeclo is a background ‘‘daemon’’ task that extracts bundles from the queues of bundles ready for
transmission via bundle-in-bundle encapsulation (BIBE) to remote bundle protocol agents, encapsulates
them in BP administrative records of (non-standard) record type 7 (BP_ENCAPSULATED_BUNDLE), and
sends those administrative records to designatedDTN nodes. Thereceiving nodes are expected to process
these received administrative records by simply dispatching the encapsulated bundles as if they had been
received from neighboring nodes in the normal course of operations.

Note thatbibeclo is a ‘‘promiscuous’’ CLO daemon, able to transmit bundles to any BIBE destination
induct. Itsduct name is ’*’ rather than the induct name of any single BIBE destination induct to which it
might be dedicated, so scheme configuration directives that cite this outduct must provide destination induct
IDs. For theBIBE convergence-layer protocol, destination induct IDs are simplyBP endpoint IDs.

bibeclo is spawned automatically bybpadmin in response to the ’s’ (START) command that starts
operation of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command.
bibeclo can also be spawned and terminated in response toSTART and STOP commands that pertain
specifically to theBIBE convergence layer protocol.

EXIT STATUS
‘‘ 0’’

bibeclo terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
bibeclo.

‘‘ 1’’
bibeclo terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restartbibeclo.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

bibeclo can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such bibe duct.
No BIBE outduct with duct name ’*’ has been added to theBP database. Usebpadmin to stop the
BIBE convergence-layer protocol, add the outduct, and then restart theBIBE protocol.

CLO task is already started for this duct.
Redundant initiation ofbibeclo.

Can’t create bundle forCLO; stopping.
Insufficient memory for buffer used to decode the primary blocks of outbound bundles, so that time-to-
live and class of service can be determined. This is a system error. Check ION log, correct problem,
and restartBIBE.

Can’t decode bundle;CLO stopping.
This is a system error. CheckION log, correct problem, and restartBIBE.

perl v5.18.2 2016-09-07 1

BIBECLO(1) BPexecutables BIBECLO(1)

Can’t prepend header;CLO stopping.
This is a system error. CheckION log, correct problem, and restartBIBE.

Can’t send encapsulated bundle;CLO stopping.
This is a system error. CheckION log, correct problem, and restartBIBE.

[!] Encapsulated bundle not sent.
Malformed bundle issuance request, which might be a software error. Contact technical support.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bp(3)

perl v5.18.2 2016-09-07 2

BPADMIN(1) BP executables BPADMIN(1)

NAME
bpadmin − ION Bundle Protocol (BP) administration interface

SYNOPSIS
bpadmin [commands_filename| .]

DESCRIPTION
bpadmin configures, starts, manages, and stops bundle protocol operations for the localION node.

It operates in response toBP configuration commands found in the filecommands_filename, if provided; if
not, bpadmin prints a simple prompt (:) so that the user may type commands directly into standard input.
If commands_filenameis a period (.), the effect is the same as if a command file containing the single
command ’x’ were passed tobpadmin — that is, theION node’s bpclock task, forwarder tasks, and
convergence layer adapter tasks are stopped.

The format of commands forcommands_filenamecan be queried frombpadmin with the ’h’ or ’?’
commands at the prompt. The commands are documented inbprc(5).

EXIT STATUS
‘‘ 0’’ Successful completion ofBP administration.

EXAMPLES
bpadmin

Enter interactive BP configuration command entry mode.

bpadmin host1.bp
Execute all configuration commands inhost1.bp, then terminate immediately.

bpadmin .
Stop all bundle protocol operations on the local node.

FILES
Seebprc(5) for details of theBP configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the bprc file on a Windows machine, be sure touse dos2unix to convert it to Unix text f ormat
before presenting it tobpadmin. Otherwisebpadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

ION can’t set custodianEID information.
Thecustodial_endpoint_idspecified in theBP initialization (’1’) command is malformed.Remember
that the format for this argument is ipn:element_number.0 and that the final 0 is required, as
custodial/administration service is always service 0.Additional detail for this error is provided if one
of the following other errors is present:

MalformedEID.

Malformed custodianEID.

bpadmin can’t attach toION.
There is noSDR data store forbpadminto use. You should runionadmin(1) first, to set up anSDR
data store forION.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causebpadmin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleaseseebprc(5)
for details.

perl v5.18.2 2016-09-07 1

BPADMIN(1) BP executables BPADMIN(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ionadmin(1), bprc(5), ipnadmin(1), ipnrc (5), dtnadmin(1), dtnrc(5)

perl v5.18.2 2016-09-07 2

BPCANCEL(1) BPexecutables BPCANCEL(1)

NAME
bpcancel − Bundle Protocol (BP) bundle cancellation utility

SYNOPSIS
bpcancelsource_EID creation_seconds[creation_count[fragment_offset[fragment_length]]]

DESCRIPTION
bpcancel attempts to locate the bundle identified by the command-line parameter values and cancel
transmission of this bundle. Bundlesfor which multiple copies have been queued for transmission can’t be
canceled, because one or more of those copies might already have been transmitted.Transmission of a
bundle that has never been cloned and that is still in local bundle storage is cancelled by simulation of an
immediate time-to-live expiration.

EXIT STATUS
‘‘ 0’’

bpcancelhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

Can’t attach toBP.
bpadmin has not yet initializedBP operations.

bpcancel failed finding bundle.
The attempt to locate the subject bundle failed due to some serious system error. It will probably be
necessary to terminate and re-initialize the localION node.

bpcancel failed destroying bundle.
Probably an unrecoverable database error, in which case the localION node must be terminated and re-
initialized.

bpcancel failed.
Probably an unrecoverable database error, in which case the localION node must be terminated and re-
initialized.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bplist(1)

perl v5.18.2 2016-09-07 1

BPCHAT(1) BPexecutables BPCHAT(1)

NAME
bpchat − Bundle Protocol chat test program

SYNOPSIS
bpchat sourceEID destEID[ct]

DESCRIPTION
bpchat uses Bundle Protocol to send input text in bundles, and display the payload of received bundles as
output. Itis similar to the talk utility, but operates over the Bundle Protocol. It operates like a combination
of the bpsource and bpsink utilities in one program (unlike bpsource,bpchat emits bundles with a
sourceEID).

If the sourceEIDanddestEIDare bothbpchat applications, then two users can chat with each other over
the Bundle Protocol: lines that one user types on the keyboard will be transported over the network in
bundles and displayed on the screen of the other user (and the reverse).

bpchat terminates upon receiving theSIGQUIT signal, i.e., ˆC from the keyboard.

EXIT STATUS
‘‘ 0’’

bpchat has terminated normally. Any problems encountered during operation will be noted in the
ion.log log file.

‘‘ 1’’
bpchat has terminated due to aBP transmit or reception failure. Detailsshould be noted in theion.log
log file.

OPTIONS
[ct] If the string ‘‘ct’ ’ is appended as the last argument, then bundles will be sent with custody transfer

requested.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced bybpchat are written to theION log file ion.log.

Can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Can’t open own endpoint.
Another application has already openedownEndpointId. Terminate that application and rerun.

bpchat bundle reception failed.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

No space forZCO extent.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t createZCO.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpchat can’t send echo bundle.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

BPCHAT(1) BPexecutables BPCHAT(1)

SEE ALSO
bpecho(1), bpsource(1), bpsink(1), bp(3)

perl v5.18.2 2016-09-07 2

BPCLOCK(1) BPexecutables BPCLOCK(1)

NAME
bpclock − Bundle Protocol (BP) daemon task for managing scheduled events

SYNOPSIS
bpclock

DESCRIPTION
bpclock is a background ‘‘daemon’’ task that periodically performs scheduled Bundle Protocol activities.
It is spawned automatically bybpadmin in response to the ’s’ command that starts operation of Bundle
Protocol on the localION node, and it is terminated bybpadmin in response to an ’x’ (STOP) command.

Once per second,bpclock takes the following action:

First it (a) destroys all bundles whose TTLs have expired, (b) enqueues for re-forwarding all bundles
that were expected to have been transmitted (by convergence-layer output tasks) by now but are still
stuck in their assigned transmission queues, and (c) enqueues for re-forwarding all bundles for which
custody has not yet been taken that were expected to have been received and acknowledged by now (as
noted by invocation of thebpMemo()function by some convergence-layer adapter that had CL-specific
insight into the appropriate interval to wait for custody acceptance).

Thenbpclock adjusts the transmission and reception ‘‘throttles’’ that control rates ofLTP transmission
to and reception from neighboring nodes, in response to data rate changes as noted in theRFX
database byrfxclock .

bpclock then checks for bundle origination activity that has been blocked due to insufficient allocated
space forBP traffic in the ION data store: if space for bundle origination is now available, bpclock
gives the bundle production throttle semaphore to unblock that activity.

Finally, bpclock applies rate control to all convergence-layer protocol inducts and outducts:

For each induct,bpclock increases the current capacity of the duct by the applicable nominal data
reception rate.If the revised current capacity is greater than zero,bpclock gives the throttle’s
semaphore to unblock data acquisition (which correspondingly reduces the current capacity of the
duct) by the associated convergence layer input task.

For each outduct,bpclock increases the current capacity of the duct by the applicable nominal
data transmission rate. If the revised current capacity is greater than zero,bpclock gives the
throttle’s semaphore to unblock data transmission (which correspondingly reduces the current
capacity of the duct) by the associated convergence layer output task.

EXIT STATUS
‘‘ 0’’

bpclock terminated, for reasons noted in theion.log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and usebpadmin to restartbpclock.

‘‘ 1’’
bpclock was unable to attach to Bundle Protocol operations, probably becausebpadmin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

bpclock can’t attach toBP.
bpadmin has not yet initializedBP operations.

perl v5.18.2 2016-09-07 1

BPCLOCK(1) BPexecutables BPCLOCK(1)

Can’t dispatch events.
An unrecoverable database error was encountered.bpclock terminates.

Can’t adjust throttles.
An unrecoverable database error was encountered.bpclock terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), rfxclock(1)

perl v5.18.2 2016-09-07 2

BPCOUNTER(1) BPexecutables BPCOUNTER(1)

NAME
bpcounter − Bundle Protocol reception test program

SYNOPSIS
bpcounter ownEndpointId[maxCount]

DESCRIPTION
bpcounter uses Bundle Protocol to receive application data units from a remotebpdri ver application task.
When the total number of application data units it has received exceedsmaxCount, it terminates and prints
its reception count. IfmaxCountis omitted, the default limit is 2 billion application data units.

EXIT STATUS
‘‘ 0’’

bpcounter has terminated.Any problems encountered during operation will be noted in theion.log
log file.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced bybpcounter are written to theION log file ion.log.

Can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Can’t open own endpoint.
Another application has already openedownEndpointId. Terminate that application and rerun.

bpcounter bundle reception failed.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpdriver(1), bpecho(1), bp(3)

perl v5.18.2 2016-09-07 1

BPDRIVER(1) BPexecutables BPDRIVER(1)

NAME
bpdriver − Bundle Protocol transmission test program

SYNOPSIS
bpdri ver nbrOfCycles ownEndpointId destinationEndpointId[length] [tTTL]

DESCRIPTION
bpdri ver uses Bundle Protocol to sendnbrOfCyclesapplication data units of length indicated bylength, to
a counterpart application task that has opened theBP endpoint identified bydestinationEndpointId.

If omitted, lengthdefaults to 60000.

TTL indicates the number of seconds the bundles may remain in the network, undelivered, before they are
automatically destroyed. If omitted,TTL defaults to 300 seconds.

bpdri ver normally runs in ‘‘echo’’ mode: after sending each bundle it waits for an acknowledgment bundle
before sending the next one.For this purpose, the counterpart application task should bebpecho.

Alternatively bpdri ver can run in ‘‘streaming’’ mode, i.e., without expecting or receiving
acknowledgments. Streamingmode is enabled whenlength is specified as a negative number, in which
case the additive inv erse oflengthis used as the effective value oflength. For this purpose, the counterpart
application task should bebpcounter.

If the effective value oflengthis 1, the sizes of the transmitted service data units will be randomly selected
multiples of 1024 in the range 1024 to 62464.

bpdri ver normally runs with custody transfer disabled.To request custody transfer for all bundles sent by
bpdri ver , specify nbrOfCyclesas a negative number; the additive inv erse ofnbrOfCycleswill be used as its
effective value in this case.

When all copies of the file have been sent,bpdri ver prints a performance report.

EXIT STATUS
‘‘ 0’’

bpdri ver has terminated.Any problems encountered during operation will be noted in theion.log log
file.

FILES
The service data units transmitted bybpdri ver are sequences of text obtained from a file in the current
working directory named ‘‘bpdriverAduFile’’, which bpdri ver creates automatically.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced bybpdri ver are written to theION log file ion.log.

Can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Can’t open own endpoint.
Another application has already openedownEndpointId. Terminate that application and rerun.

Can’t createADU file
Operating system error. Check errtext, correct problem, and rerun.

Error writing toADU file
Operating system error. Check errtext, correct problem, and rerun.

bpdriver can’t create file ref.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpdriver can’t createZCO.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

perl v5.18.2 2016-09-07 1

BPDRIVER(1) BPexecutables BPDRIVER(1)

bpdriver can’t send message
Bundle Protocol service to the remote endpoint has been stopped.

bpdriver reception failed
bpdri ver is in ‘‘echo’’ mode, and Bundle Protocol delivery service has been stopped.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpcounter(1), bpecho(1), bp(3)

perl v5.18.2 2016-09-07 2

BPECHO(1) BPexecutables BPECHO(1)

NAME
bpecho − Bundle Protocol reception test program

SYNOPSIS
bpechoownEndpointId

DESCRIPTION
bpechouses Bundle Protocol to receive application data units from a remotebpdri ver application task.In
response to each received application data unit it sends back an ‘‘echo’’ application data unit of length 2,
the NULL-terminated string ‘‘x’’.

bpechoterminates upon receiving theSIGQUIT signal, i.e., ˆC from the keyboard.

EXIT STATUS
‘‘ 0’’

bpecho has terminated normally. Any problems encountered during operation will be noted in the
ion.log log file.

‘‘ 1’’
bpechohas terminated due to aBP reception failure. Detailsshould be noted in theion.log log file.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced bybpechoare written to theION log file ion.log.

Can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Can’t open own endpoint.
Another application has already openedownEndpointId. Terminate that application and rerun.

bpecho bundle reception failed.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

No space forZCO extent.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t createZCO.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpecho can’t send echo bundle.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpdriver(1), bpcounter(1), bp(3)

perl v5.18.2 2016-09-07 1

BPING(1) BPexecutables BPING(1)

NAME
bping − Send and receive Bundle Protocol echo bundles.

SYNOPSIS
bping [−c count] [−i interval] [−p priority] [−q wait] [−r flags] [−t ttl] srcEID destEID[reporttoEID]

DESCRIPTION
bping sends bundles fromsrcEID to destEID. If thedestEIDechoes the bundles back (for instance, it is a
bpechoendpoint),bping will print the round-trip time. When complete, bping will print statistics before
exiting. It is very similar toping, except it works with the bundle protocol.

bping terminates when one of the following happens: it receives the SIGINT signal (Ctrl+C), it receives
responses to all of the bundles it sent, or it has sent allcountof its bundles and waitedwait seconds.

When bping is executed in a VxWorks orRTEMS environment, its runtime arguments are presented
positionally rather than by keyword, in this order: count, interval, priority, wait, flags,TTL, verbosity (a
Boolean, defaulting to zero), sourceEID, destinationEID, report-toEID.

SourceEID and destinationEID are always required.

EXIT STATUS
These exit statuses are taken fromping.

‘‘ 0’’
bping has terminated normally, and received responses to all the packets it sent.

‘‘ 1’’
bping has terminated normally, but it did not receive responses to all the packets it sent.

‘‘ 2’’
bping has terminated due to an error. Details should be noted in theion.log log file.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced bybping are written to theION log file ion.logand printed to standard error.
Diagnostic messages that don’t causebping to terminate indicate a failure parsing an echo response bundle.
This means thatdestEID isn’t an echo endpoint: it’s responding with some other bundle message of an
unexpected format.

Can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Can’t open own endpoint.
Another application has already openedownEndpointId. Terminate that application and rerun.

bping bundle reception failed.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

No space forZCO extent.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t createZCO.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bping can’t send echo bundle.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

perl v5.18.2 2016-09-07 1

BPING(1) BPexecutables BPING(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpecho(1), bptrace(1), bpadmin(1), bp(3), ping(8)

perl v5.18.2 2016-09-07 2

BPLIST(1) BPexecutables BPLIST(1)

NAME
bplist − Bundle Protocol (BP) utility for listing queued bundles

SYNOPSIS
bplist

DESCRIPTION
bplist is a utility program that lists all bundles currently in the local bundle agent’s ‘‘timeline’’ l ist, in
expiration-time sequence. Identifying primary block information is printed, together with hex and ASCII
dumps of the payload and all extension blocks.

EXIT STATUS
‘‘ 0’’

bplist terminated, for reasons noted in theion.log file.

‘‘ 1’’
bplist was unable to attach to Bundle Protocol operations, probably becausebpadmin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

Can’t attach toBP.
bpadmin has not yet initializedBP operations.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpclock(1)

perl v5.18.2 2016-09-07 1

BPNMTEST(1) BPexecutables BPNMTEST(1)

NAME
bpnmtest − Bundle Protocol (BP) network management statistics test

SYNOPSIS
bpnmtest

DESCRIPTION
bpnmtest simply prints to stdout messages containing the current values of allBP network management
tallies, then terminates.

EXIT STATUS
‘‘ 0’’

bpnmtesthas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

Can’t attach toBP.
bpadmin has not yet initializedBP operations.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

BPRECVFILE(1) BPexecutables BPRECVFILE(1)

NAME
bprecvfile − Bundle Protocol (BP) file reception utility

SYNOPSIS
bprecvfile own_endpoint_ID[max_files]

DESCRIPTION
bprecvfile is intended to serve as the counterpart tobpsendfile. It usesbp_receive()to receive bundles
containing file content. The content of each bundle is simply written to a file named ‘‘testfileN’’ where N is
the total number of bundles received since the program began running.

If a max_filesvalue of N (where N > 0) is provided, the program will terminate automatically upon
completing its Nth file reception. Otherwise it will run indefinitely; use ˆC to terminate the program.

EXIT STATUS
‘‘ 0’’

bprecvfile has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

Can’t attach toBP.
bpadmin has not yet initializedBP operations.

Can’t open own endpoint.
Another BP application task currently hasown_endpoint_IDopen for bundle origination and
reception. Try again after that task has terminated. If no such task exists, it may have crashed while
still holding the endpoint open; the easiest workaround is to select a different source endpoint.

bprecvfile bundle reception failed.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bprecvfile: can’t open test file
File system error.bprecvfile terminates.

bprecvfile: can’t receive bundle content.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bprecvfile: can’t write to test file
File system error.bprecvfile terminates.

bprecvfile cannot continue.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bprecvfile: can’t handle bundle delivery.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpsendfile(1), bp(3)

perl v5.18.2 2016-09-07 1

BPSENDFILE(1) BPexecutables BPSENDFILE(1)

NAME
bpsendfile − Bundle Protocol (BP) file transmission utility

SYNOPSIS
bpsendfileown_endpoint_ID destination_endpoint_ID file_name[class_of_service]

DESCRIPTION
bpsendfile usesbp_send()to issue a single bundle to a designated destination endpoint, containing the
contents of the file identified byfile_name, then terminates. The bundle is sent with no custody transfer
requested, withTTL of 300 seconds (5 minutes).Whenclass_of_serviceis omitted, the bundle is sent at
standard priority; for details of theclass_of_serviceparameter, seebptrace(1).

EXIT STATUS
‘‘ 0’’

bpsendfilehas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

Can’t attach toBP.
bpadmin has not yet initializedBP operations.

Can’t open own endpoint.
Another BP application task currently hasown_endpoint_IDopen for bundle origination and
reception. Try again after that task has terminated. If no such task exists, it may have crashed while
still holding the endpoint open; the easiest workaround is to select a different source endpoint.

Can’t stat the file
Operating system error. Check errtext, correct problem, and rerun.

bpsendfile can’t create file ref.
Probably an unrecoverable database error, in which case the localION node must be terminated and re-
initialized.

bpsendfile can’t createZCO.
Probably an unrecoverable database error, in which case the localION node must be terminated and re-
initialized.

bpsendfile can’t send file in bundle.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bprecvfile(1), bp(3)

perl v5.18.2 2016-09-07 1

BPSINK(1) BPexecutables BPSINK(1)

NAME
bpsink − Bundle Protocol reception test program

SYNOPSIS
bpsink ownEndpointId

DESCRIPTION
bpsink uses Bundle Protocol to receive application data units from a remotebpsource application task.
For each application data unit it receives, it prints theADU’s length and— if length is less than 80— its
text.

bpsink terminates upon receiving theSIGQUIT signal, i.e., ˆC from the keyboard.

EXIT STATUS
‘‘ 0’’

bpsink has terminated.Any problems encountered during operation will be noted in theion.log log
file.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced bybpsink are written to theION log file ion.log.

Can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

Can’t open own endpoint.
Another application has already openedownEndpointId. Terminate that application and rerun.

bpsink bundle reception failed.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t receive payload.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t handle delivery.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpsource(1), bp(3)

perl v5.18.2 2016-09-07 1

BPSOURCE(1) BPexecutables BPSOURCE(1)

NAME
bpsource − Bundle Protocol transmission test shell

SYNOPSIS
bpsourcedestinationEndpointId[’ text’] [−t TTL]

DESCRIPTION
When text is supplied,bpsource simply uses Bundle Protocol to sendtext to a counterpartbpsink
application task that has opened theBP endpoint identified bydestinationEndpointId, then terminates.

Otherwise,bpsourceoffers the user an interactive ‘‘shell’’ f or testing Bundle Protocol data transmission.
bpsourceprints a prompt string (‘‘: ’’) to stdout, accepts a string of text from stdin, uses Bundle Protocol to
send the string to a counterpartbpsink application task that has opened theBP endpoint identified by
destinationEndpointId, then prints another prompt string and so on.To terminate the program, enter a
string consisting of a single exclamation point (!) character.

TTL indicates the number of seconds the bundles may remain in the network, undelivered, before they are
automatically destroyed. If omitted,TTL defaults to 300 seconds.

The source endpointID for each bundle sent bybpsource is the null endpointID, i.e., the bundles are
anonymous. Allbundles are sent standard priority with no custody transfer and no status reports requested.

EXIT STATUS
‘‘ 0’’

bpsourcehas terminated.Any problems encountered during operation will be noted in theion.log log
file.

FILES
The service data units transmitted bybpsource are sequences of text obtained from a file in the current
working directory named ‘‘bpsourceAduFile’’, whichbpsourcecreates automatically.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced bybpsourceare written to theION log file ion.log.

Can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

bpsource fgets failed
Operating system error. Check errtext, correct problem, and rerun.

No space forZCO extent.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t createZCO extent.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpsource can’t sendADU
Bundle Protocol service to the remote endpoint has been stopped.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bpsink(1), bp(3)

perl v5.18.2 2016-09-07 1

BPSTATS(1) BPexecutables BPSTATS(1)

NAME
bpstats − Bundle Protocol (BP) processing statistics query utility

SYNOPSIS
bpstats

DESCRIPTION
bpstats simply logs messages containing the current values of allBP processing statistics accumulators,
then terminates.

EXIT STATUS
‘‘ 0’’

bpstatshas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

bpstats can’t attach toBP.
bpadmin has not yet initializedBP operations.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ion (3)

perl v5.18.2 2016-09-07 1

BPSTATS2(1) BPexecutables BPSTATS2(1)

NAME
bpstats2 − Bundle Protocol (BP) processing statistics query utility via bundles

SYNOPSIS
bpstats2sourceEID[default destEID] [ct]

DESCRIPTION
bpstats2 creates bundles containing the current values of allBP processing statistics accumulators.It
creates these bundles when:

• an interrogation bundle is delivered to sourceEID: the contents of the bundle are discarded, a new
statistics bundle is generated and sent to the source of the interrogation bundle. Theformat of the
interrogation bundle is irrelevant.

• a SIGUSR1signal is delivered to thebpstats2application: a new statistics bundle is generated and sent
to default destEID.

EXIT STATUS
‘‘ 0’’

bpstats2has terminated. Any problems encountered during operation will be noted in theion.log log
file.

‘‘ 1’’
bpstats2 failed to start up or receive bundles. Diagnosethe issue reported in theion.log file and try
again.

OPTIONS
[ct] If the string ‘‘ct’ ’ is appended as the last argument, then statistics bundles will be sent with custody

transfer requested.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

bpstats2 can’tbp_attach().
bpadmin has not yet initializedBP operations.

bpstats2 can’t open own endpoint.
AnotherBP application has opened that endpoint; close it and try again.

No space forZCO extent.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t createZCO extent.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

bpstats2 can’t send stats bundle.
Bundle Protocol service to the remote endpoint has been stopped.

Can’t send stats: bad destEID (destEID)
The destinationEID printed is an invalid destinationEID. The destinationEID may be specified in
default destEIDor the sourceEID of the interrogation bundle. Ensurethat default destEIDis anEID
that is valid for ION, and that the interrogator is a sourceEID that is also a valid destinationEID. Note
that ‘‘dtn:none’’ is not a valid destinationEID, but is a valid sourceEID.

NOTES
A very simple interrogator is bpchat which can repeatedly interrogatebpstats2by just striking the enter
key.

perl v5.18.2 2016-09-07 1

BPSTATS2(1) BPexecutables BPSTATS2(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpstats(1), bpchat(1)

perl v5.18.2 2016-09-07 2

BPTRACE(1) BPexecutables BPTRACE(1)

NAME
bptrace − Bundle Protocol (BP) network trace utility

SYNOPSIS
bptrace own_endpoint_ID destination_endpoint_ID report−to_endpoint_ID TTL class_of_service
"trace_text" [status_report_flags]

DESCRIPTION
bptrace usesbp_send()to issue a single bundle to a designated destination endpoint, with status reporting
options enabled as selected by the user, then terminates.The status reports returned as the bundle makes its
way through the network provide a view of the operation of the network as currently configured.

TTL indicates the number of seconds the trace bundle may remain in the network, undelivered, before it is
automatically destroyed.

class_of_serviceis custody-requested.priority[.ordinal[.unreliable.critical[.flow-label]]], where custody-
requestedmust be 0 or 1 (Boolean),priority must be 0 (bulk) or 1 (standard) or 2 (expedited),ordinal must
be 0−254,unreliablemust be 0 or 1 (Boolean),critical must also be 0 or 1 (Boolean), andflow-labelmay
be any unsigned integer. ordinal is ignored ifpriority is not 2. Settingclass_of_serviceto ‘‘0.2.254’’ or
‘‘ 1.2.254’’ giv es a bundle the highest possible priority. Setting unreliable to 1 causesBP to forego
retransmission in the event of data loss, both at theBP layer and at the convergence layer. Settingcritical to
1 causes contact graph routing to forward the bundle on all plausible routes rather than just the ‘‘best’’ route
it computes; this may result in multiple copies of the bundle arriving at the destination endpoint, but when
used in conjunction with priority 2.254 it ensures that the bundle will be delivered as soon as physically
possible.

trace_textcan be any string of ASCII text; alternatively, if we want to send a file, it can be ‘‘@’’ f ollowed by
the file name.

status_report_flagsmust be a sequence of status report flags, separated by commas, with no embedded
whitespace. Eachstatus report flag must be one of the following: rcv, ct, fwd, dlv, del.

EXIT STATUS
‘‘ 0’’

bptrace has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

bptrace can’t attach toBP.
bpadmin has not yet initializedBP operations.

bptrace can’t open own endpoint.
Another BP application task currently hasown_endpoint_IDopen for bundle origination and
reception. Try again after that task has terminated. If no such task exists, it may have crashed while
still holding the endpoint open; the easiest workaround is to select a different source endpoint.

No space for bptrace text.
Probably an unrecoverable database error, in which case the localION node must be terminated and re-
initialized.

bptrace can’t createZCO.
Probably an unrecoverable database error, in which case the localION node must be terminated and re-
initialized.

perl v5.18.2 2016-09-07 1

BPTRACE(1) BPexecutables BPTRACE(1)

bptrace can’t send message.
BP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bp(3)

perl v5.18.2 2016-09-07 2

BPTRANSIT(1) BPexecutables BPTRANSIT(1)

NAME
bptransit − Bundle Protocol (BP) daemon task for forwarding received bundles

SYNOPSIS
bptransit

DESCRIPTION
bptransit is a background ‘‘daemon’’ task that is responsible for presenting toION’s forwarding daemons
any bundles that were received from other nodes (i.e., bundles whose payloads reside in InboundZCO
space) and are destined for yet other nodes.In doing so, it migrates these bundles from Inbound buffer
space to Outbound buffer space on the same prioritized basis as the insertion of locally sourced outbound
bundles.

Management of the bptransit daemon is automatic. It is spawned automatically bybpadmin in response to
the ’s’ command that starts operation of Bundle Protocol on the localION node, and it is terminated by
bpadmin in response to an ’x’ (STOP) command.

Whenever a received bundle is determined to have a destination other than the local node, a pointer to that
bundle is appended to one of two queues of ‘‘in-transit’’ bundles, one for bundles whose forwarding is
provisional (depending on the availability of Outbound ZCO buffer space; bundles in this queue are
potentially subject to congestion loss) and one for bundles whose forwarding is confirmed.Bundles
received via convergence-layer adapters that can sustain flow control, such asSTCP,are appended to the
‘‘ confirmed’’ queue, while those from CLAs that cannot sustain flow control (such asLTP) are appended to
the ‘‘provisional’’ queue.

bptransit comprises two threads, one for each in-transit queue. The confirmed in-transit thread dequeues
bundles from the ‘‘confirmed’’ queue and moves them from Inbound to OutboundZCO buffer space,
blocking (if necessary) until space becomes available. Theprovisional in-transit queue dequeues bundles
from the ‘‘provisional’’ queue and moves them from Inbound to OutboundZCO buffer space if Outbound
space is available, discarding (‘‘abandoning’’) them if it is not.

EXIT STATUS
‘‘ 0’’

bptransit terminated, for reasons noted in theion.log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and usebpadmin to restartbptransit .

‘‘ 1’’
bptransit was unable to attach to Bundle Protocol operations, probably becausebpadmin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

bptransit can’t attach toBP.
bpadmin has not yet initializedBP operations.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1)

perl v5.18.2 2016-09-07 1

BRSCCLA(1) BPexecutables BRSCCLA(1)

NAME
brsccla − BRSC−based BP convergence layer adapter (input and output) task

SYNOPSIS
brscclaserver_hostname[:server_port_nbr]_own_node_nbr

DESCRIPTION
BRSC is the ‘‘client’’ side of the Bundle Relay Service (BRS) convergence layer protocol forBP. It is
complemented byBRSS,the ‘‘server’’ side of theBRS convergence layer protocol forBP. BRS clients send
bundles directly only to the server, reg ardless of their final destinations, and the server forwards them to
other clients as necessary.

brsccla is a background ‘‘daemon’’ task comprising three threads: one that connects to theBRS server,
spawns the other threads, and then handlesBRSC protocol output by transmitting bundles over the
connected socket to theBRS server; one that simply sends periodic ‘‘keepalive’’ messages over the
connected socket to the server (to assure that local inactivity doesn’t cause the connection to be lost); and
one that handlesBRSCprotocol input from the connected server.

The output thread connects to the server’s TCP socket atserver_hostnameandserver_port_nbr, sends over
the connected socket the client’s own_node_nbr(in SDNV representation) followed by a 32−bit time tag
and a 160−bitHMAC−SHA1 digest of that time tag, to authenticate itself; checks the authenticity of the
160−bit countersign returned by the server; spawns the keepalive and receiver threads; and then begins
extracting bundles from the queues of bundles ready for transmission viaBRSC and transmitting those
bundles over the connected socket to the server. Each transmitted bundle is preceded by its length, a 32−bit
unsigned integer in network byte order. The default value forserver_port_nbr, if omitted, is 80.

The reception thread receives bundles over the connected socket and passes them to the bundle protocol
agent on the localION node. Eachbundle received on the connection is preceded by its length, a 32−bit
unsigned integer in network byte order.

The keepalive thread simply sends a ‘‘bundle length’’ value of zero (a 32−bit unsigned integer in network
byte order) to the server once every 15 seconds.

Note thatbrsccla is not a ‘‘promiscuous’’ convergence layer daemon: it can transmit bundles only to the
BRS server to which it is connected, so scheme configuration directives that cite this outduct need only
provide the protocol name and theBRSCoutduct name as specified on the command line whenbrsccla is
started.

brsccla is spawned automatically bybpadmin in response to the ’s’ (START) command that starts
operation of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command.
brsccla can also be spawned and terminated in response toSTART and STOP commands that pertain
specifically to theBRSCconvergence layer protocol.

EXIT STATUS
‘‘ 0’’

brsccla terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart the
BRSCprotocol.

‘‘ 1’’
brsccla terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restart theBRSCprotocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

perl v5.18.2 2016-09-07 1

BRSCCLA(1) BPexecutables BRSCCLA(1)

brsccla can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such brsc induct.
No BRSC induct with duct name matchingserver_hostname, own_node_nbr, and server_port_nbrhas
been added to theBP database. Usebpadmin to stop theBRSCconvergence-layer protocol, add the
induct, and then restart theBRSCprotocol.

CLI task is already started for this duct.
Redundant initiation ofbrsccla.

No such brsc outduct.
No BRSC outduct with duct name matchingserver_hostname, own_node_nbr, and server_port_nbr
has been added to theBP database. Usebpadmin to stop theBRSCconvergence-layer protocol, add
the outduct, and then restart theBRSCprotocol.

Can’t connect to server.
Operating system error. Check errtext, correct problem, and restartBRSC.

Can’t register with server.
Configuration error. Authentication has failed, probably because (a) the client and server are using
different HMAC/SHA1 keys or (b) the clocks of the client and server differ by more than 5 seconds.
Update security policy database(s), as necessary, and assure that the clocks are synchronized.

brsccla can’t create receiver thread
Operating system error. Check errtext, correct problem, and restartBRSC.

brsccla can’t create keepalive thread
Operating system error. Check errtext, correct problem, and restartBRSC.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), brsscla(1)

perl v5.18.2 2016-09-07 2

BRSSCLA(1) BPexecutables BRSSCLA(1)

NAME
brsscla − BRSS−based BP convergence layer adapter (input and output) task

SYNOPSIS
brsscla local_hostname[:local_port_nbr][first_duct_nbr_in_scope[last_duct_nbr_in_scope]]

DESCRIPTION
BRSS is the ‘‘server’’ side of the Bundle Relay Service (BRS) convergence layer protocol forBP. It is
complemented byBRSC,the ‘‘client’’ side of theBRSconvergence layer protocol forBP.

brsscla is a background ‘‘daemon’’ task that spawns two plus N threads: one that handlesBRSS client
connections and spawns sockets for continued data interchange with connected clients; one that handles
BRSSprotocol output by transmitting over those spawned sockets to the associated clients; and one input
thread for each spawned socket, to handleBRSSprotocol input from the associated connected client.

The connection thread simply accepts connections on aTCP socket bound to local_hostnameand
local_port_nbrand spawns reception threads. The default value forlocal_port_nbr, if omitted, is 80.

Each reception thread receives over the socket connection the node number of the connecting client (in
SDNV representation), followed by a 32−bit time tag and a 160−bitHMAC−SHA1 digest of that time tag.
The node number must be in the rangefirst_duct_nbr_in_scopethroughlast_duct_nbr_in_scopeinclusive;
when omitted, first_duct_nbr_in_scopedefaults to 1 and last_duct_nbr_in_scopedefaults to
first_duct_nbr_in_scopeplus 255. The receiving thread also checks the time tag, requiring that it differ
from the current time by no more thanBRSTERM(default value 5) seconds. It then recomputes the digest
value using theHMAC−SHA1 key named "node_number.brs" as recorded in theION security database (see
ionsecrc(5)), requiring that the supplied and computed digests be identical. If all registration conditions are
met, the receiving thread sends the client a countersign— a similarly computedHMAC−SHA1 digest, for
the time tag that is 1 second later than the provided time tag— to assure the client of its own authenticity,
then commences receiving bundles over the connected socket. Eachbundle received on the connection is
preceded by its length, a 32−bit unsigned integer in network byte order. The received bundles are passed to
the bundle protocol agent on the localION node.

The output thread extracts bundles from the queues of bundles ready for transmission viaBRSSto remote
bundle protocol agents, finds the connected clients whose node numbers match the proximate receiver node
numbers assigned to the bundles by the routing daemons that enqueued them, and transmits the bundles
over the sockets to those clients.Each transmitted bundle is preceded by its length, a 32−bit unsigned
integer in network byte order.

Note thatbrsscla is a ‘‘promiscuous’’ convergence layer daemon, able to transmit bundles to any BRSS
destination induct for which it has received a connection. Itssole outduct’s name is the name of the
corresponding induct, rather than the induct name of any single BRSS destination induct to which the
outduct might be dedicated, so scheme configuration directives that cite this outduct must provide
destination induct IDs.For theBRSconvergence-layer protocol, destination induct IDs are simply the node
numbers of connected clients.

brsscla is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command. brsscla
can also be spawned and terminated in response toSTART andSTOPcommands that pertain specifically to
theBRSSconvergence layer protocol.

EXIT STATUS
‘‘ 0’’

brsscla terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart the
BRSSprotocol.

‘‘ 1’’
brsscla terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restart theBRSSprotocol.

perl v5.18.2 2016-09-07 1

BRSSCLA(1) BPexecutables BRSSCLA(1)

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

brsscla can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such brss induct.
No BRSS induct with duct name matchinglocal_hostnameand local_port_nbrhas been added to the
BP database. Usebpadmin to stop theBRSS convergence-layer protocol, add the induct, and then
restart theBRSSprotocol.

CLI task is already started for this duct.
Redundant initiation ofbrsscla.

No such brss outduct.
No BRSSoutduct with duct name matchinglocal_hostnameandlocal_port_nbrhas been added to the
BP database. Usebpadmin to stop theBRSSconvergence-layer protocol, add the outduct, and then
restart theBRSSprotocol.

Can’t get IP address for host
Operating system error. Check errtext, correct problem, and restartBRSS.

Can’t openTCPsocket
Operating system error— unable to openTCP socket for accepting connections. Check errtext,
correct problem, and restartBRSS.

Can’t initialize socket (note: must be root for port 80)
Operating system error. Check errtext, correct problem, and restartBRSS.

brsscla can’t create sender thread
Operating system error. Check errtext, correct problem, and restartBRSS.

brsscla can’t create access thread
Operating system error. Check errtext, correct problem, and restartBRSS.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), brsccla(1)

perl v5.18.2 2016-09-07 2

CGRFETCH(1) BPexecutables CGRFETCH(1)

NAME
cgrfetch − Visualize CGR simulations

SYNOPSIS
cgrfetch [OPTIONS] DEST-NODE

DESCRIPTION
cgrfetch usesCGR to simulate sending a bundle from the local node toDEST-NODE. It traces the
execution ofCGR to generate graphs of the routes that were considered and the routes that were ultimately
chosen to forward along. No bundle is sent during the simulation.

A JSON representation of the simulation is output toOUTPUT-FILE. The representation includes
parameters of the simulation and a structure for each considered route, which in turn includes calculated
parameters for the route and an image of the contact graph.

Thedot(1) tool from the Graphviz package is used to generate the contact graph images and is required for
cgrfetch(1). The base64(1) tool from coreutils is used to embed the images in theJSON and is also
required.

OPTIONS
DEST-NODE

The final destination to route to. To be useful, it should be a node that exists in the contact plan.

−q Disable trace message output.

−j DisableJSONoutput.

−m Use a minimum-latency extended COS for the bundle. This ends up sending the bundle to all
proximate nodes.

−t DISPATCH-OFFSET
Request a dispatch time ofDISPATCH-OFFSETseconds from the time the command is run (default:
0).

−e EXPIRATION-OFFSET
Set the bundle expiration time toEXPIRATION-OFFSETseconds from the time the command is run
(default: 3600).

−s BUNDLE-SIZE
Set the bundle payload size toBUNDLE-SIZEbytes (default: 0).

−o OUTPUT-FILE
SendJSONto OUTPUT-FILE(default: stdout).

−d PROT O:NAME
UsePROT Oas the outduct protocol andNAME as the outduct name (default: udp:*). Uselist to list all
available outducts.

EXAMPLES
cgrfetch 8

SimulateCGRwith destination node 8 and dispatch time equal to the current time.

cgrfetch 8 −t 60
Do the same with a dispatch time 60 seconds in the future.

cgrfetch −d list
List all available outducts.

SEE ALSO
dot(1), base64(1)

perl v5.18.2 2016-09-07 1

DCCPCLI(1) BPexecutables DCCPCLI(1)

NAME
dccpcli − DCCP−based BP convergence layer input task

SYNOPSIS
dccpcli local_hostname[:local_port_nbr]

DESCRIPTION
dccpcli is a background ‘‘daemon’’ task that receives DCCP datagrams via aDCCP socket bound to
local_hostnameand local_port_nbr, extracts bundles from those datagrams, and passes them to the bundle
protocol agent on the localION node.

If not specified, port number defaults to 4556.

Note thatdccpcli has no fragmentation support at all. Therefore, the largest bundle that can be sent via this
convergence layer is limited to just under the link’sMTU (typically 1500 bytes).

The convergence layer input task is spawned automatically bybpadmin in response to the ’s’ (START)
command that starts operation of the Bundle Protocol; the text of the command that is used to spawn the
task must be provided at the time the ‘‘dccp’’ convergence layer protocol is added to theBP database. The
convergence layer input task is terminated bybpadmin in response to an ’x’ (STOP) command. dccpcli
can also be spawned and terminated in response toSTART andSTOPcommands that pertain specifically to
theDCCPconvergence layer protocol.

EXIT STATUS
‘‘ 0’’

dccpcli terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
dccpcli.

‘‘ 1’’
dccpcli terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restartdccpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

dccpcli can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such dccp duct.
No DCCP induct matchinglocal_hostnameand local_port_nbrhas been added to theBP database.
Usebpadmin to stop theDCCPconvergence-layer protocol, add the induct, and then restart theDCCP
protocol.

CLI task is already started for this duct.
Redundant initiation ofdccpcli.

dccpcli can’t get IP address for host.
Operating system error. Check errtext, correct problem, and restartdccpcli.

CLI can’t openDCCPsocket. This probably meansDCCPis not supported on your system.
Operating system error. This probably means that you are not using an operating system that supports
DCCP. Make sure that you are using a current Linux kernel and that theDCCP modules are being
compiled. Check errtext, correct problem, and restartdccpcli.

CLI can’t initialize socket.
Operating system error. Check errtext, correct problem, and restartdccpcli.

perl v5.18.2 2016-09-07 1

DCCPCLI(1) BPexecutables DCCPCLI(1)

dccpcli can’t get acquisition work area.
ION system error. Check errtext, correct problem, and restartdccpcli.

dccpcli can’t create new thread.
Operating system error. Check errtext, correct problem, and restartdccpcli.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), dccpclo(1)

perl v5.18.2 2016-09-07 2

DCCPCLO(1) BPexecutables DCCPCLO(1)

NAME
dccpclo − DCCP−based BP convergence layer output task

SYNOPSIS
dccpcloremote_hostname[:remote_port_nbr]

DESCRIPTION
dccpclo is a background ‘‘daemon’’ task that connects to a remote node’s DCCPsocket atremote_hostname
andremote_port_nbr. It then begins extracting bundles from the queues of bundles ready for transmission
via DCCP to this remote bundle protocol agent and transmitting those bundles asDCCP datagrams to the
remote host.

If not specified,remote_port_nbrdefaults to 4556.

Note thatdccpclo is not a ‘‘promiscuous’’ convergence layer daemon: it can transmit bundles only to the
node to which it is connected, so scheme configuration directives that cite this outduct need only provide
the protocol name and the outduct name as specified on the command line whendccpclo is started.

Note also thatdccpclohas no fragmentation support at all. Therefore, the largest bundle that can be sent via
this convergence layer is limited to just under the link’sMTU (typically 1500 bytes).

dccpclo is spawned automatically bybpadmin in response to the ’s’ (START) command that starts
operation of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command.
dccpclo can also be spawned and terminated in response toSTART and STOP commands that pertain
specifically to theDCCPconvergence layer protocol.

EXIT STATUS
‘‘ 0’’

dccpclo terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
dccpclo.

‘‘ 1’’
dccpcloterminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restartdccpclo.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

dccpclo can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No memory forDCCPbuffer in dccpclo.
ION system error. Check errtext, correct problem, and restartdccpclo.

No such dccp duct.
No DCCP outduct matchinglocal_hostnameand local_port_nbrhas been added to theBP database.
Usebpadmin to stop theDCCPconvergence-layer protocol, add the outduct, and then restartdccpclo.

CLO task is already started for this duct.
Redundant initiation ofdccpclo.

dccpclo can’t get IP address for host.
Operating system error. Check errtext, correct problem, and restartdccpclo.

dccpclo can’t create thread.
Operating system error. Check errtext, correct problem, and restartdccpclo.

perl v5.18.2 2016-09-07 1

DCCPCLO(1) BPexecutables DCCPCLO(1)

CLO can’t openDCCPsocket. This probably meansDCCPis not supported on your system.
Operating system error. This probably means that you are not using an operating system that supports
DCCP. Make sure that you are using a current Linux kernel and that theDCCP modules are being
compiled. Check errtext, correct problem, and restartdccpclo.

CLO can’t initialize socket.
Operating system error. Check errtext, correct problem, and restartdccpclo.

CLO send()error on socket.
Operating system error. Check errtext, correct problem, and restartdccpclo.

Bundle is too big forDCCP CLO.
Configuration error: bundles that are too large forDCCP transmission (i.e., larger than theMTU of the
link or 65535 bytes— whichever is smaller) are being enqueued fordccpclo. Change routing or use
smaller bundles.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), dccpcli(1)

perl v5.18.2 2016-09-07 2

DGRCLA(1) BPexecutables DGRCLA(1)

NAME
dgrcla − DGR−based BP convergence layer adapter (input and output) task

SYNOPSIS
dgrcla local_hostname[:local_port_nbr]

DESCRIPTION
dgrcla is a background ‘‘daemon’’ task that spawns two threads, one that handlesDGR convergence layer
protocol input and a second that handlesDGR convergence layer protocol output.

The input thread receives DGR messages via aUDP socket bound tolocal_hostnameand local_port_nbr,
extracts bundles from those messages, and passes them to the bundle protocol agent on the localION node.
(local_port_nbrdefaults to 1113 if not specified.)

The output thread extracts bundles from the queues of bundles ready for transmission viaDGR to remote
bundle protocol agents, encapsulates them inDGR messages, and sends those messages to the appropriate
remoteUDP sockets as indicated by the host names andUDP port numbers (destination induct names)
associated with the bundles by the routing daemons that enqueued them.

Note thatdgrcla is a ‘‘promiscuous’’ convergence layer daemon, able to transmit bundles to any DGR
destination induct.Its duct name is the name of the corresponding induct, rather than the induct name of
any single DGR destination induct to which it might be dedicated, so scheme configuration directives that
cite this outduct must provide destination induct IDs.For theDGR convergence-layer protocol, destination
induct IDs are identical to induct names, i.e., they are of the formlocal_hostname[:local_port_nbr].

dgrcla is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command. dgrcla
can also be spawned and terminated in response toSTART andSTOPcommands that pertain specifically to
theDGR convergence layer protocol.

EXIT STATUS
‘‘ 0’’

dgrcla terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
dgrcla.

‘‘ 1’’
dgrcla terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restartdgrcla.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

dgrcla can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such dgr induct.
No DGR induct with duct name matchinglocal_hostnameand local_port_nbrhas been added to the
BP database. Usebpadmin to stop theDGR convergence-layer protocol, add the induct, and then
restart theDGR protocol.

CLI task is already started for this engine.
Redundant initiation ofdgrcla.

No such dgr induct.
No DGR outduct with duct name matchinglocal_hostnameand local_port_nbrhas been added to the
BP database. Usebpadmin to stop theDGR convergence-layer protocol, add the outduct, and then

perl v5.18.2 2016-09-07 1

DGRCLA(1) BPexecutables DGRCLA(1)

restart theDGR protocol.

Can’t get IP address for host
Operating system error. Check errtext, correct problem, and restartDGR.

dgrcla can’t openDGR service access point.
DGR system error. Check prior messages inion.log log file, correct problem, and then stop and restart
theDGR protocol.

dgrcla can’t create sender thread
Operating system error. Check errtext, correct problem, and restartDGR.

dgrcla can’t create receiver thread
Operating system error. Check errtext, correct problem, and restartDGR.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5)

perl v5.18.2 2016-09-07 2

DTN2ADMIN(1) BP executables DTN2ADMIN(1)

NAME
dtn2admin − baseline "dtn" scheme administration interface

SYNOPSIS
dtn2admin [commands_filename]

DESCRIPTION
dtn2admin configures the localION node’s routing of bundles to endpoints whose IDs conform to thedtn
endpointID scheme.dtn is a non-CBHE-conformant scheme. The structure ofdtn endpoint IDs remains
somewhat in flux at the time of this writing, but endpoint IDs in thedtn scheme historically have been
strings of the form "dtn://node_name[/demux_token]", where node_namenormally identifies a computer
somewhere on the network anddemux_tokennormally identifies a specific application processing point.
Although thedtn endpoint ID scheme imposes more transmission overhead than theipn scheme,ION
provides support fordtn endpoint IDs to enable interoperation with other implementations of Bundle
Protocol.

dtn2admin operates in response to ‘‘dtn’’ scheme configuration commands found in the file
commands_filename, if provided; if not,dtn2admin prints a simple prompt (:) so that the user may type
commands directly into standard input.

The format of commands forcommands_filenamecan be queried fromdtn2admin with the ’h’ or ’?’
commands at the prompt. The commands are documented indtn2rc(5).

EXIT STATUS
‘‘ 0’’ Successful completion of ‘‘dtn’’ scheme administration.
‘‘ 1’’ Unsuccessful completion of ‘‘dtn’’ scheme administration, due to inability to attach to the Bundle
Protocol system or to initialize the ‘‘dtn’’ scheme.

EXAMPLES
dtn2admin

Enter interactive ‘‘dtn’’ scheme configuration command entry mode.

dtn2admin host1.dtn2rc
Execute all configuration commands inhost1.dtn2rc, then terminate immediately.

FILES
Seedtn2rc(5) for details of theDTN scheme configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the dtn2rc file on a Windows machine, be sure touse dos2unix to convert it to Unix text
format before presenting it todtn2admin. Otherwisedtn2admin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

dtn2admin can’t attach toBP.
Bundle Protocol has not been initialized on this computer. You need to runbpadmin(1) first.

dtn2admin can’t initialize routing database.
There is noSDRdata store fordtn2adminto use. Please runionadmin(1) to start the localION node.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causedtn2admin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleasesee
dtn2rc(5) for details.

perl v5.18.2 2016-09-07 1

DTN2ADMIN(1) BP executables DTN2ADMIN(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
dtn2rc(5)

perl v5.18.2 2016-09-07 2

DTN2ADMINEP(1) BPexecutables DTN2ADMINEP(1)

NAME
dtn2adminep − administrative endpoint task for the "dtn" scheme

SYNOPSIS
dtn2adminep

DESCRIPTION
dtn2adminep is a background ‘‘daemon’’ task that receives and processes administrative bundles (all
custody signals and, nominally, all bundle status reports) that are sent to the ‘‘dtn’’−scheme administrative
endpoint on the localION node, if and only if such an endpoint was established bybpadmin. It is spawned
automatically bybpadmin in response to the ’s’ (START) command that starts operation of Bundle Protocol
on the local ION node, and it is terminated bybpadmin in response to an ’x’ (STOP) command.
dtn2adminep can also be spawned and terminated in response toSTART andSTOPcommands that pertain
specifically to the ‘‘dtn’’ scheme.

dtn2adminep responds to custody signals as specified in the Bundle Protocol specification,RFC 5050. It
responds to bundle status reports by loggingASCII text messages describing the reported activity.

EXIT STATUS
‘‘ 0’’

dtn2adminep terminated, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
dtn2adminep.

‘‘ 1’’
dtn2adminep was unable to attach to Bundle Protocol operations or was unable to load the ‘‘dtn’’
scheme database, probably becausebpadmin has not yet been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

dtn2adminep can’t attach toBP.
bpadmin has not yet initializedBP operations.

dtn2adminep can’t load routing database.
dtn2admin has not yet initialized the ‘‘dtn’’ scheme.

dtn2adminep can’t get adminEID.
dtn2admin has not yet initialized the ‘‘dtn’’ scheme.

dtn2adminep crashed.
An unrecoverable database error was encountered.dtn2adminep terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), dtn2admin(1).

perl v5.18.2 2016-09-07 1

DTN2FW(1) BPexecutables DTN2FW(1)

NAME
dtn2fw − bundle route computation task for the "dtn" scheme

SYNOPSIS
dtn2fw

DESCRIPTION
dtn2fw is a background ‘‘daemon’’ task that pops bundles from the queue of bundle destined for
‘‘ dtn’’−scheme endpoints, computes proximate destinations for those bundles, and appends those bundles to
the appropriate queues of bundles pending transmission to those computed proximate destinations.

For each possible proximate destination (that is, neighboring node) there is a separate queue for each
possible level of bundle priority: 0, 1, 2. Each outbound bundle is appended to the queue matching the
bundle’s designated priority.

Proximate destination computation is affected by static routes as configured bydtn2admin(1).

dtn2fw is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of Bundle Protocol on the localION node, and it is terminated bybpadmin in response to an ’x’ (STOP)
command.dtn2fw can also be spawned and terminated in response toSTART and STOPcommands that
pertain specifically to the ‘‘dtn’’ scheme.

EXIT STATUS
‘‘ 0’’

dtn2fw terminated, for reasons noted in theion.log log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and usebpadmin to restartdtn2fw.

‘‘ 1’’
dtn2fw could not commence operations, for reasons noted in theion.log log file. Investigate and solve
the problem identified in the log file, then usebpadmin to restartdtn2fw.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

dtn2fw can’t attach toBP.
bpadmin has not yet initializedBP operations.

dtn2fw can’t load routing database.
dtn2admin has not yet initialized the ‘‘dtn’’ scheme.

Can’t create lists for route computation.
An unrecoverable database error was encountered.dtn2fw terminates.

’dtn’ scheme is unknown.
The ‘‘dtn’’ scheme was not added whenbpadmin initialized BP operations. Usebpadmin to add and
start the scheme.

Can’t take forwarder semaphore.
ION system error.dtn2fw terminates.

Can’t enqueue bundle.
An unrecoverable database error was encountered.dtn2fw terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), dtn2admin(1), bprc(5), dtn2rc(5).

perl v5.18.2 2016-09-07 1

HMACKEYS(1) BPexecutables HMACKEYS(1)

NAME
hmackeys − utility program for generating good HMAC−SHA1 keys

SYNOPSIS
hmackeys[keynames_filename]

DESCRIPTION
hmackeys writes files containing randomized 160−bit key values suitable for use byHMAC−SHA1 in
support of Bundle Authentication Block processing, Bundle Relay Service connections, or other functions
for which symmetric hash computation is applicable. One file is written for each key name presented to
hmackeys; the content of each file is 20 consecutive randomly selected 8−bit integer values, and the name
given to each file is simply "keyname.hmk".

hmackeysoperates in response to the key names found in the filekeynames_filename, one name per file
text line, if provided; if not,hmackeysprints a simple prompt (:) so that the user may type key names
directly into standard input.

When the program is run in interactive mode, either enter ’q’ or press ˆC to terminate.

EXIT STATUS
‘‘ 0’’ Completion of key generation.

EXAMPLES
hmackeys

Enter interactive HMAC/SHA1 key generation mode.

hmackeys host1.keynames
Create a key file for each key name inhost1.keynames, then terminate immediately.

FILES
No other files are used in the operation ofhmackeys.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to the logfile ion.log:

Can’t open keynames file...
Thekeynames_filenamespecified in the command line doesn’t exist.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
brsscla(1), ionsecadmin(1)

perl v5.18.2 2016-09-07 1

IMCADMIN(1) BP executables IMCADMIN(1)

NAME
imcadmin − Interplanetary Multicast (IMC) scheme administration interface

SYNOPSIS
imcadmin [commands_filename]

DESCRIPTION
imcadmin configures the localION node’s routing of bundles to endpoints whose IDs conform to theimc
endpointID scheme.imc is a CBHE-conformant scheme; that is, every endpointID in the imc scheme is a
string of the form "imc:group_number.service_number" where group_number(an IMC multicast group
number) serves as aCBHE ‘‘ node number’’ and service_numberidentifies a specific application processing
point.

imcadmin operates in response toIMC scheme configuration commands found in the file
commands_filename, if provided; if not, imcadmin prints a simple prompt (:) so that the user may type
commands directly into standard input.

The format of commands forcommands_filenamecan be queried fromimcadmin with the ’h’ or ’?’
commands at the prompt. The commands are documented inimcrc(5).

EXIT STATUS
‘‘ 0’’ Successful completion ofIMC scheme administration.
‘‘ 1’’ Unsuccessful completion ofIMC scheme administration, due to inability to attach to the Bundle
Protocol system or to initialize theIMC scheme.

EXAMPLES
imcadmin

Enter interactive IMC scheme configuration command entry mode.

imcadmin host1.imcrc
Execute all configuration commands inhost1.ipnrc, then terminate immediately.

FILES
Seeimcrc(5) for details of theIMC scheme configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the ipnrc file on a Windows machine, be sure touse dos2unix to convert it to Unix text f ormat
before presenting it toimcadmin. Otherwiseimcadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

imcadmin can’t attach toBP.
Bundle Protocol has not been initialized on this computer. You need to runbpadmin(1) first.

imcadmin can’t initialize routing database.
There is noSDRdata store forimcadminto use. Please runionadmin(1) to start the localION node.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causeimcadmin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleasesee
imcrc(5) for details.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
imcrc(5)

perl v5.18.2 2016-09-07 1

IMCFW(1) BPexecutables IMCFW(1)

NAME
imcfw − bundle route computation task for the IMC scheme

SYNOPSIS
imcfw

DESCRIPTION
imcfw is a background ‘‘daemon’’ task that pops bundles from the queue of bundle destined for IMC-
scheme (Interplanetary Multicast) endpoints, determines which ‘‘relatives’’ on the IMC multicast tree to
forward the bundles to, and appends those bundles to the appropriate queues of bundles pending
transmission to those proximate destinations.

For each possible proximate destination (that is, neighboring node) there is a separate queue for each
possible level of bundle priority: 0, 1, 2. Each outbound bundle is appended to the queue matching the
bundle’s designated priority.

Proximate destination computation is determined by multicast group membership as resulting from nodes’
registration in multicast endpoints, governed by multicast tree structure as configured byimcadmin(1).

imcfw is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of Bundle Protocol on the localION node, and it is terminated bybpadmin in response to an ’x’ (STOP)
command. imcfw can also be spawned and terminated in response toSTART and STOP commands that
pertain specifically to theIMC scheme.

EXIT STATUS
‘‘ 0’’

imcfw terminated, for reasons noted in theion.log log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and usebpadmin to restartimcfw.

‘‘ 1’’
imcfw could not commence operations, for reasons noted in theion.log log file. Investigate and solve
the problem identified in the log file, then usebpadmin to restartimcfw.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

imcfw can’t attach toBP.
bpadmin has not yet initializedBP operations.

imcfw can’t load routing database.
ipnadmin has not yet initialized theIPN scheme.

Can’t create lists for route computation.
An unrecoverable database error was encountered.imcfw terminates.

’imc’ scheme is unknown.
The IMC scheme was not added whenbpadmin initialized BP operations. Usebpadmin to add and
start the scheme.

Can’t take forwarder semaphore.
ION system error.imcfw terminates.

Can’t exclude sender from routes.
An unrecoverable database error was encountered.imcfw terminates.

Can’t enqueue bundle.
An unrecoverable database error was encountered.imcfw terminates.

perl v5.18.2 2016-09-07 1

IMCFW(1) BPexecutables IMCFW(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), imcadmin(1), bprc(5), imcrc(5)

perl v5.18.2 2016-09-07 2

IPNADMIN(1) BP executables IPNADMIN(1)

NAME
ipnadmin − Interplanetary Internet (IPN) scheme administration interface

SYNOPSIS
ipnadmin [commands_filename]

DESCRIPTION
ipnadmin configures the localION node’s routing of bundles to endpoints whose IDs conform to theipn
endpointID scheme.ipn is a CBHE-conformant scheme; that is, every endpointID in the ipn scheme is a
string of the form "ipn:node_number.service_number" wherenode_numberis aCBHE ‘‘ node number’’ and
service_numberidentifies a specific application processing point.

ipnadmin operates in response toIPN scheme configuration commands found in the file
commands_filename, if provided; if not, ipnadmin prints a simple prompt (:) so that the user may type
commands directly into standard input.

The format of commands forcommands_filenamecan be queried fromipnadmin with the ’h’ or ’?’
commands at the prompt. The commands are documented inipnrc (5).

EXIT STATUS
‘‘ 0’’ Successful completion ofIPN scheme administration.
‘‘ 1’’ Unsuccessful completion ofIPN scheme administration, due to inability to attach to the Bundle
Protocol system or to initialize theIPN scheme.

EXAMPLES
ipnadmin

Enter interactive IPN scheme configuration command entry mode.

ipnadmin host1.ipnrc
Execute all configuration commands inhost1.ipnrc, then terminate immediately.

FILES
Seeipnrc (5) for details of theIPN scheme configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the ipnrc file on a Windows machine, be sure touse dos2unix to convert it to Unix text f ormat
before presenting it toipnadmin. Otherwise ipnadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

ipnadmin can’t attach toBP.
Bundle Protocol has not been initialized on this computer. You need to runbpadmin(1) first.

ipnadmin can’t initialize routing database.
There is noSDRdata store foripnadminto use. Please runionadmin(1) to start the localION node.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causeipnadmin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleaseseeipnrc (5)
for details.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ipnrc (5)

perl v5.18.2 2016-09-07 1

IPNADMINEP(1) BPexecutables IPNADMINEP(1)

NAME
ipnadminep − administrative endpoint task for the IPN scheme

SYNOPSIS
ipnadminep

DESCRIPTION
ipnadminep is a background ‘‘daemon’’ task that receives and processes administrative bundles (all
custody signals and, nominally, all bundle status reports) that are sent to the IPN-scheme administrative
endpoint on the localION node, if and only if such an endpoint was established bybpadmin. It is spawned
automatically bybpadmin in response to the ’s’ (START) command that starts operation of Bundle Protocol
on the local ION node, and it is terminated bybpadmin in response to an ’x’ (STOP) command.
ipnadminep can also be spawned and terminated in response toSTART andSTOPcommands that pertain
specifically to theIPN scheme.

ipnadminep responds to custody signals as specified in the Bundle Protocol specification,RFC 5050. It
responds to bundle status reports by loggingASCII text messages describing the reported activity.

EXIT STATUS
‘‘ 0’’

ipnadminep terminated, for reasons noted in theion.log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and usebpadmin to restartipnadminep.

‘‘ 1’’
ipnadminep was unable to attach to Bundle Protocol operations or was unable to load theIPN scheme
database, probably becausebpadmin has not yet been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

ipnadminep can’t attach toBP.
bpadmin has not yet initializedBP operations.

ipnadminep can’t load routing database.
ipnadmin has not yet initialized theIPN scheme.

ipnadminep crashed.
An unrecoverable database error was encountered.ipnadminep terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), ipnadmin(1), bprc(5).

perl v5.18.2 2016-09-07 1

IPNFW(1) BPexecutables IPNFW(1)

NAME
ipnfw − bundle route computation task for the IPN scheme

SYNOPSIS
ipnfw

DESCRIPTION
ipnfw is a background ‘‘daemon’’ task that pops bundles from the queue of bundle destined for IPN-
scheme endpoints, computes proximate destinations for those bundles, and appends those bundles to the
appropriate queues of bundles pending transmission to those computed proximate destinations.

For each possible proximate destination (that is, neighboring node) there is a separate queue for each
possible level of bundle priority: 0, 1, 2. Each outbound bundle is appended to the queue matching the
bundle’s designated priority.

Proximate destination computation is affected by static and default routes as configured byipnadmin(1)
and by contact graphs as managed byionadmin(1) andrfxclock(1).

ipnfw is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of Bundle Protocol on the localION node, and it is terminated bybpadmin in response to an ’x’ (STOP)
command. ipnfw can also be spawned and terminated in response toSTART and STOP commands that
pertain specifically to theIPN scheme.

EXIT STATUS
‘‘ 0’’

ipnfw terminated, for reasons noted in theion.log log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and usebpadmin to restartipnfw .

‘‘ 1’’
ipnfw could not commence operations, for reasons noted in theion.log log file. Investigate and solve
the problem identified in the log file, then usebpadmin to restartipnfw .

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

ipnfw can’t attach toBP.
bpadmin has not yet initializedBP operations.

ipnfw can’t load routing database.
ipnadmin has not yet initialized theIPN scheme.

Can’t create lists for route computation.
An unrecoverable database error was encountered.ipnfw terminates.

’ipn’ scheme is unknown.
The IPN scheme was not added whenbpadmin initialized BP operations. Usebpadmin to add and
start the scheme.

Can’t take forwarder semaphore.
ION system error.ipnfw terminates.

Can’t exclude sender from routes.
An unrecoverable database error was encountered.ipnfw terminates.

Can’t enqueue bundle.
An unrecoverable database error was encountered.ipnfw terminates.

perl v5.18.2 2016-09-07 1

IPNFW(1) BPexecutables IPNFW(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), ipnadmin(1), bprc(5), ipnrc (5)

perl v5.18.2 2016-09-07 2

LGAGENT(1) BPexecutables LGAGENT(1)

NAME
lgagent − ION Load/Go remote agent program

SYNOPSIS
lgagentown_endpoint_ID

DESCRIPTION
ION Load/Go is a system for management of an ION-based network, enabling the execution of ION
administrative programs at remote nodes. The system comprises two programs,lgsendandlgagent.

The lgagent task on a given node opens the indicatedION endpoint for bundle reception, receives the
extracted payloads of Load/Go bundles sent to it bylgsend as run on one or more remote nodes, and
processes those payloads, which are the text of Load/Go source files.

Load/Go source file content is limited to newline-terminated lines ofASCII characters. Morespecifically,
the text of any Load/Go source file is a sequence ofline setsof two types:file capsulesanddirectives. Any
Load/Go source file may contain any number of file capsules and any number of directives, freely
intermingled in any order, but the typical structure of a Load/Go source file is simply a single file capsule
followed by a single directive.

Whenlgagent identifies a file capsule, it copies all of the capsule’s text lines to a new file that it creates in
the current working directory. When lgagent identifies a directive, it executes the directive by passing the
text of the directive to the pseudoshell()function (seeplatform(3)). lgagent processes the line sets of a
Load/Go source file in the order in which they appear in the file, so the text of a directive may reference a
file that was created as the result of processing a prior file capsule in the same source file.

EXIT STATUS
‘‘ 0’’

Load/Go remote agent processing has terminated.

FILES
lgfile contains the Load/Go file capsules and directives that are to be processed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

lgagent: can’t attach toBP.
Bundle Protocol is not running on this computer. Runbpadmin(1) to startBP.

lgagent: can’t open own endpoint.
own_endpoint_IDis not a declared endpoint on the localION node. Runbpadmin(1) to add it.

lgagent: bundle reception failed.
ION system problem. Investigate and correct before restarting.

lgagent cannot continue.
lgagent processing problem. See earlier diagnostic messages for details.Investigate and correct
before restarting.

lgagent: no space for bundle content.
ION system problem: have exhausted available SDRdata store reserves.

lgagent: can’t receive bundle content.
ION system problem: have exhausted available SDRdata store reserves.

lgagent: can’t handle bundle delivery.
ION system problem. Investigate and correct before restarting.

lgagent: pseudoshell failed.
Error in directive line, usually an attempt to execute a non-existent administration program (e.g., a
misspelled program name).Terminates processing of source file content.

perl v5.18.2 2016-09-07 1

LGAGENT(1) BPexecutables LGAGENT(1)

A variety of other diagnostics noting source file parsing problems may also be reported.These errors are
non-fatal but they terminate the processing of the source file content from the most recently received
bundle.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
lgsend(1), lgfile (5)

perl v5.18.2 2016-09-07 2

LGSEND(1) BPexecutables LGSEND(1)

NAME
lgsend − ION Load/Go command program

SYNOPSIS
lgsendcommand_file_name own_endpoint_ID destination_endpoint_ID

DESCRIPTION
ION Load/Go is a system for management of an ION-based network, enabling the execution of ION
administrative programs at remote nodes. The system comprises two programs,lgsendandlgagent.

The lgsend program reads a Load/Go source file from a local file system, encapsulates the text of that
source file in a bundle, and sends the bundle to anlgagent task that is waiting for data at a designatedDTN
endpoint on the remote node.

To do so, it first reads all lines of the Load/Go source file identified bycommand_file_nameinto a
temporary buffer in ION’s SDR data store, concatenating the lines of the file and retaining all newline
characters. Thenit invokes the bp_send()function to create and send a bundle whose payload is this
temporary buffer, whose destination isdestination_endpoint_ID, and whose source endpointID is
own_endpoint_ID. Then it terminates.

EXIT STATUS
‘‘ 0’’

Load/Go file transmission succeeded.

‘‘ 1’’
Load/Go file transmission failed. Examineion.log to determine the cause of the failure, then re-run.

FILES
lgfile contains the Load/Go file capsules and directive that are to be sent to the remote node.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

lgsend: can’t attach toBP.
Bundle Protocol is not running on this computer. Runbpadmin(1) to startBP.

lgsend: can’t open own endpoint.
own_endpoint_IDis not a declared endpoint on the localION node. Runbpadmin(1) to add it.

lgsend: can’t open file ofLG commands:error description
command_file_namedoesn’t identify a file that can be opened.Correct spelling of file name or file’s
access permissions.

lgsend: can’t get size ofLG command file:error description
Operating system problem. Investigate and correct before rerunning.

lgsend:LG cmd file size > 64000.
Load/Go command file is too large. Splitit into multiple files if possible.

lgsend: no space for application data unit.
ION system problem: have exhausted available SDRdata store reserves.

lgsend: fgets failed:error description
Operating system problem. Investigate and correct before rerunning.

lgsend: can’t create application data unit.
ION system problem: have exhausted available SDRdata store reserves.

lgsend: can’t send bundle.
ION system problem. Investigate and correct before rerunning.

perl v5.18.2 2016-09-07 1

LGSEND(1) BPexecutables LGSEND(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
lgagent (1), lgfile (5)

perl v5.18.2 2016-09-07 2

LTPCLI(1) BPexecutables LTPCLI(1)

NAME
ltpcli − LTP−based BP convergence layer input task

SYNOPSIS
ltpcli local_node_nbr

DESCRIPTION
ltpcli is a background ‘‘daemon’’ task that receives LTP data transmission blocks, extracts bundles from the
received blocks, and passes them to the bundle protocol agent on the localION node.

ltpcli is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol; the text of the command that is used to spawn the task must be provided at the time
the ‘‘ltp’ ’ convergence layer protocol is added to theBP database. Theconvergence layer input task is
terminated bybpadmin in response to an ’x’ (STOP) command. ltpcli can also be spawned and terminated
in response toSTART andSTOPcommands that pertain specifically to theLTP convergence layer protocol.

EXIT STATUS
‘‘ 0’’

ltpcli terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
ltpcli .

‘‘ 1’’
ltpcli terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restartltpcli .

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

ltpcli can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such ltp duct.
No LTP induct matchinglocal_node_nbrhas been added to theBP database. Usebpadmin to stop the
LTP convergence-layer protocol, add the induct, and then restart theLTP protocol.

CLI task is already started for this duct.
Redundant initiation ofltpcli .

ltpcli can’t initialize LTP.
ltpadmin has not yet initializedLTP operations.

ltpcli can’t open client access.
Another task has already opened the client service forBP over LTP.

ltpcli can’t create receiver thread
Operating system error. Check errtext, correct problem, and restartLTP.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), ltpadmin(1), ltprc (5), ltpclo (1)

perl v5.18.2 2016-09-07 1

LTPCLO(1) BPexecutables LTPCLO(1)

NAME
ltpclo − LTP−based BP convergence layer adapter output task

SYNOPSIS
ltpclo remote_node_nbr

DESCRIPTION
ltpclo is a background ‘‘daemon’’ task that extracts bundles from the queues of segments ready for
transmission viaLTP to the remote bundle protocol agent identified byremote_node_nbrand passes them to
the localLTP engine for aggregation, segmentation, and transmission to the remote node.

Note thatltpclo is not a ‘‘promiscuous’’ convergence layer daemon: it can transmit bundles only to the
node for which it is configured, so scheme configuration directives that cite this outduct need only provide
the protocol name and the outduct name (the remote node number) as specified on the command line when
ltpclo is started.

ltpclo is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command. ltpclo can
also be spawned and terminated in response toSTART andSTOPcommands that pertain specifically to the
LTP convergence layer protocol.

EXIT STATUS
‘‘ 0’’

ltpclo terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart the
BRSCprotocol.

‘‘ 1’’
ltpclo terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restart theBRSCprotocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

ltpclo can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such ltp duct.
No LTP outduct with duct name matchingremote_node_nbrhas been added to theBP database. Use
bpadmin to stop theLTP convergence-layer protocol, add the outduct, and then restart theLTP
protocol.

CLO task is already started for this duct.
Redundant initiation ofltpclo.

ltpclo can’t initialize LTP.
ltpadmin has not yet initializedLTP operations.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), ltpadmin(1), ltprc (5), ltpcli (1)

perl v5.18.2 2016-09-07 1

STCPCLI(1) BPexecutables STCPCLI(1)

NAME
sstcpcli − DTN simple TCP convergence layer input task

SYNOPSIS
stcpcli local_hostname[:local_port_nbr]

DESCRIPTION
stcpcli is a background ‘‘daemon’’ task comprising 1 + N threads: one that handlesTCP connections from
remotestcpclo tasks, spawning sockets for data reception from those tasks, plus one input thread for each
spawned socket to handle data reception over that socket.

The connection thread simply accepts connections on aTCP socket bound to local_hostnameand
local_port_nbrand spawns reception threads. The default value forlocal_port_nbr, if omitted, is 4556.

Each reception thread receives bundles over the associated connected socket. Eachbundle received on the
connection is preceded by a 32−bit unsigned integer in network byte order indicating the length of the
bundle. Thereceived bundles are passed to the bundle protocol agent on the localION node.

stcpcli is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol; the text of the command that is used to spawn the task must be provided at the time
the ‘‘stcp’’ convergence layer protocol is added to theBP database. Theconvergence layer input task is
terminated bybpadmin in response to an ’x’ (STOP) command. stcpcli can also be spawned and
terminated in response toSTART and STOPcommands that pertain specifically to theSTCPconvergence
layer protocol.

EXIT STATUS
‘‘ 0’’

stcpcli terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
stcpcli.

‘‘ 1’’
stcpcli terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restartstcpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

stcpcli can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such stcp duct.
No STCPinduct matchinglocal_hostnameandlocal_port_nbrhas been added to theBP database. Use
bpadmin to stop theSTCP convergence-layer protocol, add the induct, and then restart theSTCP
protocol.

CLI task is already started for this duct.
Redundant initiation ofstcpcli.

Can’t get IP address for host
Operating system error. Check errtext, correct problem, and restartSTCP.

Can’t openTCPsocket
Operating system error. Check errtext, correct problem, and restartSTCP.

Can’t initialize socket
Operating system error. Check errtext, correct problem, and restartSTCP.

perl v5.18.2 2016-09-07 1

STCPCLI(1) BPexecutables STCPCLI(1)

stcpcli can’t create access thread
Operating system error. Check errtext, correct problem, and restartSTCP.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), stcpclo(1)

perl v5.18.2 2016-09-07 2

STCPCLO(1) BPexecutables STCPCLO(1)

NAME
stcpclo − DTN simple TCP convergence layer adapter output task

SYNOPSIS
stcpcloremote_hostname[:remote_port_nbr]

DESCRIPTION
stcpclo is a background ‘‘daemon’’ task that connects to a remote node’s TCP socket atremote_hostname
andremote_port_nbr. It then begins extracting bundles from the queues of bundles ready for transmission
via TCP to this remote bundle protocol agent and transmitting those bundles over the connected socket to
that node. Each transmitted bundle is preceded by a 32−bit integer in network byte order indicating the
length of the bundle.

If not specified,remote_port_nbrdefaults to 4556.

Note thatstcpclo is not a ‘‘promiscuous’’ convergence layer daemon: it can transmit bundles only to the
node to which it is connected, so scheme configuration directives that cite this outduct need only provide
the protocol name and the outduct name as specified on the command line whenstcpclo is started.

stcpclo is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command. stcpclo
can also be spawned and terminated in response toSTART andSTOPcommands that pertain specifically to
theSTCPconvergence layer protocol.

EXIT STATUS
‘‘ 0’’

stcpclo terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart the
STCPprotocol.

‘‘ 1’’
stcpclo terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restart theSTCPprotocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

stcpclo can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such stcp duct.
No STCPoutduct with duct name matchingremote_hostnameandremote_port_nbrhas been added to
the BP database. Usebpadmin to stop theSTCP convergence-layer protocol, add the outduct, and
then restart theSTCPprotocol.

CLO task is already started for this duct.
Redundant initiation ofstcpclo.

Can’t get IP address for host
Operating system error. Check errtext, correct problem, and restartSTCP.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), stcpcli(1)

perl v5.18.2 2016-09-07 1

TCPCLI(1) BPexecutables TCPCLI(1)

NAME
tcpcli − DTN TCPCL−compliant convergence layer input task

SYNOPSIS
tcpcli local_hostname[:local_port_nbr]

DESCRIPTION
tcpcli is a background ‘‘daemon’’ task comprising 1 + N threads: one that handlesTCP connections from
remotetcpclo tasks, spawning sockets for data reception from those tasks, plus one input thread for each
spawned socket to handle data reception over that socket.

The connection thread simply accepts connections on aTCP socket bound to local_hostnameand
local_port_nbrand spawns reception threads. The default value forlocal_port_nbr, if omitted, is 4556.

Each time a connection is established, the end-points will first exchange contact headers, because
connection parameters need to be negotiated. tcpcli records the acknowledgement flags, reactive
fragmentation flag and negative acknowledgements flag in the contact header it receives from its peer
tcpclo task.

Each reception thread receives bundles over the associated connected socket. Eachbundle received on the
connection is preceded by message type, fragmentation flags, and size represented as anSDNV. The
received bundles are passed to the bundle protocol agent on the localION node.

tcpcli is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol; the text of the command that is used to spawn the task must be provided at the time
the ‘‘tcp’’ convergence layer protocol is added to theBP database. Theconvergence layer input task is
terminated bybpadmin in response to an ’x’ (STOP) command. tcpcli can also be spawned and terminated
in response toSTART andSTOPcommands that pertain specifically to theTCPconvergence layer protocol.

EXIT STATUS
‘‘ 0’’

tcpcli terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
tcpcli.

‘‘ 1’’
tcpcli terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restarttcpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

tcpcli can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such tcp duct.
No TCP induct matchinglocal_hostnameandlocal_port_nbrhas been added to theBP database. Use
bpadmin to stop theTCP convergence-layer protocol, add the induct, and then restart theTCP
protocol.

CLI task is already started for this duct.
Redundant initiation oftcpcli.

Can’t get IP address for host
Operating system error. Check errtext, correct problem, and restartTCP.

perl v5.18.2 2016-09-07 1

TCPCLI(1) BPexecutables TCPCLI(1)

Can’t openTCPsocket
Operating system error. Check errtext, correct problem, and restartTCP.

Can’t initialize socket
Operating system error. Check errtext, correct problem, and restartTCP.

tcpcli can’t create access thread
Operating system error. Check errtext, correct problem, and restartTCP.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), tcpclo(1)

perl v5.18.2 2016-09-07 2

TCPCLO(1) BPexecutables TCPCLO(1)

NAME
tcpclo − DTN TCPCL−compliant convergence layer adapter output task

SYNOPSIS
tcpclo remote_hostname[:remote_port_nbr]

DESCRIPTION
tcpclo is a background ‘‘daemon’’ task that connects to a remote node’s TCP socket atremote_hostname
and remote_port_nbr. It sends a contact header, and it records the acknowledgement flag, reactive
fragmentation flag and negative acknowledgements flag in the contact header it receives from its peertcpcli
task. It then begins extracting bundles from the queues of bundles ready for transmission viaTCP to this
remote bundle protocol agent and transmitting those bundles over the connected socket to that node.Each
transmitted bundle is preceded by message type, segmentation flags, and anSDNV indicating the size of the
bundle (in bytes).

If not specified,remote_port_nbrdefaults to 4556.

Note thattcpclo is not a ‘‘promiscuous’’ convergence layer daemon: it can transmit bundles only to the
node to which it is connected, so scheme configuration directives that cite this outduct need only provide
the protocol name and the outduct name as specified on the command line whentcpclo is started.

tcpclo is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command. tcpclo
can also be spawned and terminated in response toSTART andSTOPcommands that pertain specifically to
theTCPconvergence layer protocol.

EXIT STATUS
‘‘ 0’’

tcpclo terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart the
TCPCLprotocol.

‘‘ 1’’
tcpclo terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restart theTCPCLprotocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

tcpclo can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such tcp duct.
No TCP outduct with duct name matchingremote_hostnameand remote_port_nbrhas been added to
theBP database. Usebpadmin to stop theTCP convergence-layer protocol, add the outduct, and then
restart theTCPprotocol.

CLO task is already started for this duct.
Redundant initiation oftcpclo.

Can’t get IP address for host
Operating system error. Check errtext, correct problem, and restartTCP.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

TCPCLO(1) BPexecutables TCPCLO(1)

SEE ALSO
bpadmin(1), bprc(5), tcpcli (1)

perl v5.18.2 2016-09-07 2

UDPCLI(1) BPexecutables UDPCLI(1)

NAME
udpcli − UDP−based BP convergence layer input task

SYNOPSIS
udpcli local_hostname[:local_port_nbr]

DESCRIPTION
udpcli is a background ‘‘daemon’’ task that receives UDP datagrams via aUDP socket bound to
local_hostnameand local_port_nbr, extracts bundles from those datagrams, and passes them to the bundle
protocol agent on the localION node.

If not specified, port number defaults to 4556.

The convergence layer input task is spawned automatically bybpadmin in response to the ’s’ (START)
command that starts operation of the Bundle Protocol; the text of the command that is used to spawn the
task must be provided at the time the ‘‘udp’’ convergence layer protocol is added to theBP database. The
convergence layer input task is terminated bybpadmin in response to an ’x’ (STOP) command.udpcli can
also be spawned and terminated in response toSTART andSTOPcommands that pertain specifically to the
UDP convergence layer protocol.

EXIT STATUS
‘‘ 0’’

udpcli terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
udpcli.

‘‘ 1’’
udpcli terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restartudpcli.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

udpcli can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No such udp duct.
No UDP induct matchinglocal_hostnameandlocal_port_nbrhas been added to theBP database. Use
bpadmin to stop theUDP convergence-layer protocol, add the induct, and then restart theUDP
protocol.

CLI task is already started for this duct.
Redundant initiation ofudpcli.

Can’t get IP address for host
Operating system error. Check errtext, correct problem, and restartUDP.

Can’t openUDP socket
Operating system error. Check errtext, correct problem, and restartUDP.

Can’t initialize socket
Operating system error. Check errtext, correct problem, and restartUDP.

udpcli can’t create receiver thread
Operating system error. Check errtext, correct problem, and restartUDP.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

UDPCLI(1) BPexecutables UDPCLI(1)

SEE ALSO
bpadmin(1), bprc(5), udpclo(1)

perl v5.18.2 2016-09-07 2

UDPCLO(1) BPexecutables UDPCLO(1)

NAME
udpclo − UDP−based BP convergence layer output task

SYNOPSIS
udpclo

DESCRIPTION
udpclo is a background ‘‘daemon’’ task that extracts bundles from the queues of bundles ready for
transmission viaUDP to remote bundle protocol agents, encapsulates them inUDP datagrams, and sends
those datagrams to the appropriate remoteUDP sockets as indicated by the host names andUDP port
numbers (destination induct names) associated with the bundles by the routing daemons that enqueued
them.

Note thatudpclo is a ‘‘promiscuous’’CLO daemon, able to transmit bundles to any UDP destination induct.
Its duct name is ’*’ rather than the induct name of any single UDP destination induct to which it might be
dedicated, so scheme configuration directives that cite this outduct must provide destination induct IDs.
For theUDP convergence-layer protocol, destination induct IDs are identical to induct names, i.e., they are
of the formlocal_hostname[:local_port_nbr].

udpclo is spawned automatically bybpadmin in response to the ’s’ (START) command that starts operation
of the Bundle Protocol, and it is terminated bybpadmin in response to an ’x’ (STOP) command. udpclo
can also be spawned and terminated in response toSTART andSTOPcommands that pertain specifically to
theUDP convergence layer protocol.

EXIT STATUS
‘‘ 0’’

udpclo terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebpadmin to restart
udpclo.

‘‘ 1’’
udpclo terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebpadmin to restartudpclo.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

udpclo can’t attach toBP.
bpadmin has not yet initialized Bundle Protocol operations.

No memory forUDP buffer in udpclo.
ION system error. Check errtext, correct problem, and restartUDP.

No such udp duct.
No UDP outduct with duct name ’*’ has been added to theBP database. Usebpadmin to stop theUDP
convergence-layer protocol, add the outduct, and then restart theUDP protocol.

CLO task is already started for this engine.
Redundant initiation ofudpclo.

CLO can’t openUDP socket
Operating system error. Check errtext, correct problem, and restartudpclo.

CLO write() error on socket
Operating system error. Check errtext, correct problem, and restartudpclo.

perl v5.18.2 2016-09-07 1

UDPCLO(1) BPexecutables UDPCLO(1)

Bundle is too big forUDP CLA.
Configuration error: bundles that are too large forUDP transmission (i.e., larger than 65535 bytes) are
being enqueued forudpclo. Change routing.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpadmin(1), bprc(5), udpcli(1)

perl v5.18.2 2016-09-07 2

BSSSTREAMINGAPP(1) BSSexecutables BSSSTREAMINGAPP(1)

NAME
bssStreamingApp − Bundle Streaming Service transmission test program

SYNOPSIS
bssStreamingAppown_endpoint_ID destination_endpoint_ID[class_of_service]

DESCRIPTION
bssStreamingAppusesBSS to send streaming data over BP from own_endpoint_IDto bssrecv listening at
destination_endpoint_ID. class_of_serviceis as specified forbptrace(1); if omitted, bundles are sent at
BP’s standard priority (1).

The bundles issued bybssStreamingAppall have 65000−byte payloads, where theASCII representation of
a positive integer (increasing monotonically from 0, by 1, throughout the operation of the program) appears
at the start of each payload. All bundles are sent with custody transfer requested, with time-to-live set to 1
day. The application meters output by sleeping for 12800 microseconds after issuing each bundle.

Use CTRL-C to terminate the program.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bssrecv(1), bss(3)

perl v5.18.2 2016-09-07 1

BSSRECV(1) BSSexecutables BSSRECV(1)

NAME
bssrecv − Bundle Streaming Service reception test program

SYNOPSIS
bssrecv

DESCRIPTION
bssrecvusesBSSto acquire streaming data frombssStreamingApp.

bssrecv is a menu-driven interactive test program, run from the operating system shell prompt.The
program enables the user to begin and end a session ofBSS data acquisition frombssStreamingApp,
displaying the data as it arrives in real time; to replay data acquired during the current session; and to replay
data acquired during a prior session.

The user must provide values for three parameters in order to initiate the acquisition or replay of data from
bssStreamingApp:

BSSdatabase name
All data acquired by theBSSsession thread will be written to aBSS‘‘ database’’ comprising three files:
table, list, and data.The name of the database is the root name that is common to the three files, e.g.,
db3.tbl, db3.lst, db3.dat would be the three files making up thedb3BSSdatabase.

path name
All three files of the selectedBSS database must reside in the same directory of the file system; the
path name of that directory is required.

endpointID
In order to acquire streaming data issued bybssStreamingApp, thebssrecvsession thread must open
theBP endpoint to which that data is directed.For this purpose, theID of that endpoint is needed.

bssrecvoffers the following menu options:

1. OpenBSSReceiver in playback mode
bssrecvprompts the user for the three parameter values noted above, then opens the indicatedBSS
database for replay of the data in that database.

2. StartBSSreceiving thread
bssrecvprompts the user for the three parameter values noted above, then starts a background session
thread to acquire data into the indicated database.Each bundle that is acquired is passed to a display
function that prints a single line consisting of N consecutive ’*’ characters, where N is computed as
the data number at the start of the bundle’s payload data, modulo 150.Note that the database isnot
open for replay at this time.

3. RunBSSreceiver thread
bssrecvprompts the user for the three parameter values noted above, then starts a background session
thread to acquire data into the indicated database (displaying the data as described for option 2 above)
and also opens the database for replay.

4. Close current playback session
bssrecvcloses the indicatedBSSdatabase, terminating replay access.

5. StopBSSreceiving thread
bssrecv terminates the current background session thread. Replay access to theBSS database, if
currently open, isnot terminated.

6. StopBSSReceiver
bssrecv terminates the current background session thread. Replay access to theBSS database, if
currently open, is also terminated.

7. Replay session
bssrecvprompts the user for the start and end times bounding the reception interval that is to be
replayed, then displays all data within that interval in both forward and reverse time order. The
display function performed for this purpose is the same one that is exercised during real-time

perl v5.18.2 2016-09-07 1

BSSRECV(1) BSSexecutables BSSRECV(1)

acquisition of streaming data.

8. Exit
bssrecvterminates.

EXIT STATUS
‘‘ 0’’

bssrecvhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bssStreamingApp(1), bss(3)

perl v5.18.2 2016-09-07 2

BSSPADMIN(1) BSSPexecutables BSSPADMIN(1)

NAME
bsspadmin − Bundle Streaming Service Protocol (BSSP) administration interface

SYNOPSIS
bsspadmin[commands_filename| .]

DESCRIPTION
bsspadminconfigures, starts, manages, and stopsBSSPoperations for the localION node.

It operates in response toBSSPconfiguration commands found in the filecommands_filename, if provided;
if not, bsspadmin prints a simple prompt (:) so that the user may type commands directly into standard
input. If commands_filenameis a period (.), the effect is the same as if a command file containing the
single command ’x’ were passed tobsspadmin — that is, theION node’sbsspclocktask and link service
adapter tasks are stopped.

The format of commands forcommands_filenamecan be queried frombsspadmin with the ’h’ or ’?’
commands at the prompt. The commands are documented inbssprc(5).

EXIT STATUS
0 Successful completion ofBSSPadministration.

EXAMPLES
bsspadmin

Enter interactive BSSPconfiguration command entry mode.

bsspadmin host1.bssp
Execute all configuration commands inhost1.bssp, then terminate immediately.

bsspadmin .
Stop allBSSPoperations on the local node.

FILES
Seebssprc(5) for details of theBSSPconfiguration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the bssprc file on a Windows machine, be sure touse dos2unix to convert it to Unix text
format before presenting it tobsspadmin. Otherwisebsspadmin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

bsspadmin can’t attach toION.
There is noSDR data store forbsspadminto use. You should runionadmin(1) first, to set up anSDR
data store forION.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causebsspadmin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleasesee
bssprc(5) for details.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bssprc(5)

perl v5.18.2 2016-09-07 1

UDPBSO(1) BSSPexecutables UDPBSO(1)

NAME
udpbso − UDP−based best−effort link service output task for BSSP

SYNOPSIS
udpbso{ remote_engine_hostname| @}[: remote_port_nbr] txbps remote_engine_nbr

DESCRIPTION
udpbso is a background ‘‘daemon’’ task that extractsBSSPsegments from the queue of segments bound for
the indicated remoteBSSPengine, encapsulates them inUDP datagrams, and sends those datagrams to the
indicatedUDP port on the indicated host. If not specified, port number defaults to 6001.

UDP congestion can be controlled by setting udpbso’s rate of UDP datagram transmissiontxbps
(transmission rate in bits per second) to the value that is supported by the underlying network.

Each ‘‘span’’ of BSSPdata interchange between the localBSSPengine and a neighboringBSSPengine
requires its own best-effort and reliable link service output tasks. All link service output tasks are spawned
automatically bybsspadminin response to the ’s’ command that starts operation of theBSSPprotocol, and
they are all terminated bybsspadminin response to an ’x’ (STOP) command.

EXIT STATUS
‘‘ 0’’

udpbso terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usebsspadmin to restart
udpbso.

‘‘ 1’’
udpbso terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usebsspadminto restartudpbso.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

udpbso can’t initialize BSSP.
bsspadminhas not yet initializedBSSPprotocol operations.

No such engine in database.
remote_engine_nbris invalid, or the applicable span has not yet been added to theBSSPdatabase by
bsspadmin.

BE-BSO task is already started for this engine.
Redundant initiation ofudpbso.

BE-BSO can’t openUDP socket
Operating system error. Check errtext, correct problem, and restartudpbso.

BE-BSO can’t bind UDP socket
Operating system error. Check errtext, correct problem, and restartudpbso.

Segment is too big forUDP BSO.
Configuration error: segments that are too large forUDP transmission (i.e., larger than 65535 bytes)
are being enqueued forudpbso. Usebsspadminto change maximum segment size for this span.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ABSO
bsspadmin(1), tcpbso(1), udpbsi(1)

perl v5.18.2 2016-09-07 1

BPCP(1) CFDPexecutables BPCP(1)

NAME
bpcp − A remote copy utility for delay tolerant networks utilizing NASA JPL’s Interplanetary Overlay
Network (ION)

SYNOPSIS
bpcp [−dqr | −v] [−L bundle_lifetime] [−C custody_on/off] [−S class_of_service] [host1:]file1 ...
[host2:]file2

DESCRIPTION
bpcp copies files between hosts utilizingNASA JPL’s Interplanetary Overlay Network (ION) to provide a
delay tolerant network. File copies from local to remote, remote to local, or remote to remote are permitted.
bpcp depends onION to do any authentication or encryption of file transfers. All covergence layers over
whichbpcp runsMUST be reliable.

The options are permitted as follows:

−d Debug output. Repeat for increased verbosity.
−q Quiet. Do not output status messages.
−r Recursive.
−v Display version information.
−L bundle_lifetime

Bundle lifetime in seconds. Default is 86400 seconds (1 day).

−C BP_custody
Acceptable values areON/OFF,YES/NO,1/0.Default isON.

−Sclass_of_service
Bundle Protocol Class of Service for this transfer. Available options are:

0 Bulk Priority
1 Standard Priority
2 Expedited Priority

Default is Standard Priority.

bpcp utilizesCFDPto preform the actual file transfers. This has several important implications. First,ION’s
CFDP implementation requires that reliable convergence layers be used to transfer the data. Second, file
permissions are not transferred. Files will be made executable on copy. Third, symbolic links are ignored
for local to remote transfers and their target is copied for remote transfers. Fourth, all hosts must be
specified usingION’s IPN naming scheme.

In order to preform remote to local transfers or remote to remote transfers,bpcpd must be running on the
remote hosts. However, bpcp shouldNOT be run simultaneously withbpcpd or cfdptest.

EXIT STATUS
‘‘ 0’’

bpcp terminated normally.

‘‘ 1’’
bpcp terminated abnormally. Check console and theion.log file for error messages.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpcpd(1), ion (3), cfdptest(1)

perl v5.18.2 2016-09-07 1

BPCPD(1) CFDPexecutables BPCPD(1)

NAME
bpcpd − ION Delay Tolerant Networking remote file copy daemon

SYNOPSIS
bpcpd [−d | −v]

DESCRIPTION
bpcpd is the daemon forbpcp. Together these programs copy files between hosts utilizingNASA JPL’s
Interplanetary Overlay Network (ION) to provide a delay tolerant network.

The options are permitted as follows:

−d Debug output. Repeat for increased verbosity.

−v Display version information.

bpcpd must be running in order to copy files from this host to another host (i.e. remote to local). Copies in
the other direction (local to remote) do not requirebpcpd. Further, bpcpd should NOT be run
simultaneously withbpcp or cfdptest.

EXIT STATUS
‘‘ 0’’

bpcpd terminated normally.

‘‘ 1’’
bpcpd terminated abnormally. Check console and theion.log file for error messages.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
bpcp(1), ion (3), cfdptest(1)

perl v5.18.2 2016-09-07 1

BPUTA(1) CFDPexecutables BPUTA(1)

NAME
bputa − BP−based CFDP UT−layer adapter

SYNOPSIS
bputa

DESCRIPTION
bputa is a background ‘‘daemon’’ task that sends and receives CFDPPDUs encapsulated inDTN bundles.

The task is spawned automatically bycfdpadmin in response to the ’s’ command that starts operation of
theCFDPprotocol; the text of the command that is used to spawn the task must be provided as a parameter
to the ’s’ command. The link service input task is terminated bycfdpadmin in response to an ’x’ (STOP)
command.

EXIT STATUS
‘‘ 0’’

bputa terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and usecfdpadmin to restart
bputa.

‘‘ 1’’
bputa terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usecfdpadmin to restartbputa.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

CFDPcan’t attach toBP.
bpadmin has not yet initializedBP protocol operations.

CFDPcan’t open own endpoint.
Most likely another bputa task is already running. Usecfdpadmin to stopCFDPand restart.

CFDPcan’t get Bundle ProtocolSAP.
Most likely aBP configuration problem. Usebpadmin to stopBP and restart.

bputa can’t attach toCFDP.
cfdpadmin has not yet initializedCFDPprotocol operations.

bputa can’t dequeue outboundCFDP PDU; terminating.
Possible system error. Check ion.log for additional diagnostic messages.

bputa can’t sendPDU in bundle; terminating.
Possible system error. Check ion.log for additional diagnostic messages.

bputa can’t trackPDU; terminating.
Possible system error. Check ion.log for additional diagnostic messages.

bputa bundle reception failed.
Possible system error; reception thread terminates. Check ion.log for additional diagnostic messages.

bputa can’t receive bundleADU.
Possible system error; reception thread terminates. Check ion.log for additional diagnostic messages.

bputa can’t handle bundle delivery.
Possible system error; reception thread terminates. Check ion.log for additional diagnostic messages.

bputa can’t handle inboundPDU.
Possible system error; reception thread terminates. Check ion.log for additional diagnostic messages.

perl v5.18.2 2016-09-07 1

BPUTA(1) CFDPexecutables BPUTA(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
cfdpadmin(1), bpadmin(1)

perl v5.18.2 2016-09-07 2

CFDPADMIN(1) CFDPexecutables CFDPADMIN(1)

NAME
cfdpadmin − ION’s CCSDS File Delivery Protocol (CFDP) administration interface

SYNOPSIS
cfdpadmin [commands_filename| .]

DESCRIPTION
cfdpadmin configures, starts, manages, and stopsCFDPoperations for the localION node.

It operates in response toCFDPconfiguration commands found in the filecommands_filename, if provided;
if not, cfdpadmin prints a simple prompt (:) so that the user may type commands directly into standard
input. If commands_filenameis a period (.), the effect is the same as if a command file containing the
single command ’x’ were passed tocfdpadmin — that is, theION node’scfdpclocktask andUT layer
service task (nominallybputa) are stopped.

The format of commands forcommands_filenamecan be queried fromcfdpadmin with the ’h’ or ’?’
commands at the prompt. The commands are documented incfdprc(5).

EXIT STATUS
‘‘ 0’’

Successful completion ofCFDPadministration.

EXAMPLES
cfdpadmin

Enter interactive CFDPconfiguration command entry mode.

cfdpadmin host1.cfdprc
Execute all configuration commands inhost1.cfdprc, then terminate immediately.

cfdpadmin .
Stop allCFDPoperations on the local node.

FILES
Seecfdprc(5) for details of theCFDPconfiguration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the cfdprc file on a Windows machine, be sure touse dos2unix to convert it to Unix text
format before presenting it tocfdpadmin. Otherwisecfdpadmin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

cfdpadmin can’t attach toION.
There is noSDR data store forcfdpadminto use. You should runionadmin(1) first, to set up anSDR
data store forION.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causecfdpadmin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleasesee
cfdprc(5) for details.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
cfdprc(5)

perl v5.18.2 2016-09-07 1

CFDPCLOCK(1) CFDPexecutables CFDPCLOCK(1)

NAME
cfdpclock − CFDP daemon task for managing scheduled events

SYNOPSIS
cfdpclock

DESCRIPTION
cfdpclock is a background ‘‘daemon’’ task that periodically performs scheduledCFDP activities. It is
spawned automatically bycfdpadmin in response to the ’s’ command that starts operation of theCFDP
protocol, and it is terminated bycfdpadmin in response to an ’x’ (STOP) command.

Once per second,cfdpclock takes the following action:

First it scans all inbound file delivery units (FDUs). For each one whose check timeout deadline has
passed, it increments the check timeout count and resets the check timeout deadline.For each one
whose check timeout count exceeds the limit configured for this node, it invokes the Check Limit
Reached fault handling procedure.

Then it scans all outbound FDUs.For each one that has been Canceled, it cancels all extant PDU
bundles and sets transmission progress to the size of the file, simulating the completion of
transmission. Itdestroys each outboundFDU whose transmission is completed.

EXIT STATUS
‘‘ 0’’

cfdpclock terminated, for reasons noted in theion.log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and usecfdpadmin to restartcfdpclock.

‘‘ 1’’
cfdpclock was unable to attach toCFDPprotocol operations, probably becausecfdpadmin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

cfdpclock can’t initialize CFDP.
cfdpadmin has not yet initializedCFDPprotocol operations.

Can’t dispatch events.
An unrecoverable database error was encountered.cfdpclock terminates.

Can’t manage links.
An unrecoverable database error was encountered.cfdpclock terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
cfdpadmin(1)

perl v5.18.2 2016-09-07 1

CFDPTEST(1) CFDPexecutables CFDPTEST(1)

NAME
cfdptest − CFDP test shell for ION

SYNOPSIS
cfdptest [commands_filename]

DESCRIPTION
cfdptest provides a mechanism for testingCFDP file transmission.It can be used in either scripted or
interactive mode. All bundles containingCFDPPDUs are sent with custody transfer requested and with all
bundle status reporting disabled.

When scripted withcommands_filename, cfdptest operates in response toCFDP management commands
contained in the provided commands file. Each line of text in the file is interpreted as a single command
comprising several tokens: a one-character command code and, in most cases, one or more command
arguments of one or more characters.The commands configure and initiateCFDP file transmission
operations.

If no file is specified,cfdptest instead offers the user an interactive ‘‘shell’’ f or command entry. cfdptest
prints a prompt string (‘‘: ’’) to stdout, accepts strings of text from stdin, and interprets each string as a
command.

The supportedcfdptestcommands (whether interactive or scripted) are as follows:

? The help command. Thiswill display a listing of the commands and their formats. It is the same as
theh command.

h An alternate form of thehelp command.

z [<number of seconds to pause>]
The pause command. Whencfdptest is running in interactive mode, this command causes the
console input processing thread to pause the indicated number of seconds (defaulting to 1) before
processing the next command. This is provided for use in test scripting.

d <destinationCFDPentity ID number>
The destination command. Thiscommand establishes theCFDP entity to which the next file
transmission operation will be directed.CFDPentity numbers inION are, by convention, the same as
BP node numbers.

f <source file path name>
The from command. Thiscommand identifies the file that will be transmitted when the next file
transmission operation is commanded.

t <destination file path name>
The to command. Thiscommand provides the name for the file that will be created at the receiving
entity when the next file transmission operation is commanded.

l <lifetime in seconds>
The time-to-live command. Thiscommand establishes the time-to-live for all subsequently issued
bundles containingCFDPPDUs. Ifnot specified, the default value 86400 (1 day) is used.

p <priority>
Thepriority command. Thiscommand establishes the priority (class of service) for all subsequently
issued bundles containingCFDPPDUs. Valid values are 0, 1, and 2. If not specified, priority is 1.

o <ordinal>
The ordinal command. Thiscommand establishes the ‘‘ordinal’’ (sub-priority within priority 2) for
all subsequently issued bundles containingCFDP PDUs. Valid values are 0−254. If not specified,
ordinal is 0.

m <mode>
Themodecommand. Thiscommand establishes the transmission mode (‘‘best-effort’’ or assured) for
all subsequently issued bundles containingCFDP PDUs. Valid values are 0 (assured, reliable, with
reliability provided by a reliableDTN convergence layer protocol), 1 (best-effort, unreliable), and 2

perl v5.18.2 2016-09-07 1

CFDPTEST(1) CFDPexecutables CFDPTEST(1)

(assured, reliable, but with reliability provided byBP custody transfer). If not specified, transmission
mode is 0.

a <latency in seconds>
The closure latency command. Thiscommand establishes the transaction closure latency for all
subsequent file transmission operations.When it is set to zero, the file transmission is ‘‘open loop’’
and theCFDPtransaction at the sending entity finishes when theEOF is sent. Otherwise, the receiving
CFDP entity is being asked to send a ‘‘Finished’’ PDU back to the sendingCFDP entity when the
transaction finishes at the receiving entity. Normally the transaction finishes at the sending entity only
when that FinishedPDU is received. However, when closure latency seconds elapse following
transmission of theEOF PDUprior to receipt of the FinishedPDU, the transaction finishes immediately
with a Check Timer fault.

n { 0 | 1 }
Thesegment metadatacommand. Thiscommand controls the insertion of sample segment metadata
— a string representation of the current time— in every file data segmentPDU. A value of 1 enables
segment metadata insertion, while a value of 0 disables it.

g <srrflags>
The srrflags command. Thiscommand establishes theBP status reporting that will be requested for
all subsequently issued bundles containingCFDPPDUs. srrflagsmust be a status reporting flags string
as defined forbptrace(1): a sequence of status report flags, separated by commas, with no embedded
whitespace. Eachstatus report flag must be one of the following: rcv, ct, fwd, dlv, del.

c <criticality>
Thecriticality command. Thiscommand establishes the criticality for all subsequently issued bundles
containingCFDPPDUs. Valid values are 0 (not critical) and 1 (critical). If not specified, criticality is
0.

r <action code nbr> <first path name> <second path name>
The filestore requestcommand. Thiscommand adds a filestore request to the metadata that will be
issued when the next file transmission operation is commanded. Action code numbers are:

0 = create file
1 = delete file
2 = rename file
3 = append file
4 = replace file
5 = create directory
6 = remove directory
7 = deny file
8 = deny directory

u ’<message text>’
Theuser messagecommand. Thiscommand adds a user message to the metadata that will be issued
when the next file transmission operation is commanded.

& The send command. Thiscommand initiates file transmission as configured by the most recent
precedingd, f, t, anda commands.

| The get command. Thiscommand causes a request for file transmission to the local node, subject to
the parameters provided by the most recent precedingf, t, and a commands, to be sent to the entity
identified by the most recent precedingd command.

ˆ Thecancelcommand. Thiscommand cancels the most recently initiated file transmission.

% Thesuspendcommand. Thiscommand suspends the most recently initiated file transmission.

$ Theresumecommand. Thiscommand resumes the most recently initiated file transmission.

Thereport command. Thiscommand reports on the most recently initiated file transmission.

perl v5.18.2 2016-09-07 2

CFDPTEST(1) CFDPexecutables CFDPTEST(1)

q Thequit command. Terminates the cfdptest program.

cfdptest in interactive mode also spawns aCFDP ev ent handling thread. The event thread receives CFDP
service indications and simply prints lines of text to stdout to announce them.

NOTE that whencfdptest runs in scripted mode it doesnot spawn an event handling thread, which makes it
possible for theCFDPev ents queue to grow indefinitely unless some other task consumes and reports on the
ev ents. Onesimple solution is to run an interactive cfdptest task in background, simply to keep the event
queue cleared, while scripted non-interactivecfdptest tasks are run in the foreground.

EXIT STATUS
‘‘ 0’’

cfdptest has terminated.Any problems encountered during operation will be noted in theion.log log
file.

FILES
See above for details on validcommands_filenamecommands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced bycfdptestare written to theION log file ion.log.

Can’t open command file...
The file identified bycommands_filenamedoesn’t exist.

cfdptest can’t initialize CFDP.
cfdpadmin has not yet initializedCFDPoperations.

Can’t put FDU.
The attempt to initiate file transmission failed. Seethe ION log for additional diagnostic messages
from theCFDPlibrary.

Failed gettingCFDPev ent.
The attempt to retrieve aCFDP service indication failed. Seethe ION log for additional diagnostic
messages from theCFDPlibrary.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
cfdpadmin(1), cfdp(3)

perl v5.18.2 2016-09-07 3

DTPCADMIN(1) DTPCexecutables DTPCADMIN(1)

NAME
dtpcadmin − Delay−Tolerant Payload Conditioning (DTPC) administration interface

SYNOPSIS
dtpcadmin [commands_filename| .]

DESCRIPTION
dtpcadmin configures, starts, manages, and stopsDTPCoperations for the localION node.

It operates in response toDTPCconfiguration commands found in the filecommands_filename, if provided;
if not, dtpcadmin prints a simple prompt (:) so that the user may type commands directly into standard
input. If commands_filenameis a period (.), the effect is the same as if a command file containing the
single command ’x’ were passed todtpcadmin — that is, theION node’sdtpcclocktask anddtpcdtask are
stopped.

The format of commands forcommands_filenamecan be queried fromdtpcadmin with the ’h’ or ’?’
commands at the prompt. The commands are documented indtpcrc(5).

EXIT STATUS
0 Successful completion ofDTPCadministration.

EXAMPLES
dtpcadmin

Enter interactive DTPCconfiguration command entry mode.

dtpcadmin host1.dtpc
Execute all configuration commands inhost1.dtpc, then terminate immediately.

dtpcadmin .
Stop allDTPCoperations on the local node.

FILES
Seedtpcrc(5) for details of theDTPCconfiguration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the dtpcrc file on a Windows machine, be sure touse dos2unix to convert it to Unix text
format before presenting it todtpcadmin. Otherwisedtpcadmin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

dtpcadmin can’t attach toION.
There is noSDR data store fordtpcadminto use. You should runionadmin(1) first, to set up anSDR
data store forION.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causedtpcadmin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleasesee
dtpcrc(5) for details.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
dtpcrc(5)

perl v5.18.2 2016-09-07 1

DTPCCLOCK(1) DTPCexecutables DTPCCLOCK(1)

NAME
dtpcclock − DTPC daemon task for managing scheduled events

SYNOPSIS
dtpcclock

DESCRIPTION
dtpcclock is a background ‘‘daemon’’ task that periodically performs scheduledDTPC activities. It is
spawned automatically bydtpcadmin in response to the ’s’ command that starts operation of theDTPC
protocol, and it is terminated bydtpcadmin in response to an ’x’ (STOP) command.

Once per second,dtpcclock takes the following action:

First it executes allDTPCev ents scheduled to occur at any time up to the current moment:

DTPC ADUs for which an expected positive acknowledgment has not yet arrived are
retransmitted.

Received DTPCADUs whose time to live has elapsed are deleted.

Thendtpcclock increases the ages of allDTPC ADUs pending transmission and initiates transmission
of each suchADU whose age now equals or exceeds its aggregation time limit.

EXIT STATUS
0 dtpcclock terminated, for reasons noted in theion.log file. If this termination was not commanded,

investigate and solve the problem identified in the log file and usedtpcadmin to restartdtpcclock.

1 dtpcclock was unable to attach toDTPCprotocol operations, probably becausedtpcadmin has not yet
been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

dtpcclock can’t initialize DTPC.
dtpcadmin has not yet initializedDTPCprotocol operations.

Can’t send finished adu.
An unrecoverable database error was encountered.dtpcclock terminates.

Can’t stop aggregation for adu.
An unrecoverable database error was encountered.dtpcclock terminates.

Could not scan outbound Adus
An unrecoverable database error was encountered.dtpcclock terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
dtpcadmin(1)

perl v5.18.2 2016-09-07 1

DTPCD(1) DTPCexecutables DTPCD(1)

NAME
dtpcd − DTPC daemon task for receiving and processing DTPC ADUs in bundles

SYNOPSIS
dtpcd

DESCRIPTION
dtpcd is a background ‘‘daemon’’ task that manages the reception and processing ofDTPC protocol data
units. It receives the payloads of bundles destined for the ‘‘ipn’ ’−scheme endpoint whose node number is
the number of the local node and whose service number is theDTPC_RECV_SVC_NBR(129 as of the time
of this writeng).

DTPC protocol data units are of two types: application data units (ADUs, i.e., aggregations of application
data items) and acknowledgments. Eachacknowledgment is interpreted as authorization to release the
buffer space occupied by the node’s local copy of the acknowledgedADU. EachADU is parsed into its
constituent application data items, which are then delivered to the applications awaiting them, and when
required aDTPCend-to-end acknowledgmentPDU is returned to theDTPC PDUsender.

EXIT STATUS
0 dtpcd terminated normally, for reasons noted in theion.log file. If this termination was not

commanded, investigate and solve the problem identified in the log file and usedtpcadmin to restart
dtpcd.

1 dtpcd terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then usedtpcadmin to restartdtpcd.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

DTPCcan’t open own ’send’ endpoint.
Bundle protocol agent has not been started. Seeion (3).

dtpcd can’t attach toDTPC.
dtpcadmin has not yet initializedDTPCprotocol operations.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
dtpcadmin(1), ion (3)

perl v5.18.2 2016-09-07 1

DTPCRECEIVE(1) DTPCexecutables DTPCRECEIVE(1)

NAME
dtpcreceive − Delay−Tolerant Payload Conditioning reception test program

SYNOPSIS
dtpcreceive topic_ID

DESCRIPTION
dtpcreceive usesDTPC to acquire application data items on topictopic_ID sent bydtpcsend. Upon
termination it prints the total number of application data items received and the mean rate of application
data transmission.

Use CTRL-C to terminate the program.

EXIT STATUS
0 dtpcreceivehas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
dtpcsend(1), dtpc(3)

perl v5.18.2 2016-09-07 1

DTPCSEND(1) DTPCexecutables DTPCSEND(1)

NAME
dtpcsend − Delay−Tolerant Payload Conditioning transmission test program

SYNOPSIS
dtpcsendnbr_of_cycles rate payload_size topic_ID profile_ID destination_endpoint

DESCRIPTION
dtpcsend usesDTPC to sendnbr_of_cyclesapplication data items ofpayload_sizebytes each on topic
topic_ID to destination_endpointusing transmission profileprofile_IDat ratebits per second.

ratemust be between 1000 and 200 million bits per second.

payload_sizemust be between 2 and 1 million bytes.To use application data item sizes chosen at random
from the range 1 to 65536, specifypayload_size= 1.

NOTE thatdtpcsend invokes an elision function that removes from the outboundDTPC aggregate ADU all
records that are of the same size as the first record in that aggregation. This means that specifying any
payload size other than 1 that is less than the configuredDTPC aggregation size limit will causeDTPC to
issue ADUs only when the aggregation time limit is exceeded, and each suchADU will always contain only
a single record.

Use CTRL-C to terminate the program.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
dtpcreceive(1), dtpc(3)

perl v5.18.2 2016-09-07 1

FILE2SDR(1) ICIexecutables FILE2SDR(1)

NAME
file2sdr − SDR data ingestion test program

SYNOPSIS
file2sdr configFlags fileName

DESCRIPTION
file2sdr stress-testsSDRdata ingestion by repeatedly writing all text lines of the file namedfileNameto one
of a series of non-volatile linked lists created in a testSDR data store named "testsdrconfigFlags‘‘ . By
incorporating the data store configuration into the name (e.g., ’’testsdr14") we make it relatively easy to
perform comparative testing onSDRdata stores that are identical aside from their configuration settings.

The operation offile2sdr is cyclical: a new linked list is created each time the program finishes copying the
file’s text lines and starts over again. If you use ˆC to terminatefile2sdr and then restart it, the program
resumes operation at the point where it left off.

After writing each line to the current linked list,file2sdr gives a semaphore to indicate that the list is now
non-empty. This is mainly for the benefit of the complementary test programsdr2file(1).

At the end of each cycle file2sdr appends a finalEOF line to the current linked list, containing the text ‘‘***
End of the file ***’’, and prints a brief performance report:

Processing I<lineCount> lines per second.

EXIT STATUS
‘‘ 0’’

file2sdr has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced byfile2sdr are written to theION log file ion.log.

Can’t use sdr.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t create semaphore.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

SDR transaction failed.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t open input file
Operating system error. Check errtext, correct problem, and rerun.

Can’t reopen input file
Operating system error. Check errtext, correct problem, and rerun.

Can’t read from input file
Operating system error. Check errtext, correct problem, and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
sdr2file(1), sdr(3)

perl v5.18.2 2016-09-07 1

FILE2SM(1) ICIexecutables FILE2SM(1)

NAME
file2sm − shared−memory linked list data ingestion test program

SYNOPSIS
file2smfileName

DESCRIPTION
file2sm stress-tests shared-memory linked list data ingestion by repeatedly writing all text lines of the file
namedfileNameto a shared-memory linked list that is the root object of aPSMpartition named ‘‘file2sm’’.

After writing each line to the linked list,file2sm gives a semaphore to indicate that the list is now non-
empty. This is mainly for the benefit of the complementary test programsm2file(1).

The operation offile2sm is cyclical. After copying all text lines of the source file to the linked list,file2sm
appends anEOF line to the linked list, containing the text ‘‘*** End of the file ***’’, and prints a brief
performance report:

Processing I<lineCount> lines per second.

Then it reopens the source file and starts appending the file’s text lines to the linked list again.

EXIT STATUS
‘‘ 0’’

file2smhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Can’t attach to shared memory

Operating system error. Check errtext, correct problem, and rerun.

Can’t manage shared memory.
PSM error. Check for earlier diagnostic messages describing the cause of the error; correct problem
and rerun.

Can’t create shared memory list.
smlist error. Check for earlier diagnostic messages describing the cause of the error; correct problem
and rerun.

Can’t create semaphore.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

Can’t open input file
Operating system error. Check errtext, correct problem, and rerun.

Can’t reopen input file
Operating system error. Check errtext, correct problem, and rerun.

Can’t read from input file
Operating system error. Check errtext, correct problem, and rerun.

Ran out of memory.
Nominal behavior. sm2file is not extracting data from the linked list quickly enough to prevent it from
growing to consume all memory allocated to the test partition.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
sm2file(1), smlist(3), psm(3)

perl v5.18.2 2016-09-07 1

IONADMIN(1) ICI executables IONADMIN(1)

NAME
ionadmin − ION node administration interface

SYNOPSIS
ionadmin [commands_filename| .]

DESCRIPTION
ionadmin configures, starts, manages, and stops theION node on the local computer.

It configures the node and sets (and reports on) global operational settings for theDTN protocol stack on the
local computer in response toION configuration commands found incommands_filename, if provided; if
not, ionadmin prints a simple prompt (:) so that the user may type commands directly into standard input.
If commands_filenameis a period (.), the effect is the same as if a command file containing the single
command ’x’ were passed toionadmin — that is, theION node’srfxclocktask is stopped.

The format of commands forcommands_filenamecan be queried fromionadmin by entering the command
’h’ or ’?’ at the prompt. The commands are documented inionrc (5).

Note thationadminalways computes a congestion forecast immediately before exiting. Theresult of this
forecast — maximumprojected occupancy of the DTN protocol traffic allocation inION’s SDR database
— is retained for application flow control purposes: if maximum projected occupancy is the entire protocol
traffic allocation, then a message to this effect is logged and no new bundle origination by any application
will be accepted until a subsequent forecast that predicts no congestion is computed.(Congestion forecasts
are constrained byhorizontimes, which can be established by commands issued toionadmin. One way to
re-enable data origination temporarily while long-term traffic imbalances are being addressed is to declare a
congestion forecast horizon in the near future, before congestion would occur if no adjustments were
made.)

EXIT STATUS
‘‘ 0’’

Successful completion ofION node administration.

EXAMPLES
ionadmin

Enter interactive ION configuration command entry mode.

ionadmin host1.ion
Execute all configuration commands inhost1.ion, then terminate immediately.

FILES
Status and diagnostic messages fromionadmin and from other software that utilizes theION node are
nominally written to a log file in the current working directory within whichionadmin was run. Thelog
file is typically namedion.log.

See alsoionconfig(5) andionrc (5).

ENVIRONMENT
Environment variables ION_NODE_LIST_DIR and ION_NODE_WDNAME can be used to enable the
operation of multipleION nodes on a single workstation computer. See section 2.1.3 of theION Design and
Operations Guide for details.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the ionrc file on a Windows machine, be sure touse dos2unix to convert it to Unix text f ormat
before presenting it toionadmin. Otherwise ionadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the log file:

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

perl v5.18.2 2016-09-07 1

IONADMIN(1) ICI executables IONADMIN(1)

ionadminSDRdefinition failed.
A node initialization command was executed, but anSDR database already exists for the indicated
node. It is likely that anION node is already running on this computer or that destruction of a
previously started the previous ION node was incomplete.For most ION installations, incomplete node
destruction can be repaired by (a) killing allION processes that are still running and then (b) using
ipcrm to remove all SVr4 IPC objects owned byION.

ionadmin can’t get SDRparms.
A node initialization command was executed, but the ion_config_filenamepassed to that command
contains improperly formatted commands. Please seeionconfig(5) for further details.

Various errors that don’t causeionadmin to fail but are noted in the log file may be caused by improperly
formatted commands given at the prompt or in thecommands_filename. Please seeionrc (5) for details.

BUGS
If the ion_config_filenameparameter passed to a node initialization command refers to a nonexistent
filename, thenionadmin uses default values are used rather than reporting an error in the command line
argument.

Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ionrc (5), ionconfig(5)

perl v5.18.2 2016-09-07 2

IONSECADMIN(1) ICI executables IONSECADMIN(1)

NAME
ionsecadmin − ION security policy administration interface

SYNOPSIS
ionsecadmin[commands_filename]

DESCRIPTION
ionsecadminconfigures and manages theION security policy database on the local computer.

It configures and manages theION security policy database on the local computer in response toION
configuration commands found incommands_filename, if provided; if not, ionsecadminprints a simple
prompt (:) so that the user may type commands directly into standard input.

The format of commands forcommands_filenamecan be queried fromionsecadmin by entering the
command ’h’ or ’?’ at the prompt. The commands are documented inionsecrc(5).

EXIT STATUS
‘‘ 0’’

Successful completion ofION security policy administration.

EXAMPLES
ionsecadmin

Enter interactive ION security policy administration command entry mode.

ionsecadmin host1.ionsecrc
Execute all configuration commands inhost1.ionsecrc, then terminate immediately.

FILES
Status and diagnostic messages fromionsecadminand from other software that utilizes theION node are
nominally written to a log file in the current working directory within whichionsecadminwas run. The
log file is typically namedion.log.

See alsoionsecrc(5).

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the ionrc file on a Windows machine, be sure touse dos2unix to convert it to Unix text f ormat
before presenting it toionsecadmin. Otherwise ionsecadmin will detect syntax errors and will not
function satisfactorily.

The following diagnostics may be issued to the log file:

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t cause ionsecadmin to fail but are noted in the log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filename. Please seeionsecrc(5)
for details.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ionsecrc(5)

perl v5.18.2 2016-09-07 1

OWLTSIM(1) ICI executables OWLTSIM(1)

NAME
owltsim − one−way light time transmission delay simulator

SYNOPSIS
owltsim config_filename[−v]

DESCRIPTION
owltsim delays delivery of data between pairs ofION nodes by specified lengths of time, simulating the
signal propagation delay imposed by distance between the nodes.

Its operation is configured by delay simulation configuration lines in the file identified byconfig_filename.
A pair of threads is created for each line in the file: one that receives UDP datagrams on a specified port and
queues them in a linked list, and a second that later removes queued datagrams from the linked list and
sends them on to a specifiedUDP port on a specified network host.

Each configuration line must be of the following form:

to from my_port# dest_host dest_port# owlt modulus

to identifies the receiving node.
This parameter is purely informational, intended to make owltsim’s printed messages more helpful to
the user.

from identifies the sending node.
A value of ’*’ may be used to indicate ‘‘all nodes’’. Again, this parameter is purely informational,
intended to makeowltsim’s printed messages more helpful to the user.

my_port#identifiesowltsim’s receiving port for this traffic.
dest_hostis a hostname identifying the computer to whichowltsim will transmit this traffic.
dest_port#identifies the port to whichowltsim will transmit this traffic.
owlt specifies the number of seconds to wait before forwarding each received datagram.
moduluscontrols the artificial random data loss imposed on this traffic byowltsim.

A value of ’0’ specifies ‘‘no random data loss’’. Any other modulus value N causesowltsim to
randomly drop (i.e., not transmit upon expiration of the delay interval) one out of every N packets.

The optional−v (‘‘verbose’’) parameter causesowltsim to print a message whenever it receives, sends, or
drops (due to artificial random data loss) a datagram.

Note that error conditions may cause one delay simulation (a pair of threads) to terminate without
terminating any others.

owltsim is designed to run indefinitely. To terminate the program, just use control-C to kill it.

EXIT STATUS
‘‘ 0’’ Nominal termination.
‘‘ 1’’ Termination due to an error condition, as noted in printed messages.

EXAMPLES
Here is a sample owltsim configuration file:

2 7 5502 ptl07.jpl.nasa.gov 5001 75 0
7 2 5507 ptl02.jpl.nasa.gov 5001 75 16

This file indicates thatowltsim will receive on port 5502 theION traffic from node 2 that is destined for
node 7, which will receive it at port 5001 on the computer named ptl07.jpl.nasa.gov; 75 seconds of delay
(simulating a distance of 75 light seconds) will be imposed on this transmission activity, and owltsim will
not simulate any random data loss.

In the reverse direction,owltsim will receive on port 5507 theION traffic from node 7 that is destined for
node 2, which will receive it at port 5001 on the computer named ptl02.jpl.nasa.gov; 75 seconds of delay
will again be imposed on this transmission activity, and owltsim will randomly discard (i.e., not transmit
upon expiration of the transmission delay interval) one datagram out of every 16 received at this port.

perl v5.18.2 2016-09-07 1

OWLTSIM(1) ICI executables OWLTSIM(1)

FILES
Not applicable.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be printed to stdout:

owltsim can’t open configuration file
The program terminates.

owltsim failed on fscanf
Failure on reading the configuration file. The program terminates.

owltsim stopped malformed config file lineline_number.
Failure on parsing the configuration file. The program terminates.

owltsim can’t spawn receiver thread
The program terminates.

owltsim out of memory.
The program terminates.

owltsim can’t open reception socket
The program terminates.

owltsim can’t initialize reception socket
The program terminates.

owltsim can’t open transmission socket
The program terminates.

owltsim can’t initialize transmission socket
The program terminates.

owltsim can’t spawn timer thread
The program terminates.

owltsim can’t acquire datagram
Datagram transmission failed. Thiscauses the threads for the affected delay simulation to terminate,
without terminating any other threads.

owltsim failed on send
Datagram transmission failed. Thiscauses the threads for the affected delay simulation to terminate,
without terminating any other threads.

at time owltsim LOST a dg of length length from sending nodedestined forreceiving nodedue to
ECONNREFUSED.

This is an informational message. Due to an apparent bug in Internet protocol implementation,
transmission of a datagram on a connectedUDP socket occasionally fails. owltsim does not attempt to
retransmit the affected datagram.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
udplsi(1), udplso(1)

perl v5.18.2 2016-09-07 2

OWLTTB(1) ICI executables OWLTTB(1)

NAME
owlttb − one−way light time transmission delay simulator

SYNOPSIS
owlttb own_uplink_port# own_downlink_port# dest_uplink_IP_address dest_uplink_port#
dest_downlink_IP_address dest_downlink_port# owlt_sec.[−v]

DESCRIPTION
owlttb delays delivery of data between anNTTI and a NetAcquire box (or two, one for uplink and one for
downlink) by a specified length of time, simulating the signal propagation delay imposed by distance
between the nodes.

Its operation is configured by the command-line parameters, except that the delay interval itself may be
changed while the program is running.owlttb offers a command prompt (:), and when a new value of one-
way light time is entered at this prompt the new delay interval takes effect immediately.

own_uplink_port#identifies the port onowlttb accepts theNTTI’s TCP connection for uplink traffic (i.e.,
data destined for the NetAcquire box).
own_downlink_port#identifies the port onowlttb accepts theNTTI’s TCP connection for downlink traffic
(i.e., data issued by the NetAcquire box).
dest_uplink_IP_addressis theIP address (a dotted string) identifying the NetAcquire box to whichowlttb
will transmit uplink traffic.
dest_uplink_port#identifies theTCP port to whichowlttb will connect in order to transmit uplink traffic to
NetAcquire.
dest_downlink_IP_addressis the IP address (a dotted string) identifying the NetAcquire box from which
owlttb will receive downlink traffic.
dest_downlink_port#identifies theTCP port to whichowlttb will connect in order to receive downlink
traffic from NetAcquire.
owlt specifies the number of seconds to wait before forwarding each received segment ofTCP traffic.

The optional−v (‘‘verbose’’) parameter causesowlttb to print a message whenever it receives, sends, or
discards (due to absence of a connected downlink client) a segment ofTCP traffic.

owlttb is designed to run indefinitely. To terminate the program, just use control-C to kill it or enter ‘‘q’ ’ at
the prompt.

EXIT STATUS
‘‘ 0’’ Nominal termination.
‘‘ 1’’ Termination due to an error condition, as noted in printed messages.

EXAMPLES
Here is a sample owlttb command:

owlttb 2901 2902 137.7.8.19 10001 137.7.8.19 10002 75

This command indicates thatowlttb will accept an uplink traffic connection on port 2901, forwarding the
received uplink traffic to port 10001 on the NetAcquire box at 137.7.8.19, and it will accept a downlink
traffic connection on port 2902, delivering over that connection all downlink traffic that it receives from
connecting to port 10002 on the NetAcquire box at 137.7.8.19.75 seconds of delay (simulating a distance
of 75 light seconds) will be imposed on this transmission activity.

FILES
Not applicable.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be printed to stdout:

owlttb can’t spawn uplink thread
The program terminates.

perl v5.18.2 2016-09-07 1

OWLTTB(1) ICI executables OWLTTB(1)

owlttb can’t spawn uplink sender thread
The program terminates.

owlttb can’t spawn downlink thread
The program terminates.

owlttb can’t spawn downlink receiver thread
The program terminates.

owlttb can’t spawn downlink sender thread
The program terminates.

owlttb fgets failed
The program terminates.

owlttb out of memory.
The program terminates.

owlttb lost uplink client.
This is an informational message. TheNTTI may reconnect at any time.

owlttb lost downlink client
This is an informational message. TheNTTI may reconnect at any time.

owlttb can’t openTCPsocket to NetAcquire
The program terminates.

owlttb can’t connectTCPsocket to NetAcquire
The program terminates.

owlttb write() error on socket
The program terminates if it was writing to NetAcquire; otherwise it simply recognizes that the client
NTTI has disconnected.

owlttb read()error on socket
The program terminates.

owlttb can’t open uplink dialup socket
The program terminates.

owlttb can’t initialize uplink dialup socket
The program terminates.

owlttb can’t open downlink dialup socket
The program terminates.

owlttb can’t initialize downlink dialup socket
The program terminates.

owlttb accept()failed
The program terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 2

PSMSHELL(1) ICIexecutables PSMSHELL(1)

NAME
psmshell − PSM memory management test shell

SYNOPSIS
psmshellpartition_size

DESCRIPTION
psmshellallocates a region ofpartition_sizebytes of system memory, places it underPSM management,
and offers the user an interactive ‘‘shell’’ f or testing variousPSMmanagement functions.

psmshell prints a prompt string (‘‘: ’’) to stdout, accepts a command from stdin, executes the command
(possibly printing a diagnostic message), then prints another prompt string and so on.

The locations of objects allocated from the PSM-managed region of memory are referred to as ‘‘cells’’ i n
psmshell operations. That is, when an object is to be allocated, a cell number in the range 0−99 must be
specified as the notional ‘‘handle’’ f or that object, for use in future commands.

The following commands are supported:

h Thehelp command. Causespsmshellto print a summary of available commands. Same effect as the
? command.

? Anotherhelp command. Causespsmshellto print a summary of available commands. Same effect as
theh command.

m cell_nbr size
The malloc command. Allocatesa large-pool object of the indicated size and associates that object
with cell_nbr.

z cell_nbr size
The zalloc command. Allocatesa small-pool object of the indicated size and associates that object
with cell_nbr.

p cell_nbr
The print command. Printsthe address (i.e., the offset within the managed block of memory) of the
object associated withcell_nbr.

f cell_nbr
The free command. Freesthe object associated withcell_nbr, returning the space formerly occupied
by that object to the appropriate free block list.

u Theusagecommand. Printsa partition usage report, as perpsm_report(3).

q The quit command. Freesthe allocated system memory in the managed block and terminates
psmshell.

EXIT STATUS
‘‘ 0’’

psmshellhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
IPC initialization failed.

ION system error. Inv estigate, correct problem, and try again.

psmshell: can’t allocate space; quitting.
Insufficient available system memory for selected partition size.

psmshell: can’t allocate test variables; quitting.
Insufficient available system memory for selected partition size.

perl v5.18.2 2016-09-07 1

PSMSHELL(1) ICIexecutables PSMSHELL(1)

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
psm(3)

perl v5.18.2 2016-09-07 2

PSMWATCH(1) ICI executables PSMWATCH(1)

NAME
psmwatch − PSM memory partition activity monitor

SYNOPSIS
psmwatchshared_memory_key memory_size partition_name interval count[verbose]

DESCRIPTION
For count interations,psmwatch sleepsinterval seconds and then invokes the psm_print_trace()function
(seepsm(3)) to report onPSMdynamic memory management activity in the PSM-managed shared memory
partition identified byshared_memory_key during that interval. If the optionalverbose parameter is
specified, the printedPSMactivity trace will be verbose as described inpsm(3).

To prevent confusion, the specifiedmemory_sizeandpartition_nameare compared to those declared when
this shared memory partition was initially managed; if they don’t match, psmwatch immediately
terminates.

If interval is zero,psmwatch merely prints a current usage summary for the indicated shared-memory
partition and terminates.

psmwatch is helpful for detecting and diagnosing memory leaks.For debugging theION protocol stack:

shared_memory_key
Normally ‘‘65281’’, but might be overridden by the value of wmKey in the .ionconfig file used to
configure the node under study.

memory_size
As given by the value of wmKey in the .ionconfig file used to configure the node under study. If
this value is not stated in the .ionconfig file, the default value is ‘‘5000000’’.

partition_name
Always ‘‘ionwm’’.

EXIT STATUS
‘‘ 0’’

psmwatchhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

Can’t attach to psm.
ION system error. One possible cause is thatION has not yet been initialized on the local computer;
run ionadmin(1) to correct this.

Can’t start trace.
InsufficientION working memory to contain trace information. ReinitializeION with more memory.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
psm(3), sdrwatch(1)

perl v5.18.2 2016-09-07 1

RFXCLOCK(1) ICIexecutables RFXCLOCK(1)

NAME
rfxclock − ION daemon task for managing scheduled events

SYNOPSIS
rfxclock

DESCRIPTION
rfxclock is a background ‘‘daemon’’ task that periodically applies scheduled changes in node connectivity
and range to theION node’s database. Itis spawned automatically byionadmin in response to the ’s’
command that starts operation of theION node infrastructure, and it is terminated byionadmin in response
to an ’x’ (STOP) command.

Once per second,rfxclock takes the following action:

For each neighboring node that has been refusing custody of bundles sent to it to be forwarded to some
destination node, to which no such bundle has been sent for at least N seconds (where N is twice the
one-way light time from the local node to this neighbor),rfxclock turns on aprobeIsDueflag
authorizing transmission of the next such bundle in hopes of learning that this neighbor is now able to
accept custody.

Then rfxclock purges the database of all range and contact information that is no longer applicable,
based on the stop times of the records.

Finally, rfxclock applies to the database all range and contact information that is currently applicable,
i.e., those records whose start times are before the current time and whose stop times are in the future.

EXIT STATUS
‘‘ 0’’

rfxclock terminated, for reasons noted in theion.log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and useionadmin to restartrfxclock .

‘‘ 1’’
rfxclock was unable to attach to the localION node, probably becauseionadmin has not yet been run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

rfxclock can’t attach toION.
ionadmin has not yet initialized theION database.

Can’t apply ranges.
An unrecoverable database error was encountered.rfxclock terminates.

Can’t apply contacts.
An unrecoverable database error was encountered.rfxclock terminates.

Can’t purge ranges.
An unrecoverable database error was encountered.rfxclock terminates.

Can’t purge contacts.
An unrecoverable database error was encountered.rfxclock terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ionadmin(1)

perl v5.18.2 2016-09-07 1

SDR2FILE(1) ICIexecutables SDR2FILE(1)

NAME
sdr2file − SDR data extraction test program

SYNOPSIS
sdr2file configFlags

DESCRIPTION
sdr2file stress-testsSDR data extraction by retrieving and deleting all text file lines inserted into a testSDR
data store named "testsdrconfigFlags" by the complementary test programfile2sdr(1).

The operation ofsdr2file echoes the cyclical operation offile2sdr: each linked list created byfile2sdr is
used to create in the current working directory a copy of file2sdr’s original source text file. The name of
each file written bysdr2file is file_copy_cycleNbr, wherecycleNbridentifies the linked list from which the
file’s text lines were obtained.

sdr2file may catch up with the data ingestion activity offile2sdr, in which case it blocks (taking the
file2sdr test semaphore) until the linked list it is currently draining is no longer empty.

EXIT STATUS
‘‘ 0’’

sdr2file has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Can’t use sdr.

ION system error. Check for diagnostics in theION log file ion.log.

Can’t create semaphore.
ION system error. Check for diagnostics in theION log file ion.log.

SDR transaction failed.
ION system error. Check for diagnostics in theION log file ion.log.

Can’t open output file
Operating system error. Check errtext, correct problem, and rerun.

can’t write to output file
Operating system error. Check errtext, correct problem, and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
file2sdr(1), sdr(3)

perl v5.18.2 2016-09-07 1

SDRMEND(1) ICIexecutables SDRMEND(1)

NAME
sdrmend − SDR corruption repair utility

SYNOPSIS
sdrmendsdr_name config_flags heap_words heap_key path_name[restartCmd restartLatency]

DESCRIPTION
The sdrmend program simply invokes the sdr_reload_profile()function (seesdr(3)) to effect necessary
repairs in a potentially corruptSDR, e.g., due to the demise of a program that had anSDR transaction in
progress at the moment it crashed.

Note thatsdrmend need not be run to repairION’s data store in the event of a hardware reboot: restarting
ION will automatically reload the data store’s profile. sdrmend is needed only when it is desired to repair
the data store without requiring allION software to terminate and restart.

EXIT STATUS
‘‘ 0’’

sdrmendhas terminated successfully.

‘‘ 1’’
sdrmendhas terminated unsuccessfully. See diagnostic messages in theion.log log file for details.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

Can’t initialize theSDRsystem.
Probable operations error:ION appears not to be initialized, in which case there is no point in running
sdrmend.

Can’t reload profile forSDR.
ION system error. See earlier diagnostic messages posted toion.log for details. In this event it is
unlikely thatsdrmend can be run successfully, and it is also unlikely that it would have any effect if it
did run successfully.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
sdr(3), ionadmin(1)

perl v5.18.2 2016-09-07 1

SDRWA TCH(1) ICI executables SDRWA TCH(1)

NAME
sdrwatch − SDR non−volatile data store activity monitor

SYNOPSIS
sdrwatch sdr_name interval count[verbose]

DESCRIPTION
For count interations,sdrwatch sleepsinterval seconds and then invokes the sdr_print_trace()function
(see sdr(3)) to report onSDR data storage management activity in theSDR data store identified by
sdr_nameduring that interval. If the optionalverboseparameter is specified, the printedSDRactivity trace
will be verbose as described insdr(3).

If interval is zero,sdrwatch merely prints a current usage summary for the indicated data store and
terminates.

sdrwatch is helpful for detecting and diagnosing storage space leaks.For debugging theION protocol
stack,sdr_nameis normally ‘‘ion’ ’ but might be overridden by the value of sdrName in the .ionconfig file
used to configure the node under study.

EXIT STATUS
‘‘ 0’’

sdrwatch has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

Can’t attach to sdr.
ION system error. One possible cause is thatION has not yet been initialized on the local computer;
run ionadmin(1) to correct this.

Can’t start trace.
InsufficientION working memory to contain trace information. ReinitializeION with more memory.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
sdr(3), psmwatch(1)

perl v5.18.2 2016-09-07 1

SM2FILE(1) ICIexecutables SM2FILE(1)

NAME
sm2file − shared−memory linked list data extraction test program

SYNOPSIS
sm2file

DESCRIPTION
sm2file stress-tests shared-memory linked list data extraction by retrieving and deleting all text file lines
inserted into a shared-memory linked list that is the root object of aPSMpartition named ‘‘file2sm’’.

The operation ofsm2fileechoes the cyclical operation offile2sm: theEOF lines inserted into the linked list
by file2smpunctuate the writing of files that are copies offile2sm’s original source text file. The name of
each file written bysm2file is file_copy_cycleNbr, wherecycleNbr is, in effect, the count ofEOF lines
encountered in the linked list up to the point at which the writing of this file began.

sm2filemay catch up with the data ingestion activity of file2sm, in which case it blocks (taking thefile2sm
test semaphore) until the linked list is no longer empty.

EXIT STATUS
‘‘ 0’’

sm2filehas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
can’t attach to shared memory

Operating system error. Check errtext, correct problem, and rerun.

Can’t manage shared memory.
PSMerror. Check for earlier diagnostics describing the cause of the error; correct problem and rerun.

Can’t create shared memory list.
PSMerror. Check for earlier diagnostics describing the cause of the error; correct problem and rerun.

Can’t create semaphore.
ION system error. Check for earlier diagnostics describing the cause of the error; correct problem and
rerun.

Can’t open output file
Operating system error. Check errtext, correct problem, and rerun.

can’t write to output file
Operating system error. Check errtext, correct problem, and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
file2sm(1), smlist(3), psm(3)

perl v5.18.2 2016-09-07 1

SMLISTSH(1) ICIexecutables SMLISTSH(1)

NAME
smlistsh − shared−memory linked list test shell

SYNOPSIS
smlistshpartition_size

DESCRIPTION
smlistsh attaches to a region of system memory (allocating it if necessary, and placing it underPSM
management as necessary) and offers the user an interactive ‘‘shell’’ f or testing various shared-memory
linked list management functions.

smlistsh prints a prompt string (‘‘: ’’) to stdout, accepts a command from stdin, executes the command
(possibly printing a diagnostic message), then prints another prompt string and so on.

The following commands are supported:

h Thehelp command. Causessmlistsh to print a summary of available commands. Same effect as the
? command.

? Anotherhelp command. Causessmlistsh to print a summary of available commands. Same effect as
theh command.

k Thekey command. Computesand prints an unused shared-memory key, for possible use in attaching
to a shared-memory region.

+ key_value size
The attach command. Attachessmlistsh to a region of shared memory. key_value identifies an
existing shared-memory region, in the event that you want to attach to an existing shared-memory
region (possibly created by anothersmlistsh process running on the same computer).To create and
attach to a new shared-memory region that other processes can attach to, use akey_valueas returned
by thekey command and supply thesizeof the new region. If you want to create and attach to a new
shared-memory region that is for strictly private use, use −1 as key and supply thesizeof the new
region.

− Thedetachcommand. Detachessmlistsh from the region of shared memory it is currently using, but
does not free any memory.

n The new command. Createsa new shared-memory list to operate on, within the currently attached
shared-memory region. Printsthe address of the list.

s list_address
The share command. Selectsan existing shared-memory list to operate on, within the currently
attached shared-memory region.

a element_value
The append command. Appendsa new list element, containingelement_value, to the list on which
smlistsh is currently operating.

p element_value
The prepend command. Prependsa new list element, containingelement_value, to the list on which
smlistsh is currently operating.

w Thewalk command. Printsthe addresses and contents of all elements of the list on whichsmlistsh is
currently operating.

f element_value
The find command. Findsthe list element that containselement_value, within the list on which
smlistsh is currently operating, and prints the address of that list element.

d element_address
Thedeletecommand. Deletesthe list element located atelement_address.

r Thereport command. Printsa partition usage report, as perpsm_report(3).

perl v5.18.2 2016-09-07 1

SMLISTSH(1) ICIexecutables SMLISTSH(1)

q The quit command. Detachessmlistsh from the region of shared memory it is currently using
(without freeing any memory) and terminatessmlistsh.

EXIT STATUS
‘‘ 0’’

smlistshhas terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
No diagnostics apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
smlist(3)

perl v5.18.2 2016-09-07 2

SMRBTSH(1) ICIexecutables SMRBTSH(1)

NAME
smrbtsh − shared−memory red−black tree test shell

SYNOPSIS
smrbtsh [command_file_name]

DESCRIPTION
smrbtsh allocates a region of shared system memory, attaches to that region, places it underPSM
management, creates a temporary ‘‘test’’ red-black tree in that memory region, and executes a series of
shared-memory red-black tree commands that exercise various tree access and management functions.

If command_file_nameis provided, then the commands in the indicated file are executed and the program
then terminates.Upon termination, the shared memory region allocated tosmrbtsh is detached and
destroyed.

Otherwise,smrbtsh offers the user an interactive ‘‘shell’’ f or testing the smrbt functions in a conversational
manner:smrbtsh prints a prompt string (‘‘: ’’) to stdout, accepts a command from stdin, executes the
command (possibly printing a diagnostic message), then prints another prompt string and so on.Upon
execution of the ’q’ command, the program terminates.

The following commands are supported:

h Thehelp command. Causessmrbtsh to print a summary of available commands. Same effect as the
? command.

? Anotherhelp command. Causessmrbtsh to print a summary of available commands. Same effect as
theh command.

s [seed_value]
Theseedcommand. Seedsrandom data value generator, which is used to generate node values when
the r command is used.If seed_valueis omitted, uses current time (as returned bytime(1)) as seed
value.

r [count]
The random command. Insertscount new nodes into the red-black tree, using randomly selected
unsigned long integers as the data values of the nodes;countdefaults to 1 if omitted.

i data_value
The insert command. Insertsa single new node into the red-black tree, usingdata_valueas the data
value of the node.

f data_value
The find command. Findsthe rbt node whose value isdata_value, within the red-black tree, and
prints the address of that node.If the node is not found, prints address zero and prints the address of
the successor node in the tree.

d data_value
Thedeletecommand. Deletesthe rbt node whose data value isdata_value.

p Theprint command. Printsthe red-black tree, using indentation to indicate descent along paths of the
tree.

Note: this function is supported only if thesmrbt library was built with compilation flag
−DSMRBT_DEBUG=1.

k The check command. Examinesthe red-black tree, noting the first violation of red-black structure
rules, if any.

Note: this function is supported only if thesmrbt library was built with compilation flag
−DSMRBT_DEBUG=1.

l The list command. Listsall nodes in the red-black tree in traversal order, noting any nodes whose data
values are not in ascending numerical order.

perl v5.18.2 2016-09-07 1

SMRBTSH(1) ICIexecutables SMRBTSH(1)

q The quit command. Detachessmrbtsh from the region of shared memory it is currently using,
destroys that shared memory region, and terminatessmrbtsh.

EXIT STATUS
‘‘ 0’’

smrbtsh has terminated.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
No diagnostics apply.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
smrbt(3)

perl v5.18.2 2016-09-07 2

DCCPLSI(1) LTP executables DCCPLSI(1)

NAME
dccplsi − DCCP−based LTP link service input task

SYNOPSIS
dccplsi { local_hostname| @}[: local_port_nbr]

DESCRIPTION
dccplsi is a background ‘‘daemon’’ task that receives DCCP datagrams via aDCCP socket bound to
local_hostnameand local_port_nbr, extractsLTP segments from those datagrams, and passes them to the
local LTP engine. Hostname ‘‘@’’ signifies that the host name returned byhostname(1) is to be used as
the socket’s host name. If not specified, port number defaults to 1113.

The link service input task is spawned automatically byltpadmin in response to the ’s’ command that starts
operation of theLTP protocol; the text of the command that is used to spawn the task must be provided as a
parameter to the ’s’ command.The link service input task is terminated byltpadmin in response to an ’x’
(STOP) command.

EXIT STATUS
‘‘ 0’’

dccplsi terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and useltpadmin to restart
dccplsi.

‘‘ 1’’
dccplsi terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then useltpadmin to restartdccplsi.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

dccplsi can’t initialize LTP.
ltpadmin has not yet initializedLTP protocol operations.

LSI task is already started.
Redundant initiation ofdccplsi.

LSI can’t openDCCPsocket. This probably meansDCCPis not supported on your system.
Operating system error. This probably means that you are not using an operating system that supports
DCCP. Make sure that you are using a current Linux kernel and that theDCCP modules are being
compiled. Check errtext, correct problem, and restartdccplsi.

LSI can’t initialize socket.
Operating system error. Check errtext, correct problem, and restartdccplsi.

LSI can’t create listener thread.
Operating system error. Check errtext, correct problem, and restartdccplsi.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ltpadmin(1), dccplso(1), owltsim(1)

perl v5.18.2 2016-09-07 1

DCCPLSO(1) LTP executables DCCPLSO(1)

NAME
dccplso − DCCP−based LTP link service output task

SYNOPSIS
dccplso{ remote_engine_hostname| @}[: remote_port_nbr] remote_engine_nbr

DESCRIPTION
dccplso is a background ‘‘daemon’’ task that extractsLTP segments from the queue of segments bound for
the indicated remoteLTP engine, encapsulates them inDCCPdatagrams, and sends those datagrams to the
indicatedDCCPport on the indicated host. If not specified, port number defaults to 1113.

Each ‘‘span’’ of LTP data interchange between the localLTP engine and a neighboringLTP engine requires
its own link service output task, such asdccplso. All link service output tasks are spawned automatically
by ltpadmin in response to the ’s’ command that starts operation of theLTP protocol, and they are all
terminated byltpadmin in response to an ’x’ (STOP) command.

EXIT STATUS
‘‘ 0’’

dccplso terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and useltpadmin to restart
dccplso.

‘‘ 1’’
dccplsoterminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then useltpadmin to restartdccplso.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

dccplso can’t initialize LTP.
ltpadmin has not yet initializedLTP protocol operations.

No such engine in database.
remote_engine_nbris invalid, or the applicable span has not yet been added to theLTP database by
ltpadmin .

LSO task is already started for this engine.
Redundant initiation ofdccplso.

LSO can’t create idle thread.
Operating system error. Check errtext, correct problem, and restartdccplso.

LSO can’t openDCCPsocket. This probably meansDCCPis not supported on your system.
Operating system error. This probably means that you are not using an operating system that supports
DCCP. Make sure that you are using a current Linux kernel and that theDCCP modules are being
compiled. Check errtext, correct problem, and restartdccplso.

LSO can’t connectDCCPsocket.
Remote host’s dccplsi isn’t listening or has terminated. Restartdccplsi on the remote host and then
restartdccplso.

Segment is too big forDCCP LSO.
Configuration error: segments that are too large forDCCP transmission (i.e., larger than 65535 bytes)
are being enqueued fordccplso. Useltpadmin to change maximum segment size for this span.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

DCCPLSO(1) LTP executables DCCPLSO(1)

SEE ALSO
ltpadmin(1), ltpmeter(1), dccplsi(1), owltsim(1)

perl v5.18.2 2016-09-07 2

LTPADMIN(1) LTP executables LTPADMIN(1)

NAME
ltpadmin − ION Licklider Transmission Protocol (LTP) administration interface

SYNOPSIS
ltpadmin [commands_filename| .]

DESCRIPTION
ltpadmin configures, starts, manages, and stopsLTP operations for the localION node.

It operates in response toLTP configuration commands found in the filecommands_filename, if provided; if
not, ltpadmin prints a simple prompt (:) so that the user may type commands directly into standard input.
If commands_filenameis a period (.), the effect is the same as if a command file containing the single
command ’x’ were passed toltpadmin — that is, theION node’s ltpclock task, ltpmetertasks, and link
service adapter tasks are stopped.

The format of commands forcommands_filenamecan be queried fromltpadmin with the ’h’ or ’?’
commands at the prompt. The commands are documented inltprc (5).

EXIT STATUS
‘‘ 0’’ Successful completion ofLTP administration.

EXAMPLES
ltpadmin

Enter interactive LTP configuration command entry mode.

ltpadmin host1.ltp
Execute all configuration commands inhost1.ltp, then terminate immediately.

ltpadmin .
Stop allLTP operations on the local node.

FILES
Seeltprc (5) for details of theLTP configuration commands.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Note: all ION administration utilities expect source file input to be lines ofASCII text that are NL-delimited.
If you edit the ltprc file on a Windows machine, be sure touse dos2unix to convert it to Unix text f ormat
before presenting it toltpadmin . Otherwise ltpadmin will detect syntax errors and will not function
satisfactorily.

The following diagnostics may be issued to the logfile ion.log:

ltpadmin can’t attach toION.
There is noSDR data store forltpadmin to use. You should runionadmin(1) first, to set up anSDR
data store forION.

Can’t open command file...
Thecommands_filenamespecified in the command line doesn’t exist.

Various errors that don’t causeltpadmin to fail but are noted in theion.log log file may be caused by
improperly formatted commands given at the prompt or in thecommands_filenamefile. Pleaseseeltprc (5)
for details.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ltpmeter(1), ltprc (5)

perl v5.18.2 2016-09-07 1

LTPCLOCK(1) LTP executables LTPCLOCK(1)

NAME
ltpclock − LTP daemon task for managing scheduled events

SYNOPSIS
ltpclock

DESCRIPTION
ltpclock is a background ‘‘daemon’’ task that periodically performs scheduledLTP activities. It is spawned
automatically byltpadmin in response to the ’s’ command that starts operation of theLTP protocol, and it
is terminated byltpadmin in response to an ’x’ (STOP) command.

Once per second,ltpclock takes the following action:

First it manages the current state of all links (‘‘spans’’). In particular, it checks the age of the currently
buffered session block for each span and, if that age exceeds the span’s configured aggregation time
limit, gives the ‘‘buffer full’’ semaphore for that span to initiate block segmentation and transmission
by ltpmeter.

In so doing, it also infers link state changes (‘‘link cues’’) from data rate changes as noted in theRFX
database byrfxclock :

If the rate of transmission to a neighbor was zero but is now non-zero, then transmission to that
neighbor is unblocked. Theapplicable ‘‘buffer empty’’ semaphore is given if no outbound block
is being constructed (enabling start of a new transmission session) and the ‘‘segments ready’’
semaphore is given if the outbound segment queue is non-empty (enabling transmission of
segments by the link service output task).

If the rate of transmission to a neighbor was non-zero but is now zero, then transmission to that
neighbor is blocked — i.e.,the semaphores triggering transmission will no longer be given.

If the imputed rate of transmission from a neighbor was non-zero but is now zero, then all timers
affecting segment retransmission to that neighbor are suspended. This has the effect of extending
the interval of each affected timer by the length of time that the timers remain suspended.

If the imputed rate of transmission from a neighbor was zero but is now non-zero, then all timers
affecting segment retransmission to that neighbor are resumed.

Thenltpclock retransmits all unacknowledged checkpoint segments, report segments, and cancellation
segments whose computed timeout intervals have expired.

EXIT STATUS
‘‘ 0’’

ltpclock terminated, for reasons noted in theion.log file. If this termination was not commanded,
investigate and solve the problem identified in the log file and useltpadmin to restartltpclock.

‘‘ 1’’
ltpclock was unable to attach toLTP protocol operations, probably becauseltpadmin has not yet been
run.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

ltpclock can’t initialize LTP.
ltpadmin has not yet initializedLTP protocol operations.

Can’t dispatch events.
An unrecoverable database error was encountered.ltpclock terminates.

perl v5.18.2 2016-09-07 1

LTPCLOCK(1) LTP executables LTPCLOCK(1)

Can’t manage links.
An unrecoverable database error was encountered.ltpclock terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ltpadmin(1), ltpmeter(1), rfxclock(1)

perl v5.18.2 2016-09-07 2

LTPCOUNTER(1) LTP executables LTPCOUNTER(1)

NAME
ltpcounter − LTP reception test program

SYNOPSIS
ltpcounter client_ID [max_nbr_of_bytes]

DESCRIPTION
ltpcounter usesLTP to receive service data units flagged with client service numberclient_ID from a
remote ltpdri ver client service process.When the total number of bytes of client service data it has
received exceedsmax_nbr_of_bytes, it terminates and prints reception and cancellation statistics.If
max_nbr_of_bytesis omitted, the default limit is 2 billion bytes.

While receiving data,ltpcounter prints a ’v’ character every 5 seconds to indicate that it is still alive.

EXIT STATUS
‘‘ 0’’

ltpcounter has terminated.Any problems encountered during operation will be noted in theion.log
log file.

‘‘ 1’’
ltpcounter was unable to start, because it could not attach to theLTP protocol on the local node or
could not open access to client serviceclientId.

In the former case, runltpadmin to startLTP and try again.

In the latter case, some other client service task has already opened access to client serviceclientId. If
no such task is currently running (e.g., it crashed while holding the client service open), useltpadmin
to stop and restart theLTP protocol.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced byltpcounter are written to theION log file ion.log.

ltpcounter can’t initialize LTP.
ltpadmin has not yet initializedLTP protocol operations.

ltpcounter can’t open client access.
Another task has opened access to service clientclientIdand has not yet relinquished it.

Can’t get LTP notice.
LTP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ltpadmin(1), ltpdriver (1), ltp (3)

perl v5.18.2 2016-09-07 1

LTPDRIVER(1) LTP executables LTPDRIVER(1)

NAME
ltpdriver − LTP transmission test program

SYNOPSIS
ltpdri ver remoteEngineNbr clientId nbrOfCycles greenLength[totalLength]

DESCRIPTION
ltpdri ver usesLTP to sendnbrOfCyclesservice data units of length indicated bytotalLength, of which the
trailing greenLengthbytes are sent unreliably, to the ltpcounter client service process for client service
numberclientId attached to the remoteLTP engine identified byremoteEngineNbr. If omitted, length
defaults to 60000.If length is 1, the sizes of the transmitted service data units will be randomly selected
multiples of 1024 in the range 1024 to 62464.

Whenever the size of the transmitted service data unit is less than or equal togreenLength, the entireSDU is
sent unreliably.

When all copies of the file have been sent,ltpdri ver prints a performance report.

EXIT STATUS
‘‘ 0’’

ltpdri ver has terminated.Any problems encountered during operation will be noted in theion.log log
file.

‘‘ 1’’
ltpdri ver was unable to start, because it could not attach to theLTP protocol on the local node.Run
ltpadmin to startLTP, then try again.

FILES
The service data units transmitted byltpdri ver are sequences of text obtained from a file in the current
working directory named ‘‘ltpdriverAduFile’’, which ltpdri ver creates automatically.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
Diagnostic messages produced byltpdri ver are written to theION log file ion.log.

ltpdriver can’t initialize LTP.
ltpadmin has not yet initializedLTP protocol operations.

Can’t createADU file
Operating system error. Check errtext, correct problem, and rerun.

Error writing toADU file
Operating system error. Check errtext, correct problem, and rerun.

ltpdriver can’t create file ref.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

ltpdriver can’t createZCO.
ION system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

ltpdriver can’t send message.
LTP span to the remote engine has been stopped.

ltp_send failed.
LTP system error. Check for earlier diagnostic messages describing the cause of the error; correct
problem and rerun.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

perl v5.18.2 2016-09-07 1

LTPDRIVER(1) LTP executables LTPDRIVER(1)

SEE ALSO
ltpadmin(1), ltpcounter(1), ltp (3)

perl v5.18.2 2016-09-07 2

LTPMETER(1) LTP executables LTPMETER(1)

NAME
ltpmeter − LTP daemon task for aggregating and segmenting transmission blocks

SYNOPSIS
ltpmeter remote_engine_nbr

DESCRIPTION
ltpmeter is a background ‘‘daemon’’ task that manages the presentation ofLTP segments to link service
output tasks. Each ‘‘span’’ of LTP data interchange between the localLTP engine and a neighboringLTP
engine requires its own ltpmeter task. All ltpmeter tasks are spawned automatically byltpadmin in
response to the ’s’ command that starts operation of theLTP protocol, and they are all terminated by
ltpadmin in response to an ’x’ (STOP) command.

ltpmeter waits until its span’s current transmission block (the data to be transmitted during the
transmission session that is currently being constructed) is ready for transmission, then divides the data in
the span’s block buffer into segments and enqueues the segments for transmission by the span’s link service
output task (giving the segments semaphore to unblock the link service output task as necessary), then
reinitializes the span’s block buffer and starts another session (giving the ‘‘buffer empty’’ semaphore to
unblock the client service task— nominally ltpclo, the LTP convergence layer output task for Bundle
Protocol — asnecessary).

ltpmeter determines that the current transmission block is ready for transmission by waiting until either (a)
the aggregate size of all service data units in the block’s buffer exceeds the aggregation size limit for this
span or (b) the length of time that the first service data unit in the block’s buffer has been awaiting
transmission exceeds the aggregation time limit for this span. The ‘‘buffer full’’ semaphore is given when
ION (either theltp_send()function or theltpclock daemon) determines that one of these conditions is true;
ltpmeter simply waits for this semaphore to be given.

The initiation of a new session may also be blocked: the total number of transmission sessions that the local
LTP engine may have open at a single time is limited (this isLTP flow control), and while the engine is at
this limit no new sessions can be started.Av ailability of a session from the session pool is signaled by the
‘‘ session’’ semaphore, which is given whenever a session is completed or canceled.

EXIT STATUS
‘‘ 0’’

ltpmeter terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and useltpadmin to restart
ltpmeter.

‘‘ 1’’
ltpmeter terminated abnormally, for reasons noted in theion.log file. Investigate and solve the
problem identified in the log file, then useltpadmin to restartltpmeter.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

ltpmeter can’t initialize LTP.
ltpadmin has not yet initializedLTP protocol operations.

No such engine in database.
remote_engine_nbris invalid, or the applicable span has not yet been added to theLTP database by
ltpadmin .

ltpmeter task is already started for this engine.
Redundant initiation ofltpmeter.

perl v5.18.2 2016-09-07 1

LTPMETER(1) LTP executables LTPMETER(1)

ltpmeter can’t start new session.
An unrecoverable database error was encountered.ltpmeter terminates.

Can’t take bufClosedSemaphore.
An unrecoverable database error was encountered.ltpmeter terminates.

Can’t create extents list.
An unrecoverable database error was encountered.ltpmeter terminates.

Can’t post ExportSessionStart notice.
An unrecoverable database error was encountered.ltpmeter terminates.

Can’t finish session.
An unrecoverable database error was encountered.ltpmeter terminates.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ltpadmin(1), ltpclock(1)

perl v5.18.2 2016-09-07 2

UDPLSI(1) LTP executables UDPLSI(1)

NAME
udplsi − UDP−based LTP link service input task

SYNOPSIS
udplsi { local_hostname| @}[: local_port_nbr]

DESCRIPTION
udplsi is a background ‘‘daemon’’ task that receives UDP datagrams via aUDP socket bound to
local_hostnameand local_port_nbr, extractsLTP segments from those datagrams, and passes them to the
local LTP engine. Hostname ‘‘@’’ signifies that the host name returned byhostname(1) is to be used as
the socket’s host name. If not specified, port number defaults to 1113.

The link service input task is spawned automatically byltpadmin in response to the ’s’ command that starts
operation of theLTP protocol; the text of the command that is used to spawn the task must be provided as a
parameter to the ’s’ command.The link service input task is terminated byltpadmin in response to an ’x’
(STOP) command.

EXIT STATUS
‘‘ 0’’

udplsi terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and useltpadmin to restart
udplsi.

‘‘ 1’’
udplsi terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then useltpadmin to restartudplsi.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

udplsi can’t initialize LTP.
ltpadmin has not yet initializedLTP protocol operations.

LSI task is already started.
Redundant initiation ofudplsi.

LSI can’t openUDP socket
Operating system error. Check errtext, correct problem, and restartudplsi.

LSI can’t initialize socket
Operating system error. Check errtext, correct problem, and restartudplsi.

LSI can’t create receiver thread
Operating system error. Check errtext, correct problem, and restartudplsi.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ltpadmin(1), udplso(1), owltsim(1)

perl v5.18.2 2016-09-07 1

UDPLSO(1) LTP executables UDPLSO(1)

NAME
udplso − UDP−based LTP link service output task

SYNOPSIS
udplso { remote_engine_hostname| @}[: remote_port_nbr] [txbps] remote_engine_nbr

DESCRIPTION
udplso is a background ‘‘daemon’’ task that extractsLTP segments from the queue of segments bound for
the indicated remoteLTP engine, encapsulates them inUDP datagrams, and sends those datagrams to the
indicatedUDP port on the indicated host. If not specified, port number defaults to 1113.

UDP congestion can be controlled by setting udplso’s rate of UDP datagram transmissiontxbps
(transmission rate in bits per second) to the value that is supported by the underlying network.

Each ‘‘span’’ of LTP data interchange between the localLTP engine and a neighboringLTP engine requires
its own link service output task, such asudplso. All link service output tasks are spawned automatically by
ltpadmin in response to the ’s’ command that starts operation of theLTP protocol, and they are all
terminated byltpadmin in response to an ’x’ (STOP) command.

EXIT STATUS
‘‘ 0’’

udplso terminated normally, for reasons noted in theion.log file. If this termination was not
commanded, investigate and solve the problem identified in the log file and useltpadmin to restart
udplso.

‘‘ 1’’
udplso terminated abnormally, for reasons noted in theion.log file. Investigate and solve the problem
identified in the log file, then useltpadmin to restartudplso.

FILES
No configuration files are needed.

ENVIRONMENT
No environment variables apply.

DIAGNOSTICS
The following diagnostics may be issued to theion.log log file:

udplso can’t initialize LTP.
ltpadmin has not yet initializedLTP protocol operations.

No such engine in database.
remote_engine_nbris invalid, or the applicable span has not yet been added to theLTP database by
ltpadmin .

LSO task is already started for this engine.
Redundant initiation ofudplso.

LSO can’t openUDP socket
Operating system error. Check errtext, correct problem, and restartudplso.

LSO can’t connectUDP socket
Operating system error. Check errtext, correct problem, and restartudplso.

Segment is too big forUDP LSO.
Configuration error: segments that are too large forUDP transmission (i.e., larger than 65535 bytes)
are being enqueued forudplso. Useltpadmin to change maximum segment size for this span.

BUGS
Report bugs to <ion−bugs@korgano.eecs.ohiou.edu>

SEE ALSO
ltpadmin(1), ltpmeter(1), udplsi(1), owltsim(1)

perl v5.18.2 2016-09-07 1

ams::doc::pod3::ams(3) AMSlibrary functions ams::doc::pod3::ams(3)

NAME
ams − CCSDS Asynchronous Message Service(AMS) communications library

SYNOPSIS
#include "ams.h"

typedef void (*AmsMsgHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int continuumNbr,
int unitNbr,
int moduleNbr,
int subjectNbr,
int contentLength,
char *content,
int context,
AmsMsgType msgType,
int priority,
unsigned char flowLabel);

typedef void (*AmsRegistrationHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr,
int roleNbr);

typedef void (*AmsUnregistrationHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr);

typedef void (*AmsInvitationHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr,
int domainRoleNbr,
int domainContinuumNbr,
int domainUnitNbr,
int subjectNbr,
int priority,
unsigned char flowLabel,
AmsSequence sequence,
AmsDiligence diligence);

typedef void (*AmsDisinvitationHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr,
int domainRoleNbr,
int domainContinuumNbr,
int domainUnitNbr,

perl v5.18.2 2016-09-07 1

ams::doc::pod3::ams(3) AMSlibrary functions ams::doc::pod3::ams(3)

int subjectNbr);

typedef void (*AmsSubscriptionHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr,
int domainRoleNbr,
int domainContinuumNbr,
int domainUnitNbr,
int subjectNbr,
int priority,
unsigned char flowLabel,
AmsSequence sequence,
AmsDiligence diligence);

typedef void (*AmsUnsubscriptionHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int unitNbr,
int moduleNbr,
int domainRoleNbr,
int domainContinuumNbr,
int domainUnitNbr,
int subjectNbr);

typedef void (*AmsUserEventHandler)(AmsModule module,
void *userData,
AmsEvent *eventRef,
int code,
int dataLength,
char *data);

typedef void (*AmsMgtErrHandler)(void *userData,
AmsEvent *eventRef);

typedef struct
{

AmsMsgHandler msgHandler;
void *msgHandlerUserData;
AmsRegistrationHandler registrationHandler;
void *registrationHandlerUserData;
AmsUnregistrationHandler unregistrationHandler;
void *unregistrationHandlerUserData;
AmsInvitationHandler invitationHandler;
void *invitationHandlerUserData;
AmsDisinvitationHandler disinvitationHandler;
void *disinvitationHandlerUserData;
AmsSubscriptionHandler subscriptionHandler;
void *subscriptionHandlerUserData;
AmsUnsubscriptionHandler unsubscriptionHandler;
void *unsubscriptionHandlerUserData;
AmsUserEventHandler userEventHandler;
void *userEventHandlerUserData;

perl v5.18.2 2016-09-07 2

ams::doc::pod3::ams(3) AMSlibrary functions ams::doc::pod3::ams(3)

AmsMgtErrHandler errHandler;
void *errHandlerUserData;

} A msEventMgt;

typedef enum
{

AmsArrivalOrder = 0,
AmsTransmissionOrder

} A msSequence;

typedef enum
{

AmsBestEffort = 0,
AmsAssured

} A msDiligence;

typedef enum
{

AmsRegistrationState,
AmsInvitationState,
AmsSubscriptionState

} A msStateType;

typedef enum
{

AmsStateBegins = 1,
AmsStateEnds

} A msChangeType;

typedef enum
{

AmsMsgUnary = 0,
AmsMsgQuery,
AmsMsgReply,
AmsMsgNone

} A msMsgType;

[see description for available functions]

DESCRIPTION
The ams library provides functions enabling application software to useAMS to send and receive brief
messages, up to 65000 bytes in length. It conforms toAMS Blue Book, including support for RemoteAMS
(RAMS).

In the ION implementation ofRAMS, the ‘‘RAMS network protocol’’ may be either theDTN Bundle
Protocol (RFC 5050) or — mainly for testing purposes— the User Datagram Protocol (RFC 768). BP is
the default. WhenBP is used as theRAMS network protocol, endpoints are by default assumed to conform
to the ‘‘ipn’ ’ endpoint identifier scheme withnode number set to theAMS continuum number and
service numberset to theAMS ventur e number.

Note thatRAMS functionality is enabled by instantiating aramsgate daemon, which is simply anAMS
application program that acts as a gateway between the localAMS message space and theRAMS network.

AMS differs from otherION packages in that there is no utilization of non-volatile storage (aside from the
BP functionality in RAMS, if applicable). Since there is no non-volatile AMS database, there is noAMS
administration program and there are no library functions for attaching to or detaching from such a
database.AMS is instantiated by commencing operation of theAMS real-time daemonamsd; onceamsd is

perl v5.18.2 2016-09-07 3

ams::doc::pod3::ams(3) AMSlibrary functions ams::doc::pod3::ams(3)

running,AMS application programs (‘‘modules’’) can be started.All management ofAMS operational state
is performed automatically in real time.

However, amsd and theAMS application programs all require access to a common store of configuration
data at startup in order to load their Management Information Bases. This configuration data must reside in
a readable file, which may take either of two forms: a file ofXML statements conforming to the scheme
described in theamsxml(5) man page, or a file of simple but less powerful configuration statements as
described in theamsrc(5) man page.Theamsxml alternative requires that theexpat XML parsing system
be installed; theamsrc alternative was developed to simplify deployment ofAMS in environments in which
expat is not readily supported.Selection of the configuration file format is a compile-time decision,
implemented by setting (or not setting) the −DNOEXPAT compiler option.

The path name of the applicable configuration file may be passed as a command-line parameter toamsd
and as a registration function parameter by any AMS application program. Note, though, thatramsgateand
the AMS test and utility programs included inION always assume that the configuration file resides in the
current working directory and that it is named ‘‘mib.amsrc’’ i f AMS was built with −DNOEXPAT ,
‘‘ amsmib.xml’’ otherwise.

The transport services that are made available to AMS communicating entities are declared by the
transportServiceLoaders array in the libams.c source file.This array is fixed at compile time. The order of
preference of the transport services in the array is hard-coded, but the inclusion or omission of individual
transport services is controlled by setting compiler options. The ‘‘udp’’ t ransport service— nominally the
most preferred because it imposes the least processing and transmission overhead — isincluded by setting
the −DUDPTS option. The ‘‘dgr’’ service is included by setting the −DDGRTS option. The ‘‘vmq’’
(VxWorks message queue) service, supported only on VxWorks, is included by setting the −DVMQTS
option. The‘‘ tcp’’ t ransport service— selected only when its quality of service is required— is included
by setting the −DTCPTS option.

The operating state of any single AMS application program is managed in an opaque AmsModule object.
This object is returned when the application beginsAMS operations (that is, registers) and must be provided
as an argument to mostAMS functions.

int ams_register(char *mibSource, char *tsorder, char *applicationName, char *authorityName, char
*unitName, char *roleName, AmsModule *module)

Registers the application within a cell (identified byunitName) of a message space that is that portion
of the venture identified byapplicationNameand authorityNamethat runs within the localAMS
continuum. roleName identifies the role that this application will perform in this venture. The
operating state of the registered application is returned inmodule.

The application module’s identifying parameters are validated against the configuration information in
the applicable Management Information Base, which is automatically loaded from the file whose
pathname is provided inmibSource. If mibSourceis the zero-length string ("") then the default
configuration file name is used as noted above. If mibSourceis NULL then a rudimentary hard-coded
defaultMIB, useful for basic testing purposes, is loaded. This default MIB defines a single venture for
application ‘‘amsdemo’’ and authority ‘‘test’’, using only the ‘‘dgr’’ t ransport service, with the
configuration server residing on the local host machine; subject ‘‘text’’ and roles ‘‘shell’’, ‘ ‘log’’,
‘‘ pitch’’, and ‘‘catch’’ are defined.

The tsorderargument is normallyNULL. If non-NULL it must be a NULL-terminated string ofASCII
numeric digits ’0’ through ’9’ identifying an alternative transport service preference order that
overrides the standard transport service preference order defined by the hard-coded array of
transportServiceLoaders in the libams.c source file. Each character of thetsorder string must
represent the index position of one of the transport services within the array. For example, if services
‘‘ udp’’, ‘ ‘dgr’’, ‘ ‘vmq’’, and ‘‘tcp’’ are all available in the array, a tsorder string of ‘‘32’’ would
indicate that this application will only communicate using the tcp and vmq services; services 0 (udp)
and 1 (dgr) will not be used, and tcp is preferred to vmq when both are candidate services for
transmission of a given message.

Returns 0 on success. On any error, setsmoduleto NULL and returns −1.

perl v5.18.2 2016-09-07 4

ams::doc::pod3::ams(3) AMSlibrary functions ams::doc::pod3::ams(3)

int ams_unregister(AmsModule module)
Reverses the operation ofams_unregister(), destroyingmodule. Returns 0 on success, −1 on any error.

int ams_invite(AmsModule module, int roleNbr, int continuumNbr, int unitNbr, int subjectNbr, int priority,
unsigned char flowLabel, AmsSequence sequence, AmsDiligence diligence)

Announces this module’s agreement to receive messages on the subject identified bysubjectNbr.

The invitation is extended only to modules registered in the role identified byroleNbr (where 0
indicates ‘‘all roles’’), operating in the continuum identifed bycontinuumNbr(where 0 indicates ‘‘all
continua’’), and registered within the unit identified byunitNbr (where 0 indicates the venture’s root
unit) or any of that unit’s subunits. Theseparameters define the ‘‘domain’’ of the invitation.

Such messages should be sent at the priority indicated bypriority with flow label as indicated by
flowLabeland with quality of service as indicated bysequenceand diligence. priority must be an
integer in the range 1−15, where priority 1 indicates the greatest urgency. Flow labels are passed
through to transport services and are opaque toAMS itself; in the absence of defined flow labels, a
value of 0 is typically used. These parameters define the ‘‘class of service’’ of the invitation.

Returns 0 on success, −1 on any error.

int ams_disinvite(AmsModule module, int roleNbr, int continuumNbr, int unitNbr, int subjectNbr)
Rescinds the invitation characterized by the indicated subject and domain. Returns 0 on success, −1
on any error.

int ams_subscribe(AmsModule module, int roleNbr, int continuumNbr, int unitNbr, int subjectNbr, int
priority, unsigned char flowLabel, AmsSequence sequence, AmsDiligence diligence)

Announces this module’s subscription to messages on the indicated subject, constrained by the
indicated domain, and transmitted subject to the indicated class of service. Note that subscriptions
differ from invitations in that reception of these messages is actively solicited, not just permitted.

Returns 0 on success, −1 on any error.

int ams_unsubscribe(AmsModule module, int roleNbr, int continuumNbr, int unitNbr, int subjectNbr)
Cancels the subscription characterized by the indicated subject and domain. Returns 0 on success, −1
on any error.

int ams_publish(AmsModule module, int subjectNbr, int priority, unsigned char flowLabel, int
contentLength, char *content, int context)

PublishescontentLengthbytes of data starting atcontentas the content of a message that is sent to all
modules whose subscriptions tosubjectNbrare characterized by a domain that includes this module.
priority andflowLabel, if non-zero, override class of service as requested in the subscriptions.context
is an opaque ‘‘hint’’ to the receiving modules; its use is application-specific.

Returns 0 on success, −1 on any error.

int ams_send(AmsModule module, int continuumNbr, int unitNbr, int moduleNbr, int subjectNbr, int
priority, unsigned char flowLabel, int contentLength, char *content, int context)

SendscontentLengthbytes of data starting atcontentas the content of a message that is transmitted
privately to the module in the continuum identified bycontinuumNbr(where 0 indicates ‘‘the local
continuum’’) that is identified byunitNbr andmoduleNbr— provided thatmoduleis in the domain of
one of that module’s invitations onsubjectNbr. priority andflowLabel, if non-zero, override class of
service as requested in the invitation. contextis an opaque ‘‘hint’ ’ to the receiving module; its use is
application-specific.

Returns 0 on success, −1 on any error.

int ams_query(AmsModule module, int continuumNbr, int unitNbr, int moduleNbr, int subjectNbr, int
priority, unsigned char flowLabel, int contentLength, char *content, int context, int term, AmsEvent *event)

Sends a message exactly is described above for ams_send(), but additionally suspends the delivery and
processing of newly received messages until either (a) a ‘‘reply’’ message sent in response to this
message is received or (b) the time interval indicated byterm, in seconds, expires. Theev ent (reply or
timeout) that ends the suspension of processing is provided inevent (as if fromams_get_event()when

perl v5.18.2 2016-09-07 5

ams::doc::pod3::ams(3) AMSlibrary functions ams::doc::pod3::ams(3)

the function returns.

If term is AMS_BLOCKING then the timeout interval is indefinite; only reception of a reply message
enables the function to return.If term is AMS_POLL then the function returns immediately, without
waiting for a reply message.

Returns 0 on success, −1 on any error.

int ams_reply(AmsModule module, AmsEvent msg, int subjectNbr, int priority, unsigned char flowLabel,
int contentLength, char *content)

Sends a message exactly is described above for ams_send(), except that the destination of the message
is the sender of the message identified bymsgand the ‘‘context’’ value included in the message is the
context that was provided inmsg. This message is identified as a ‘‘reply’’ message that will end the
processing suspension resulting from transmission ofmsg if that message was issued by means of
ams_query()rather thanams_send().

Returns 0 on success, −1 on any error.

int ams_announce(AmsModule module, int roleNbr, int continuumNbr, int unitNbr, int subjectNbr, int
priority, unsigned char flowLabel, int contentLength, char *content, int context)

Sends a message exactly is described above for ams_send(), except that one copy of the message is
sent to every module in the domain of this function (role, continuum, unit) whose invitation for
messages on this subject is itself characterized by a domain that includes the the sending module,
rather than to any specific module.

Returns 0 on success, −1 on any error.

int ams_get_event(AmsModule module, int term, AmsEvent *event)
Returns inevent the next event in the queue ofAMS ev ents pending delivery to this module.If the
ev ent queue is empty at the time this function is called, processing is suspended until either an event is
queued or the time interval indicated byterm, in seconds, expires. Seeams_query()above for the
semantics ofterm. When the function returns on expiration ofterm, an event of typeTIMEOUT_EVT
is returned inevent. Otherwise the event will be of typeAMS_MSG_EVT (indicating arrival of a
message),NOTICE_EVT (indicating a change in the configuration of the message space), or
USER_DEFINED_EVT(indicating that application code posted an event).

The nature of the event returned byams_get_event()can be determined by passingevent to
ams_get_event_type()as described below. Event type can then be used to determine whether the
information content of the event must be obtained by callingams_parse_msg(), ams_parse_notice(),
or ams_parse_user_event().

In any case, the memory occupied byeventmust be released after the event object is no longer needed.
Theams_recycle_event()function is invoked for this purpose.

Returns 0 on success, −1 on any error.

int ams_get_event_type(AmsEvent event)
Returns the event type ofevent, or −1 on any error.

int ams_parse_msg(AmsEvent event, int *continuumNbr, int *unitNbr, int *moduleNbr, int *subjectNbr, int
*contentLength, char **content, int *context, AmsMsgType *msgType, int *priority, unsigned char
*flowLabel);

Extracts all relevant information pertaining to theAMS message encapsulated inevent, populating the
indicated fields. Must only be called when the event type ofevent is known to beAMS_MSG_EVT.

Returns 0 on success, −1 on any error.

int ams_parse_notice(AmsEvent event, AmsStateType *state, AmsChangeType *change, int *unitNbr, int
*moduleNbr, int *roleNbr, int *domainContinuumNbr, int *domainUnitNbr, int *subjectNbr, int *priority,
unsigned char *flowLabel, AmsSequence *sequence, AmsDiligence *diligence)

Extracts all relevant information pertaining to theAMS configuration change notice encapsulated in
event, populating the relevant fields. Must only be called when the event type ofevent is known to be

perl v5.18.2 2016-09-07 6

ams::doc::pod3::ams(3) AMSlibrary functions ams::doc::pod3::ams(3)

NOTICE_EVT.

Note that different fields will be populated depending on the nature of the notice inevent. statewill be
set to AmsRegistrationState, AmsInvitationState, or AmsSubscription state depending on whether the
notice pertains to a change in module registration, a change in invitations, or a change in subscriptions.
changewill be set to AmsStateBegins or AmsStateEnds depending on whether the notice pertains to
the initiation or termination of a registration, invitation, or subscription.

Returns 0 on success, −1 on any error.

int ams_post_user_event(AmsModule module, int userEventCode, int userEventDataLength, char
*userEventData, int priority)

Posts a ‘‘user event’’ whose content is theuserEventDataLengthbytes of data starting at
userEventData. userEventCodeis an application-specific value that is opaque toAMS. priority
determines the event’s position in the queue of events pending delivery to this module; it may be any
integer in the range 0−15, where 0 indicates the greatest urgency. (Note that user events can be
delivered ahead of all message reception events if necessary.)

Returns 0 on success, −1 on any error.

int ams_parse_user_event(AmsEvent event, int *code, int *dataLength, char **data)
Extracts all relevant information pertaining to the user event encapsulated inevent, populating the
indicated fields. Must only be called when the event type of event is known to be
USER_DEFINED_EVT.

Returns 0 on success, −1 on any error.

int ams_recycle_event(AmsEvent event)
Releases all memory occupied byevent. Returns 0 on success, −1 on any error.

int ams_set_event_mgr(AmsModule module, AmsEventMgt *rules)
Starts a background thread that processes events queued for this module, handling each event in the
manner indicated byrules. Returns 0 on success, −1 on any error.

void ams_remove_event_mgr(AmsModule module)
Terminates the background thread established to process events queued for this module. Returns 0 on
success, −1 on any error.

int ams_get_module_nbr(AmsModule module)
Returns the module number assigned to this module upon registration, or −1 on any error.

int ams_get_unit_nbr(AmsModule module)
Returns the unit number assigned to the unit within which this module registered, or −1 on any error.

Lyst ams_list_msgspaces(AmsModule module)
Returns a dynamically allocated linked list of all message spaces identified in theMIB for this module,
or −1 on any error. Seelyst(3) for operations that can be performed on the returned linked list.

int ams_get_continuum_nbr()
Returns the continuum number assigned to the continuum within which this module operates, or −1 on
any error.

int ams_rams_net_is_tree(AmsModule module)
Returns 1 if theRAMS net for the venture in which this module is registered is configured as a tree, 0 if
thatRAMS net is configured as a mesh, −1 on any error.

int ams_continuum_is_neighbor(int continuumNbr)
Returns 1 ifcontinuumNbridentifies a continuum whoseRAMS gateways are immediate neighbors
(within the applicableRAMS networks) of theRAMS gateways in the local continuum. Returns 0
otherwise.

char *ams_get_role_name(AmsModule module, int unitNbr, int moduleNbr)
Returns the name of the role in which the module identified byunitNbr andmoduleNbrregistered, or
NULL on any error.

perl v5.18.2 2016-09-07 7

ams::doc::pod3::ams(3) AMSlibrary functions ams::doc::pod3::ams(3)

int ams_subunit_of(AmsModule module, int argUnitNbr, int refUnitNbr)
Returns 1 ifargUnitNbr identifies a unit that is wholly contained within the unit identified by
refUnitNbr, in the venture within which this module is registered. Returns0 otherwise.

int ams_lookup_unit_nbr(AmsModule module, char *unitName)
Returns the number assigned to the unit identified byunitName, in the venture within which this
module is registered, or −1 on any error.

int ams_lookup_role_nbr(AmsModule module, char *roleName)
Returns the number assigned to the role identified byroleName, in the venture within which this
module is registered, or −1 on any error.

int ams_lookup_subject_nbr(AmsModule module, char *subjectName)
Returns the number assigned to the subject identified bysubjectName, in the venture within which this
module is registered, or −1 on any error.

int ams_lookup_continuum_nbr(AmsModule module, char *continuumName)
Returns the number of the continuum identified bycontinuumName, or −1 on any error.

char *ams_lookup_unit_name(AmsModule module, int unitNbr)
Returns the name of the unit identified byunitNbr, in the venture within which this module is
registered, or −1 on any error.

char *ams_lookup_role_name(AmsModule module, int roleNbr)
Returns the name of the role identified byroleNbr, in the venture within which this module is
registered, or −1 on any error.

char *ams_lookup_subject_name(AmsModule module, int subjectNbr)
Returns the name of the subject identified bysubjectNbr, in the venture within which this module is
registered, or −1 on any error.

char *ams_lookup_continuum_name(AmsModule module, int continuumNbr)
Returns the name of the continuum identified bycontinuumNbr, or −1 on any error.

SEE ALSO
amsd(1), ramsgate(1), amsxml(5), amsrc(5)

perl v5.18.2 2016-09-07 8

bp::doc::pod3::bp(3) BPlibrary functions bp::doc::pod3::bp(3)

NAME
bp − Bundle Protocol communications library

SYNOPSIS
#include "bp.h"

[see description for available functions]

DESCRIPTION
The bp library provides functions enabling application software to use Bundle Protocol to send and receive
information over a delay-tolerant network. It conforms to the Bundle Protocol specification as documented
in InternetRFC 5050.

int bp_attach()
Attaches the application toBP functionality on the local computer. Returns 0 on success, −1 on any
error.

Note that allION libraries and applications draw memory dynamically, as needed, from a shared pool
of ION working memory. The size of the pool is established whenION node functionality is initialized
by ionadmin(1). Thisis a precondition for initializingBP functionality by runningbpadmin(1), which
in turn is required in order forbp_attach()to succeed.

Sdr bp_get_sdr()
Returns handle for theSDR data store used forBP, to enable creation and interrogation of bundle
payloads (application data units).

void bp_detach()
Terminates all access toBP functionality on the local computer.

int bp_open(char *eid, BpSAP *ionsapPtr)
Opens the application’s access to theBP endpoint identified byeid, so that the application can take
delivery of bundles destined for the indicated endpoint.This SAPcan also be used for sending bundles
whose source is the indicated endpoint; all bundles sent via thisSAP will be subject to immediate
destruction upon transmission, i.e., no bundle addresses will be returned bybp_send()for use in
tracking, suspending/resuming, or cancelling transmission of these bundles. Onsuccess, places a
value in *ionsapPtr that can be supplied to future bp function invocations and returns 0. Returns −1
on any error.

int bp_open_source(char *eid, BpSAP *ionsapPtr, detain)
Opens the application’s access to theBP endpoint identified byeid, so that the application can send
bundles whose source is the indicated endpoint. If and only if the value ofdetain is non-zero, citing
this SAP in an invocation ofbp_send()will cause the address of the newly issued bundle to be returned
for use in tracking, suspending/resuming, or cancelling transmission of this bundle. USE THIS
FEATURE WITH GREA T CARE: such a bundle will continue to occupy storage resources until it is
explicitly released by an invocation ofbp_release()or until its time to live expires, so bundle detention
increases the risk of resource exhaustion. (Ifthe value ofdetain is zero, all bundles sent via thisSAP
will be subject to immediate destruction upon transmission.) On success, places a value in*ionsapPtr
that can be supplied to future bp function invocations and returns 0. Returns −1 on any error.

int bp_send(BpSAP sap, char *destEid, char *reportToEid, int lifespan, int classOfService,
BpCustodySwitch custodySwitch, unsigned char srrFlags, int ackRequested, BpExtendedCOS
*extendedCOS, Object adu, Object *newBundle)

Sends a bundle to the endpoint identified bydestEid, from the source endpoint as provided to the
bp_open()call that returnedsap. Whensap is NULL, the transmitted bundle is anonymous, i.e., the
source of the bundle is not identified. This is legal, but anonymous bundles cannot be uniquely
identified; custody transfer and status reporting therefore cannot be requested for an anonymous
bundle.

reportToEididentifies the endpoint to which any status reports pertaining to this bundle will be sent; if
NULL, defaults to the source endpoint.

perl v5.18.2 2016-09-07 1

bp::doc::pod3::bp(3) BPlibrary functions bp::doc::pod3::bp(3)

lifespanis the maximum number of seconds that the bundle can remain in-transit (undelivered) in the
network prior to automatic deletion.

classOfService is simply priority for now: BP_BULK_PRIORITY, BP_STD_PRIORITY, or
BP_EXPEDITED_PRIORITY. If class-of-service flags are defined in a future version of Bundle
Protocol, those flags would beOR’d with priority.

custodySwitchindicates whether or not custody transfer is requested for this bundle and, if so, whether
or not the source node itself is required to be the initial custodian.The valid values are
SourceCustodyRequired, SourceCustodyOptional, NoCustodyRequired.Note that custody transfer is
possible only for bundles that are uniquely identified, so it cannot be requested for bundles for which
BP_MINIMUM_LATENCY is requested, sinceBP_MINIMUM_LATENCY may result in the production
of multiple identical copies of the same bundle. Similarly, custody transfer should never be requested
for a ‘‘loopback’’ bundle, i.e., one whose destination node is the same as the source node: the received
bundle will be identical to the source bundle, both residing in the same node, so no custody acceptance
signal can be applied to the source bundle and the source bundle will remain in storage until itsTTL
expires.

srrFlags, if non-zero, is the logicalOR of the status reporting behaviors requested for this bundle:
BP_RECEIVED_RPT, BP_CUSTODY_RPT, BP_FORWARDED_RPT, BP_DELIVERED_RPT,
BP_DELETED_RPT.

ackRequestedis a Boolean parameter indicating whether or not the recipient application should be
notified that the source application requests some sort of application-specific end-to-end
acknowledgment upon receipt of the bundle.

extendedCOS, if not NULL, is used to populate the Extended Class Of Service block for this bundle.
The block’s ordinal value is used to provide fine-grained ordering within ‘‘expedited’’ t raffic: ordinal
values from 0 (the default) to 254 (used to designate the most urgent traffic) are valid, with 255
reserved for custody signals. The value of the block’s flags is the logicalOR of the applicable
extended class-of-service flags:

BP_MINIMUM_LATENCY designates the bundle as ‘‘critical’ ’ f or the purposes of Contact Graph
Routing.

BP_BEST_EFFORTsignifies that non-reliable convergence-layer protocols, as available, may be
used to transmit the bundle. Notably, the bundle may be sent as ‘‘green’’ data rather than ‘‘red’’
data when issued viaLTP.

BP_FLOW_LABEL_PRESENTsignifies whether or not the value offlowLabel in extendedCOS
must be encoded into theECOSblock when the bundle is transmitted.

adu is the ‘‘application data unit’’ that will be conveyed as the payload of the new bundle. adu must
be a ‘‘zero-copy object’’ (ZCO). To ensure orderly access to transmission buffer space for all
applications,adu must be created by invoking ionCreateZco(), which may be configured either to
block so long as insufficient ZCO storage space is available for creation of the requestedZCO or to fail
immediately if insufficientZCO storage space is available.

The function returns 1 on success, 0 on user error, −1 on any system error. If 0 is returned, then an
invalid argument value was passed tobp_send(); a message to this effect will have been written to the
log file. If 1 is returned, then either the destination of the bundle was ‘‘dtn:none’’ (the bit bucket) or
the ADU has been accepted and queued for transmission in a bundle. Inthe latter case, if and only if
sapwas a reference to a BpSAP returned by an invocation ofbp_open_source()that had a non-zero
value in thedetain parameter, then newBundlemust be non-NULL and the address of the newly
created bundle within theION database is placed innewBundle. This address can be used to track,
suspend/resume, or cancel transmission of the bundle.

int bp_track(Object bundle, Object trackingElt)
Adds trackingElt to the list of ‘‘tracking’’ references inbundle. trackingEltmust be the address of an
SDR list element— whose data is the address of this same bundle — withinsome list of bundles that

perl v5.18.2 2016-09-07 2

bp::doc::pod3::bp(3) BPlibrary functions bp::doc::pod3::bp(3)

is privately managed by the application.Upon destruction of the bundle this list element will
automatically be deleted, thus removing the bundle from the application’s privately managed list of
bundles. Thisenables the application to keep track of bundles that it is operating on without risk of
inadvertently de-referencing the address of a nonexistent bundle.

void bp_untrack(Object bundle, Object trackingElt)
Removes trackingElt from the list of ‘‘tracking’’ references inbundle, if i t is in that list. Does not
deletetrackingElt itself.

int bp_memo(Object bundle, unsigned int interval)
Implements custodial retransmission.This function inserts a ‘‘custody-acceptance due’’ event into the
timeline. Theev ent causes the indicated bundle to be re-forwarded if it is still in the database (i.e., it
has not yet been accepted by another custodian) as of the time computed by adding the indicated
interval to the current time.

int bp_suspend(Object bundle)
Suspends transmission ofbundle. Has no effect if bundle is ‘‘critical’ ’ (i.e., has got extended class of
serviceBP_MINIMUM_LATENCY flag set) or if the bundle is already suspended. Otherwise, reverses
the enqueuing of the bundle to its selected transmission outduct and places it in the ‘‘limbo’ ’ queue
until the suspension is lifted by calling bp_resume. Returns 0 on success, −1 on any error.

int bp_resume(Object bundle)
Terminates suspension of transmission ofbundle. Has no effect if bundle is ‘‘critical’ ’ (i.e., has got
extended class of serviceBP_MINIMUM_LATENCY flag set) or is not suspended.Otherwise, removes
the bundle from the ‘‘limbo’ ’ queue and queues it for route re-computation and re-queuing. Returns 0
on success, −1 on any error.

int bp_cancel(Object bundle)
Cancels transmission ofbundle. If the indicated bundle is currently queued for forwarding,
transmission, or retransmission, it is removed from the relevant queue and destroyed exactly as if its
Time To Liv e had expired. Returns0 on success, −1 on any error.

int bp_release(Object bundle)
Releases a detained bundle for destruction when all retention constraints have been removed. After a
detained bundle has been released, the application can no longer track, suspend/resume, or cancel its
transmission. Returns0 on success, −1 on any error.

int bp_receive(BpSAP sap, BpDelivery *dlvBuffer, int timeoutSeconds)
Receives a bundle, or reports on some failure of bundle reception activity.

The ‘‘result’’ fi eld of the dlvBuffer structure will be used to indicate the outcome of the data reception
activity.

If at least one bundle destined for the endpoint for which thisSAP is opened has not yet been delivered
to the SAP, then the payload of the oldest such bundle will be returned indlvBuffer−>adu and
dlvBuffer−>result will be set to BpPayloadPresent. Ifthere is no such bundle,bp_receive()blocks for
up totimeoutSecondswhile waiting for one to arrive.

If timeoutSecondsis BP_POLL (i.e., zero) and no bundle is awaiting delivery, or if timeoutSecondsis
greater than zero but no bundle arrives before timeoutSecondshave elapsed, thendlvBuffer−>result
will be set to BpReceptionTimedOut. IftimeoutSecondsis BP_BLOCKING(i.e., −1) thenbp_receive()
blocks until either a bundle arrives or the function is interrupted by an invocation ofbp_interrupt().

dlvBuffer−>result will be set to BpReceptionInterrupted in the event that the calling process received
and handled some signal other thanSIGALRM while waiting for a bundle.

dlvBuffer−>result will be set to BpEndpointStopped in the event that the operation of the indicated
endpoint has been terminated.

The application data unit delivered in the data delivery structure, if any, will be a ‘‘zero-copy object’’
reference. Usezco reception functions (seezco(3)) to read the content of the application data unit.

perl v5.18.2 2016-09-07 3

bp::doc::pod3::bp(3) BPlibrary functions bp::doc::pod3::bp(3)

Be sure to callbp_release_delivery()after every successful invocation ofbp_receive().

The function returns 0 on success, −1 on any error.

void bp_interrupt(BpSAP sap)
Interrupts abp_receive()invocation that is currently blocked. Thisfunction is designed to be called
from a signal handler; for this purpose,sapmay need to be obtained from a static variable.

void bp_release_delivery(BpDelivery *dlvBuffer, int releaseAdu)
Releases resources allocated to the indicated delivery. releaseAduis a Boolean parameter: if non-zero,
theADU ZCO reference indlvBuffer(if any) is destroyed, causing theZCO itself to be destroyed if no
other references to it remain.

void bp_close(BpSAP sap)
Terminates the application’s access to theBP endpoint identified by theeid cited by the indicated
service access point. The application relinquishes its ability to take delivery of bundles destined for
the indicated endpoint and to send bundles whose source is the indicated endpoint.

SEE ALSO
bpadmin(1), lgsend(1), lgagent (1), bpextensions(3), bprc(5), lgfile (5)

perl v5.18.2 2016-09-07 4

bp::doc::pod3::bpextensions(3) BPlibrary functions bp::doc::pod3::bpextensions(3)

NAME
bpextensions − interface for adding extensions to Bundle Protocol

SYNOPSIS
#include "bpextensions.c"

DESCRIPTION
ION’s interface for extending the Bundle Protocol enables the definition of external functions that insert
extension blocks into outbound bundles (either before or after the payload block), parse and record
extension blocks in inbound bundles, and modify extension blocks at key points in bundle processing.All
extension-block handling is statically linked intoION at build time, but the addition of an extension never
requires that any standardION source code be modified.

Standard structures for recording extension blocks— both in transient storage [memory] during bundle
acquisition (AcqExtBlock) and in persistent storage [theION database] during subsequent bundle
processing (ExtensionBlock)— are defined in thebei.h header file. In each case, the extension block
structure comprises a blocktypecode, block processingflags, possibly a list ofEID references, an array of
bytes(the serialized form of the block, for transmission), thelengthof that array, optionally an extension-
specific opaqueobjectwhose structure is designed to characterize the block in a manner that’s convenient
for the extension processing functions, and thesizeof that object.

The definition of each extension is asserted in an ExtensionDef structure, also as defined in thebei.hheader
file. EachExtensionDef must supply:

The name of the extension. (Usedin some diagnostic messages.)

The extension’s block type code.

A pointer to anoffer function.

A pointer to a function to be called whenforwarding a bundle containing this sort of block.

A pointer to a function to be called whentaking custodyof a bundle containing this sort of block.

A pointer to a function to be called whenenqueuingfor transmission a bundle containing this sort of
block.

A pointer to a function to be called when a convergence-layer adapterdequeuesa bundle containing
this sort of block, before serializing it.

A pointer to a function to be called immediately before a convergence-layer adaptertransmits a
bundle containing this sort of block, after the bundle has been serialized.

A pointer to areleasefunction.

A pointer to acopy function.

A pointer to anacquire function.

A pointer to adecrypt function.

A pointer to aparsefunction.

A pointer to acheckfunction.

A pointer to arecord function.

A pointer to aclear function.

All extension definitions must be coded into an array of ExtensionDef structures namedextensionDefs.

An array of ExtensionSpec structures namedextensionSpecsis also required. Each ExtensionSpec provides
the specification for producing an outbound extension block: block definition (identified by block type
number), three discriminator tags whose semantics are block-type-specific, and a list index value indicating
whether the extension block is to be inserted before or after the Payload block. The order of appearance of
extension specifications in the extensionSpecs array determines the order in which extension blocks will be

perl v5.18.2 2016-09-07 1

bp::doc::pod3::bpextensions(3) BPlibrary functions bp::doc::pod3::bpextensions(3)

inserted into locally sourced bundles.

The standard extensionDefs array— which is empty— is in the noextensions.cprototype source file.
The procedure for extending the Bundle Protocol inION is as follows:

1. Specify−DBP_EXTENDED in the Makefile’s compiler command line when building the libbpP.c
library module.

2. Createa copy of the prototype extensions file, named ‘‘bpextensions.c’’, in a directory that is made
visible to the Makefile’s libbpP.c compilation command line (by a −I parameter).

3. In the ‘‘external function declarations’’ area of ‘‘bpextensions.c’’, add ‘‘extern’’ f unction declarations
identifying the functions that will implement your extension (or extensions).

4. Addone or more ExtensionDef structure initialization lines to the extensionDefs array, referencing those
declared functions.

5. Add one or more ExtensionSpec structure initialization lines to the extensionSpecs array, referencing
those extension definitions.

6. Develop the implementations of the extension implementation functions in one or more new source code
files.

7. Add the object file or files for the new extension implementation source file (or files) to the Makefile’s
command line for linking libbpP.so.

The function pointers supplied in each ExtensionDef must conform to the following specifications.NOTE
that any function that modifies thebytesmember of an ExtensionBlock or AckExtBlockmust set the
correspondinglengthto the new length of thebytesarray, if changed.

int (*BpExtBlkOfferFn)(ExtensionBlock *blk, Bundle *bundle)
Populates all fields of the indicated ExtensionBlock structure for inclusion in the indicated outbound
bundle. This function is automatically called when a new bundle is locally sourced or upon
acquisition of a remotely sourced bundle that does not contain an extension block of this type.The
values of the extension block are typically expected to be a function of the state of the bundle, but this
is extension-specific. Ifit is not appropriate to offer an extension block of this type as part of this
bundle, then thesize, length, object, and bytesmembers ofblk must all be set to zero.If it is
appropriate to offer such a block but no internal object representing the state of the block is needed,
the object and size members ofblk must be set to zero.The type, blkProcFlags, and dataLength
members ofblk must be populated by the implementation of the ‘‘offer’ ’ f unction, but thelengthand
bytesmembers are typically populated by calling theBP library functionserializeExtBlk(), which must
be passed the block to be serialized (withtype, blkProcFlagsanddataLengthalready set), a Lyst of
EID references (two list elements— offsets — perEID reference, if applicable; otherwiseNULL),
and a pointer to the extension-specific block data. The block’s bytesarray andobject(if present) must
occupy space allocated from theION database heap. Return zero on success, −1 on any system failure.

int (*BpExtBlkProcessFn)(ExtensionBlock *blk, Bundle *bundle, void *context)
Performs some extension-specific transformation of the data encapsulated inblk based on the state of
bundle. The transformation to be performed will typically vary depending on whether the identified
function is the one that is automatically invoked upon forwarding the bundle, upon taking custody of
the bundle, upon enqueuing the bundle for transmission, upon removing the bundle from the
transmission queue, or upon transmitting the serialized bundle. Thecontextargument may supply
useful supplemental information; in particular, the context provided to theON_DEQUEUEfunction will
comprise the name of the protocol for the duct from which the bundle has been dequeued, together
with theEID of the neighboring node endpoint to which the bundle will be directly transmitted when
serialized. Theblock-specific data inblk is located withinbytesimmediately after the header of the
extension block; the length of the block’s header is the difference betweenlength and dataLength.
Whenever the block’s blkProcFlags, EID extensions, and/or block-specific data are altered, the
serializeExtBlk()function should be called again to recalculate the size of the extension block and
rebuild thebytesarray. Return zero on success, −1 on any system failure.

perl v5.18.2 2016-09-07 2

bp::doc::pod3::bpextensions(3) BPlibrary functions bp::doc::pod3::bpextensions(3)

void (*BpExtBlkReleaseFn)(ExtensionBlock *blk)
Releases allION database space occupied by theobjectmember ofblk. This function is automatically
called when a bundle is destroyed. Notethat incorrect implementation of this function may result in a
database space leak.

int (*BpExtBlkCopyFn)(ExtensionBlock *newblk, ExtensionBlock *oldblk)
Copies theobjectmember ofoldblk to ION database heap space and places the address of that new
non-volatile object in theobject member ofnewblk, also setssize in newblk. This function is
automatically called when two copies of a bundle are needed, e.g., in the event that it must both be
delivered to a local client and also fowarded to another node. Return zero on success, −1 on any
system failure.

int (*BpAcqExtBlkAcquireFn)(AcqExtBlock *acqblk, AcqWorkArea *work)
Populates the indicated AcqExtBlock structure withsize and object for retention as part of the
indicated inbound bundle. (Thetype, blkProcFlags, EID references (if any), dataLength, length, and
bytesvalues of the structure are pre-populated with data as extracted from the serialized bundle.) This
function is only to be provided for extension blocks that are never encrypted; a extension block that
may be encrypted should have a BpAcqExtBlkParseFn callback instead. The function is automatically
called when an extension block of this type is encountered in the course of parsing and acquiring a
bundle for local delivery and/or forwarding. Ifno internal object representing the state of the block is
needed, theobjectmember ofacqblkmust be set toNULL and thesizemember must be set to zero.If
an object is needed for this block, it must occupy space that is allocated fromION working memory
usingMTAKE and itssizemust be indicated inblk. Return zero if the block is malformed (this will
cause the bundle to be discarded), 1 if the block is successfully parsed, −1 on any system failure.

int (*BpAcqExtBlkDecryptFn)(AcqExtBlock *acqblk, AcqWorkArea *work)
Decrypts some other extension block that has been acquired but not yet parsed, nominally using
encapsulated ciphersuite information.Return zero if the block is malformed (this will cause the
bundle to be discarded), 1 if no error in decryption was encountered, −1 on any system failure.

int (*BpAcqExtBlkParseFn)(AcqExtBlock *acqblk, AcqWorkArea *work)
Populates the indicated AcqExtBlock structure withsize and object for retention as part of the
indicated inbound bundle. (Thetype, blkProcFlags, EID references (if any), dataLength, length, and
bytesvalues of the structure are pre-populated with data as extracted from the serialized bundle.) This
function is provided for extension blocks that may be encrypted; a extension block that can never be
encrypted should have a BpAcqExtBlkAcquireFn callback instead. The function is automatically
called when an extension block of this type is encountered in the course of parsing and acquiring a
bundle for local delivery and/or forwarding. Ifno internal object representing the state of the block is
needed, theobjectmember ofacqblkmust be set toNULL and thesizemember must be set to zero.If
an object is needed for this block, it must occupy space that is allocated fromION working memory
usingMTAKE and itssizemust be indicated inblk. Return zero if the block is malformed (this will
cause the bundle to be discarded), 1 if the block is successfully parsed, −1 on any system failure.

int (*BpAcqExtBlkCheckFn)(AcqExtBlock *acqblk, AcqWorkArea *work)
Examines the bundle inwork to determine whether or not it is authentic, in the context of the indicated
extension block. Return 1 if the block is determined to be inauthentic (this will cause the bundle to be
discarded), zero if no inauthenticity is detected, −1 on any system failure.

int (*BpExtBlkRecordFn)(ExtensionBlock *blk, AcqExtBlock *acqblk)
Copies theobjectmember ofacqblk to ION database heap space and places the address of that non-
volatile object in theobjectmember ofblk; also setssizein blk. This function is automatically called
when an acquired bundle is accepted for forwarding and/or delivery. Return zero on success, −1 on
any system failure.

void (*BpAcqExtBlkClearFn)(AcqExtBlock *acqblk)
UsesMRELEASE to release allION working memory occupied by theobjectmember ofacqblk. This
function is automatically called when acquisition of a bundle is completed, whether or not the bundle
is accepted. Note that incorrect implementation of this function may result in a working memory leak.

perl v5.18.2 2016-09-07 3

bp::doc::pod3::bpextensions(3) BPlibrary functions bp::doc::pod3::bpextensions(3)

UTILITY FUNCTIONS FOR EXTENSION PROCESSING
void discardExtensionBlock(AcqExtBlock *blk)

Deletes this block from the bundle acquisition work area prior to the recording of the bundle in the
ION database.

void scratchExtensionBlock(ExtensionBlock *blk)
Deletes this block from the bundle after the bundle has been recorded in theION database.

Object findExtensionBlock(Bundle *bundle, unsigned int type, unsigned int listIdx)
On success, returns the address of the ExtensionBlock inbundle for the indicatedtypeand listIdx. If
no such extension block exists, returns zero.

int serializeExtBlk(ExtensionBlock *blk, Lyst eidReferences, char *blockData)
Constructs an RFC5050−conformant serialized representation of this extension block in blk−>bytes.
Returns 0 on success, −1 on an unrecoverable system error.

void suppressExtensionBlock(ExtensionBlock *blk)
Causesblk to be omitted when the bundle to which it is attached is serialized for transmission.This
suppression remains in effect until it is reversed byrestoreExtensionBlock();

void restoreExtensionBlock(ExtensionBlock *blk)
Reverses the effect ofsuppressExtensionBlock(), enabling the block to be included when the bundle to
which it is attached is serialized.

SEE ALSO
bp(3)

perl v5.18.2 2016-09-07 4

bss::doc::pod3::bss(3) BSSlibrary functions bss::doc::pod3::bss(3)

NAME
bss − Bundle Streaming Service library

SYNOPSIS
#include "bss.h"

typedef int (*RTBHandler)(time_t time, unsigned long count, char *buffer, int bufLength);

[see description for available functions]

DESCRIPTION
The BSS library supports the streaming of data over delay-tolerant networking (DTN) bundles. Theintent
of the library is to enable applications that pass streaming data received in transmission time order (i.e.,
without time regressions) to an application-specific ‘‘display’’ f unction — notionallyfor immediate real-
time display — but to storeall received data (including out-of-order data) in a private database for
playback under user control. The reception and real-time display of in-order data is performed by a
background thread, leaving the application’s main (foreground) thread free to respond to user commands
controlling playback or other application-specific functions.

The application-specific ‘‘display’’ f unction invoked by the background thread must conform to the
RTBHandler type definition. It must return 0 on success, −1 on any error that should terminate the
background thread.Only on return from this function will the background thread proceed to acquire the
nextBSSpayload.

All data acquired by theBSSbackground thread is written to aBSSdatabase comprising three files: table,
list, and data.The name of the database is the root name that is common to the three files, e.g.,db3.tbl,
db3.lst, db3.dat would be the three files making up thedb3BSSdatabase. Allthree files of the selectedBSS
database must reside in the same directory of the file system.

Several replay navigation functions in theBSS library require that the application provide a navigation state
structure of type bssNav as defined in the bss.h header file. The application is not reponsible for populating
this structure; it’s strictly for the private use of theBSSlibrary.

int bssOpen(char *bssName, char *path, char *eid)
Opens access to aBSSdatabase, to enable data playback.bssNameidentifies the specificBSSdatabase
that is to be opened.path identifies the directory in which the database resides.eid is ignored. On
any failure, returns −1. On success, returns zero.

int bssStart(char *bssName, char *path, char *eid, char *buffer, int bufLen, RTBHandler handler)
Starts aBSSdata acquisition background thread.bssNameidentifies theBSSdatabase into which data
will be acquired.path identifies the directory in which that database resides.eid is used to open the
BP endpoint at which the delivered BSSbundle payload contents will be acquired.buffer identifies a
data acquisition buffer, which must be provided by the application, andbufLen indicates the length of
that buffer; received bundle payloads in excess of this length will be discarded.

handleridentifies the display function to which each in-order bundle payload will be passed.The time
and count parameters passed to this function identify the received bundle, indicating the bundle’s
creation timestamp time (in seconds) and counter value. Thebuffer andbufLengthparameters indicate
the location into which the bundle’s payload was acquired and the length of the acquired payload.
handlermust return −1 on any unrecoverable system error, 0 otherwise. Areturn value of −1 from
handlerwill terminate theBSSdata acquisition background thread.

On any failure, returns −1. On success, returns zero.

int bssRun(char *bssName, char *path, char *eid, char *buffer, int bufLen, RTBHandler handler)
A convenience function that performs bothbssOpen()andbssStart(). On any failure, returns −1.On
success, returns zero.

void bssClose()
Terminates data playback access to the most recently openedBSSdatabase.

perl v5.18.2 2016-09-07 1

bss::doc::pod3::bss(3) BSSlibrary functions bss::doc::pod3::bss(3)

void bssStop()
Terminates the most recently initiatedBSSdata acquisition background thread.

void bssExit()
A convenience function that performs bothbssClose()andbssStop().

long bssRead(bssNav nav, char *data, int dataLen)
Copies the data at the current playback position in the database, as indicated bynav, into data; if the
length of the data is in excess ofdataLenthen an error condition is asserted (i.e., −1 is returned).Note
that bssRead()cannot be successfully called untilnav has been populated, nominally by a preceding
call tobssSeek(), bssNext(), or bssPrev(). Returns the length of data read, or −1 on any error.

long bssSeek(bssNav *nav, time_t time, time_t *curTime, unsigned long *count)
Sets the current playback position in the database, innav, to the data received in the bundle with the
earliest creation time that was greater than or equal totime. Populatesnav and also returns the
creation time and bundle ID count of that bundle incurTimeandcount. Returns the length of data at
this location, or −1 on any error.

long bssSeek_read(bssNav *nav, time_t time, time_t *curTime, unsigned long *count, char *data, int
dataLen)

A convenience function that performsbssSeek()followed by an immediatebssRead()to return the data
at the new playback position. Returns the length of data read, or −1 on any error.

long bssNext(bssNav *nav, time_t *curTime, unsigned long *count)
Sets the playback position in the database, innav, to the data received in the bundle with the earliest
creation time andID count greater than that of the bundle at the current playback position.Populates
nav and also returns the creation time and bundle ID count of that bundle incurTime and count.
Returns the length of data at this location (if any), −2 on reaching end of list, or −1 on any error.

long bssNext_read(bssNav *nav, time_t *curTime, unsigned long *count, char *data, int dataLen)
A convenience function that performsbssNext()followed by an immediatebssRead()to return the data
at the new playback position. Returns the length of data read, −2 on reaching end of list, or −1 on any
error.

long bssPrev(bssNav *nav, time_t *curTime, unsigned long *count)
Sets the playback position in the database, innav, to the data received in the bundle with the latest
creation time andID count earlier than that of the bundle at the current playback position.Populates
nav and also returns the creation time and bundle ID count of that bundle in curTime and count.
Returns the length of data at this location (if any), −2 on reaching end of list, or −1 on any error.

long bssPrev_read(bssNav *nav, time_t *curTime, unsigned long *count, char *data, int dataLen)
A convenience function that performsbssPrev() followed by an immediatebssRead()to return the data
at the new playback position. Returns the length of data read, −2 on reaching end of list, or −1 on any
error.

SEE ALSO
bp(3)

perl v5.18.2 2016-09-07 2

bssp::doc::pod3::bssp(3) BSSPlibrary functions bssp::doc::pod3::bssp(3)

NAME
bssp − Bundle Streaming Service Protocol (BSSP) communications library

SYNOPSIS
#include "bssp.h"

typedef enum
{

BsspNoNotice = 0,
BsspXmitSuccess,
BsspXmitFailure,
BsspRecvSuccess

} B sspNoticeType;

[see description for available functions]

DESCRIPTION
The bssp library provides functions enabling application software to useBSSP to send and receive
streaming data in bundles.

BSSP is designed to forward streaming data in original transmission order wherever possible but to
retransmit data as necessary to ensure that the entire stream is available for playback eventually. To this
end, BSSP uses not one but two underlying ‘‘link service’’ channels: (a) an unreliable ‘‘best efforts’’
channel, for data items that are successfully received upon initial transmission over every extent of the end-
to-end path, and (b) a ‘‘reliable’’ channel, for data items that were lost at some point, had to be
retransmitted, and therefore are now out of order. The BSS library at the destination node supports
immediate ‘‘real-time’’ display of all data received on the ‘‘best efforts’’ channel in transmission order,
together with database retention of all data eventually received on the ‘‘reliable’’ channel.

The BSSPnotion ofengine ID corresponds closely to the Internet notion of a host, and inION engine IDs
are normally indistinguishable from node numbers including the node numbers in Bundle Protocol endpoint
IDs conforming to the ‘‘ipn’’ scheme.

The BSSPnotion ofclient ID corresponds closely to the Internet notion of ‘‘protocol number’’ as used in
the Internet Protocol. It enables data from multiple applications— clients — tobe multiplexed over a
single reliable link.However, for ION operations we normally useBSSPexclusively for the transmission of
Bundle Protocol data, identified by clientID = 1.

int bssp_attach()
Attaches the application toBSSPfunctionality on the lcoal computer. Returns 0 on success, −1 on any
error.

void bssp_detach()
Terminates all access toBSSPfunctionality on the local computer.

int bssp_engine_is_started()
Returns 1 if the localBSSPengine has been started and not yet stopped, 0 otherwise.

int bssp_send(uvast destinationEngineId, unsigned int clientId, Object clientServiceData, int inOrder,
BsspSessionId *sessionId)

Sends a client service data unit to the application that is waiting for data tagged with the indicated
clientIdas received at the remoteBSSPengine identified bydestinationEngineId.

clientServiceDatamust be a ‘‘zero-copy object’’ reference as returned byionCreateZco(). Note that
BSSPwill privately make and destroy its own reference to the client service data object; the application
is free to destroy its reference at any time.

inOrder is a Boolean value indicating whether or not the service data item that is being sent is ‘‘in
order’’, i.e., was originally transmitted after all items that have previously been sent to this destination
by this localBSSPengine: 0 if no (meaning that the item must be transmitted using the ‘‘reliable’’
channel), 1 if yes (meaning that the item must be transmitted using the ‘‘best-efforts’’ channel.

perl v5.18.2 2016-09-07 1

bssp::doc::pod3::bssp(3) BSSPlibrary functions bssp::doc::pod3::bssp(3)

On success, the function populates*sessionIdwith the source engineID and the ‘‘session number’’
assigned to transmission of this client service data unit and returns zero.The session number may be
used to link futureBSSPprocessing events to the affected client service data.bssp_send()returns −1
on any error.

int bssp_open(unsigned int clientId)
Establishes the application’s exclusive access to received service data units tagged with the indicated
BSSPclient service dataID. At any time, only a single application task is permitted to receive service
data units for any single client service dataID.

Returns 0 on success, −1 on any error (e.g., the indicated client service is already being held open by
some other application task).

int bssp_get_notice(unsigned int clientId, BsspNoticeType *type, BsspSessionId *sessionId, unsigned char
*reasonCode, unsigned int *dataLength, Object *data)

Receives notices ofBSSPprocessing events pertaining to the flow of service data units tagged with the
indicated client serviceID. The nature of each event is indicated by*type. Additional parameters
characterizing the event are returned in*sessionId, *reasonCode, *dataLength, and *data as relevant.

The value returned in*data is always a zero-copy object; use the zco_* functions defined in ‘‘zco.h’’
to retrieve the content of that object.

When the notice is an BsspRecvSuccess, theZCO returned in*data contains the content of a single
BSSPblock.

The cancellation of an export session results in delivery of a BsspXmitFailure notice.In this case, the
ZCO returned in *data is a service data unitZCO that had previously been passed tobssp_send().

bssp_get_notice()always blocks indefinitely until anBSSPprocessing event is delivered.

Returns zero on success, −1 on any error.

void bssp_interrupt(unsigned int clientId)
Interrupts anbssp_get_notice()invocation. Thisfunction is designed to be called from a signal
handler; for this purpose,clientIdmay need to be obtained from a static variable.

void bssp_release_data(Object data)
Releases the resources allocated to holddata, which must be areceived client service data unitZCO.

void bssp_close(unsigned int clientId)
Terminates the application’s exclusive access to received service data units tagged with the indicated
client service dataID.

SEE ALSO
bsspadmin(1), bssprc(5), zco(3)

perl v5.18.2 2016-09-07 2

cfdp::doc::pod3::cfdp(3) CFDPlibrary functions cfdp::doc::pod3::cfdp(3)

NAME
cfdp − CCSDS File Delivery Protocol (CFDP) communications library

SYNOPSIS
#include "cfdp.h"

typedef enum
{

CksumTypeUnknown = −1,
ModularChecksum = 0,
CRC32 = 1

} C fdpCksumType;

typedef int (*CfdpReaderFn)(int fd, unsigned int *checksum, CfdpCksumType ckType);

typedef int (*CfdpMetadataFn)(uvast fileOffset, unsigned int recordOffset, unsigned int length, int sourceFileFD, char *buffer);

typedef enum
{

CfdpCreateFile = 0,
CfdpDeleteFile,
CfdpRenameFile,
CfdpAppendFile,
CfdpReplaceFile,
CfdpCreateDirectory,
CfdpRemoveDirectory,
CfdpDenyFile,
CfdpDenyDirectory

} C fdpAction;

typedef enum
{

CfdpNoEvent = 0,
CfdpTransactionInd,
CfdpEofSentInd,
CfdpTransactionFinishedInd,
CfdpMetadataRecvInd,
CfdpFileSegmentRecvInd,
CfdpEofRecvInd,
CfdpSuspendedInd,
CfdpResumedInd,
CfdpReportInd,
CfdpFaultInd,
CfdpAbandonedInd

} C fdpEventType;

typedef struct
{

char *sourceFileName;
char *destFileName;
MetadataList messagesToUser;
MetadataList filestoreRequests;
CfdpHandler *faultHandlers;
int unacknowledged;
unsigned int flowLabelLength;

perl v5.18.2 2016-09-07 1

cfdp::doc::pod3::cfdp(3) CFDPlibrary functions cfdp::doc::pod3::cfdp(3)

unsigned char *flowLabel;
int recordBoundsRespected;
int closureRequested;

} C fdpProxyTask;

typedef struct
{

char *directoryName;
char *destFileName;

} C fdpDirListTask;

[see description for available functions]

DESCRIPTION
The cfdp library provides functions enabling application software to useCFDP to send and receive files. It
conforms to the Class 1 (Unacknowledged) service class defined in theCFDP Blue Book and includes
implementations of several standardCFDPuser operations.

In the ION implementation ofCFDP,theCFDPnotion ofentity ID is taken to be identical to theBP (CBHE)
notion ofDTN node number.

CFDP entity and transaction numbers may be up to 64 bits in length.For portability to 32−bit machines,
these numbers are stored in theCFDPstate machine as structures of type CfdpNumber.

To simplify the interface betweenCFDP the user application without risking storage leaks, the CFDP-ION
API uses MetadataList objects.A MetadataList is a specially formattedSDR list of user messages, filestore
requests, or filestore responses.During the time that a MetadataList is pending processing via theCFDP
API, but is not yet (or is no longer) reachable from any FDU object, a pointer to the list is appended to one
of the lists of MetadataList objects in theCFDP non-volatile database. This assures that any unplanned
termination of theCFDP daemons won’t leave any SDR lists unreachable— and therefore un-recyclable
— due to the absence of references to those lists.RestartingCFDP automatically purges any unused
MetadataLists from theCFDP database. The‘‘ user data’’ variable of the MetadataList itself is used to
implement this feature: while the list is reachable only from the database root, its user data variable points
to the database root list from which it is referenced; while the list is attached to a File Delivery Unit, its user
data is null.

By default, CFDP transmits the data in a source file in segments of fixed size. The user application can
override this behavior at the time transmission of a file is requested, by supplying a file reader callback
function that reads the file— one byte at a time— until it detects the end of a ‘‘record’’ that has
application significance. Each timeCFDPcalls the reader function, the function must return the length of
one such record (which must be no greater than 65535).

WhenCFDP is used to transmit a file, a 32−bit checksum must be provided in the ‘‘EOF’’ PDU to enable the
receiver of the file to assure that it was not corrupted in transit.When an application-specific file reader
function is supplied, that function is responsible for updating the computed checksum as it reads each byte
of the file; aCFDPlibrary function is provided for this purpose.Tw o types of file checksums are supported:
a simple modular checksum or a 32−bitCRC. The checksum type must be passed through to theCFDP
checksum computation function, so it must be provided by (and thus to) the file reader function.

Per-segment metadata may be provided by the user application.To enable this, upon formation of each file
data segment,CFDPwill invoke the user-provided per-segment metadata composition callback function (if
any), a function conforming to the CfdpMetadataFn type definition.The callback will be passed the offset
of the segment within the file, the segment’s offset within the current record (as applicable), the length of
the segment, an open file descriptor for the source file (in case the data must be read in order to construct
the metadata), and a 63−byte buffer in which to place the new metadata. Thecallback function must return
the length of metadata to attach to the file data segmentPDU (may be zero) or −1 in the event of a general
system failure.

The return value for eachCFDP ‘‘ request’’ f unction (put, cancel, suspend, resume, report) is a reference

perl v5.18.2 2016-09-07 2

cfdp::doc::pod3::cfdp(3) CFDPlibrary functions cfdp::doc::pod3::cfdp(3)

number that enables ‘‘events’’ obtained by callingcfdp_get_event()to be matched to the requests that
caused them.Events with reference number set to zero are events that were caused by autonomousCFDP
activity, e.g., the reception of a file data segment.

int cfdp_attach()
Attaches the application toCFDPfunctionality on the local computer. Returns 0 on success, −1 on any
error.

int cfdp_entity_is_started()
Returns 1 if the localCFDPentity has been started and not yet stopped, 0 otherwise.

void cfdp_detach()
Terminates all access toCFDPfunctionality on the local computer.

void cfdp_compress_number(CfdpNumber *toNbr, uvast from)
Converts an unsignedvast number into a CfdpNumber structure, e.g., for use when invoking the
cfdp_put()function.

void cfdp_decompress_number(uvast toNbr, CfdpNumber *from)
Converts a numeric value in a CfdpNumber structure to an unsignedvast integer.

void cfdp_update_checksum(unsigned char octet, uvast *offset, unsigned int *checksum, CfdpCksumType
ckType)

For use by an application-specific file reader callback function, which must pass to
cfdp_update_checksum()the value of each byte (octet) it reads.offsetmust beoctet’s displacement in
bytes from the start of the file. Thechecksumpointer is provided to the reader function byCFDP.

MetadataListcfdp_create_usrmsg_list()
Creates a non-volatile linked list, suitable for containing messages-to-user that are to be presented to
cfdp_put().

int cfdp_add_usrmsg(MetadataList list, unsigned char *text, int length)
Appends the indicated message-to-user tolist.

int cfdp_get_usrmsg(MetadataList list, unsigned char *textBuf, int *length)
Removes from list the first of the remaining messages-to-user contained in the list and delivers its text
and length. When the last message in the list is delivered, destroys the list.

void cfdp_destroy_usrmsg_list(MetadataList *list)
Removes and destroys all messages-to-user inlist and destroys the list.

MetadataListcfdp_create_fsreq_list()
Creates a non-volatile linked list, suitable for containing filestore requests that are to be presented to
cfdp_put().

int cfdp_add_fsreq(MetadataList list, CfdpAction action, char *firstFileName, char *seconfdFIleName)
Appends the indicated filestore request tolist.

int cfdp_get_fsreq(MetadataList list, CfdpAction *action, char *firstFileNameBuf, char
*secondFileNameBuf)

Removes from list the first of the remaining filestore requests contained in the list and delivers its
action code and file names. When the last request in the list is delivered, destroys the list.

void cfdp_destroy_fsreq_list(MetadataList *list)
Removes and destroys all filestore requests inlist and destroys the list.

int cfdp_get_fsresp(MetadataList list, CfdpAction *action, int *status, char *firstFileNameBuf, char
*secondFileNameBuf, char *messageBuf)

Removes from list the first of the remaining filestore responses contained in the list and delivers its
action code, status, file names, and message.When the last response in the list is delivered, destroys
the list.

perl v5.18.2 2016-09-07 3

cfdp::doc::pod3::cfdp(3) CFDPlibrary functions cfdp::doc::pod3::cfdp(3)

void cfdp_destroy_fsresp_list(MetadataList *list)
Removes and destroys all filestore responses inlist and destroys the list.

int cfdp_read_space_packets(int fd, unsigned int *checksum)
This is a standard ‘‘reader’’ f unction that segments the source file onCCSDSspace packet boundaries.
Multiple small packets may be aggregated into a single file data segment.

int cfdp_read_text_lines(int fd, unsigned int *checksum)
This is a standard ‘‘reader’’ f unction that segments a source file of text lines on line boundaries.

int cfdp_put(CfdpNumber *destinationEntityNbr, unsigned int utParmsLength, unsigned char *utParms,
char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpMetadataFn metadataFn,
CfdpHandler *faultHandlers, unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int
closureLatency, MetadataList messagesToUser, MetadataList filestoreRequests, CfdpTransactionId
*transactionId)

Sends the file identified bysourceFileNameto the CFDP entity identified bydestinationEntityNbr.
destinationFileNameis used to indicate the name by which the file will be catalogued upon arrival at
its final destination; ifNULL, the destination file name defaults tosourceFileName. If sourceFileName
is NULL, it is assumed that the application is requesting transmission of metadata only (as discussed
below) anddestinationFileNameis ignored. Note that bothsourceFileNameanddestinationFileName
are interpreted as path names, i.e., directory paths may be indicated in either or both. The syntax of
path names is opaque toCFDP; the syntax ofsourceFileNamemust conform to the path naming syntax
of the source entity’s file system and the syntax ofdestinationFileNamemust conform to the path
naming syntax of the destination entity’s file system.

The byte array identified byutParms, if non-NULL, is interpreted as transmission control information
that is to be passed on to theUT layer. The nominalUT layer for ION’s CFDPbeing Bundle Protocol,
the utParmsarray is normally a pointer to a structure of type BpUtParms; see thebp man page for a
discussion of the parameters in that structure.

closureLatencyis the length of time following transmission of theEOF PDUwithin which a responding
Transaction FinishPDU is expected. Ifno FinishPDU is requested, this parameter value should be
zero.

messagesToUserandfilestoreRequests, where non-zero, must be the addresses of non-volatile linked
lists (that is, linked lists inION’s SDRdatabase) of CfdpMsgToUser and CfdpFilestoreRequest objects
identifying metadata that are intended to accompany the transmitted file.Note that this metadata may
accompany a file of zero length (as whensourceFileNameis NULL as noted above) — a transmission
of metadata only.

On success, the function populates*transactionID with the source entityID and the transaction
number assigned to this transmission and returns the request number identifying this ‘‘put’’ request.
The transactionID may be used to suspend, resume, cancel, or request a report on the progress of this
transmission.cfdp_put()returns −1 on any error.

int cfdp_cancel(CfdpTransactionId *transactionId)
Cancels transmission or reception of the indicated transaction. Note that, since theION
implementation ofCFDP is Unacknowledged, cancellation of a file transmission may have little effect.
Returns request number on success, −1 on any error.

int cfdp_suspend(CfdpTransactionId *transactionId)
Suspends transmission of the indicated transaction. Note that, since theION implementation ofCFDP
is Unacknowledged, suspension of a file transmission may have little effect. Returnsrequest number
on success, −1 on any error.

int cfdp_resume(CfdpTransactionId *transactionId)
Resumes transmission of the indicated transaction.Note that, since theION implementation ofCFDP
is Unacknowledged, resumption of a file transmission may have little effect. Returnsrequest number
on success, −1 on any error.

perl v5.18.2 2016-09-07 4

cfdp::doc::pod3::cfdp(3) CFDPlibrary functions cfdp::doc::pod3::cfdp(3)

int cfdp_report(CfdpTransactionId *transactionId)
Requests issuance of a report on the transmission or reception progress of the indicated transaction.
The report takes the form of a character string that is returned in a CfdpEvent structure; use
cfdp_get_event()to receive the event (which may be matched to the request by request number).
Returns request number on success, 0 if transaction is unknown, −1 on any error.

int cfdp_get_event(CfdpEventType *type, time_t *time, int *reqNbr, CfdpTransactionId *transactionId,
char *sourceFileNameBuf, char *destFileNameBuf, uvast *fileSize, MetadataList *messagesToUser, uvast
*offset, unsigned int *length, CfdpCondition *condition, uvast *progress, CfdpFileStatus *fileStatus,
CfdpDeliveryCode *deliveryCode, CfdpTransactionId *originatingTransactionId, char *statusReportBuf,
MetadataList *filestoreResponses);

Populates return value fields with data from the oldestCFDPev ent not yet delivered to the application.

cfdp_get_event()always blocks indefinitely until anCFDPprocessing event is delivered or the function
is interrupted by an invocation ofcfdp_interrupt().

On application error, returns zero but sets errno toEINVAL. Returns −1 on system failure, zero
otherwise.

void cfdp_interrupt()
Interrupts ancfdp_get_event()invocation. Thisfunction is designed to be called from a signal handler.

int cfdp_rput(CfdpNumber *respondentEntityNbr, unsigned int utParmsLength, unsigned char *utParms,
char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpHandler *faultHandlers,
unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int closureLatency, MetadataList
messagesToUser, MetadataList filestoreRequests, CfdpNumber *beneficiaryEntityNbr, CfdpProxyTask
*proxyTask, CfdpTransactionId *transactionId)

Sends to the indicated respondent entity a ‘‘proxy’’ request to perform a file transmission.The
transmission is to be subject to the configuration values inproxyTaskand the destination of the file is
to be the entity identified bybeneficiaryEntityNbr.

int cfdp_rput_cancel(CfdpNumber *respondentEntityNbr, unsigned int utParmsLength, unsigned char
*utParms, char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpHandler
*f aultHandlers, unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int closureLatency,
MetadataList messagesToUser, MetadataList filestoreRequests, CfdpTransactionId *rputTransactionId,
CfdpTransactionId *transactionId)

Sends to the indicated respondent entity a request to cancel a prior ‘‘proxy’’ fi le transmission request
as identified byrputTransactionId, which is the value oftransactionIdthat was returned by that earlier
proxy transmission request.

int cfdp_get(CfdpNumber *respondentEntityNbr, unsigned int utParmsLength, unsigned char *utParms,
char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpHandler *faultHandlers,
unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int closureLatency, MetadataList
messagesToUser, MetadataList filestoreRequests, CfdpProxyTask *proxyTask, CfdpTransactionId
*transactionId)

Same ascfdp_rput except thatbeneficiaryEntityNbris omitted; the local entity is the implicit
beneficiary of the request.

int cfdp_rls(CfdpNumber *respondentEntityNbr, unsigned int utParmsLength, unsigned char *utParms,
char *sourceFileName, char *destFileName, CfdpReaderFn readerFn, CfdpHandler *faultHandlers,
unsigned int flowLabelLength, unsigned char *flowLabel, unsigned int closureLatency, MetadataList
messagesToUser, MetadataList filestoreRequests, CfdpDirListTask *dirListTask, CfdpTransactionId
*transactionId)

Sends to the indicated respondent entity a request to prepare a directory listing, save that listing in a
file, and send it to the local entity. The request is subject to the configuration values indirListTask.

int cfdp_preview(CfdpTransactionId *transactionId, uvast offset, unsigned int length, char *buffer);
This function is provided to enable the application to get an advance look at the content of a file that
CFDP has not yet fully received. Readslengthbytes starting atoffsetbytes from the start of the file
that is the destination file of the transaction identified bytransactionID, into buffer. On user error

perl v5.18.2 2016-09-07 5

cfdp::doc::pod3::cfdp(3) CFDPlibrary functions cfdp::doc::pod3::cfdp(3)

(transaction is nonexistent or is outbound, or offset is beyond the end of file) returns 0. On system
failure, returns −1. Otherwise returns number of bytes read.

int cfdp_map(CfdpTransactionId *transactionId, unsigned int *extentCount, CfdpExtent *extentsArray);
This function is provided to enable the application to report on the portions of a partially-received file
that have been received and written. Lists the received continuous data extents in the destination file
of the transaction identified bytransactionID. The extents (offset and length) are returned in the
elements ofextentsArray; the number of extents returned in the array is the total number of continuous
extents received so far, or extentCount, whichever is less. Thetotal number of extents received so far
is returned as the new value ofextentCount. On system failure, returns −1. Otherwise returns 0.

SEE ALSO
cfdpadmin(1), cfdprc(5)

perl v5.18.2 2016-09-07 6

dgr::doc::pod3::dgr(3) DGRlibrary functions dgr::doc::pod3::dgr(3)

NAME
dgr − Datagram Retransmission system library

SYNOPSIS
#include "dgr.h"

[see description for available functions]

DESCRIPTION
The DGR library is an alternative implementation of a subset ofLTP, intended for use over UDP/IP in the
Internet; unlike ION’s canonical LTP implementation it includes a congestion control mechanism that
interpretsLTP block transmission failure as an indication of network congestion (not data corruption) and
reduces data transmission rate in response.

As such,DGR differs from many reliable-UDP systems in two main ways:

It uses adaptive timeout interval computation techniques
borrowed from TCP to try to avoid introducing congestion
into the network.

It borrows the concurrent−session model of transmission
from LTP (and ultimately from CFDP), rather than waiting
for one datagram to be acknowledged before sending the next,
to improve bandwidth utilization.

At this timeDGR is interoperable with other implementations ofLTP only when each block it receives is
transmitted in a singleLTP data segment encapsulated in a singleUDP datagram. Morecomplex LTP
behavior may be implemented in the future.

int dgr_open(uvast ownEngineId, unsigned in clientSvcId, unsigned short ownPortNbr, unsigned int
ownIpAddress, char *memmgrName, Dgr *dgr, DgrRC *rc)

Establishes the application’s access toDGR communication service.

ownEngineIdis the sendingLTP engineID that will characterize segments issued by thisDGR service
access point.In order to prevent erroneous system behavior, nev er assign the sameLTP engineID to
any two interoperatingDGR SAPs.

clientSvcIdidentifies theLTP client service to which allLTP segments issued by thisDGR service
access point will be directed.

ownPortNbris the port number to use forDGR service. Ifzero, a system-assignedUDP port number is
used.

ownIpAddressis the Internet address of the network interface to use forDGR service. Ifzero, this
argument defaults to the address of the interface identified by the local machine’s host name.

memmgrNameis the name of the memory manager (seememmgr(3)) to use for dynamic memory
management inDGR. If NULL, defaults to the standard systemmalloc()andfree()functions.

dgr is the location in which to store the service access pointer that must be supplied on subsequent
DGR function invocations.

rc is the location in which to store theDGR return code resulting from the attempt to open this service
access point (always DgrOpened).

On any failure, returns −1. On success, returns zero.

void dgr_getsockname(Dgr dgr, unsigned short *portNbr, unsigned int *ipAddress)
States the port number andIP address of theUDP socket used for thisDGR service access point.

void dgr_close(Dgr dgr)
Reversesdgr_open(), releasing resources where possible.

perl v5.18.2 2016-09-07 1

dgr::doc::pod3::dgr(3) DGRlibrary functions dgr::doc::pod3::dgr(3)

int dgr_send(Dgr dgr, unsigned short toPortNbr, unsigned int toIpAddress, int notificationFlags, char
*content, int length, DgrRC *rc)

Sends the indicated content, of length as indicated, to the remoteDGR service access point identified
by toPortNbr and toIpAddress. The message will be retransmitted as necessary until either it is
acknowledged orDGR determines that it cannot be delivered.

notificationFlags, if non-zero, is the logicalOR of the notification behaviors requested for this
datagram. Available behaviors areDGR_NOTE_FAILED (a notice of datagram delivery failure will
issued if delivery of the datagram fails) andDGR_NOTE_ACKED (a notice of datagram delivery
success will be issued if delivery of the datagram succeeds). Notices are issued viadgr_receive()that
is, the thread that callsdgr_receive()on this DGR service access point will receive these notices
interspersed with inbound datagram contents.

length of content must be greater than zero and may be as great as 65535, but lengths greater than
8192 may not be supported by the local underlyingUDP implementation; to minimize the chance of
data loss when transmitting over the internet, length should not exceed 512.

rc is the location in which to store theDGR return code resulting from the attempt to send the content.

On any failure, returns −1 and sets*rc to DgrFailed. Onsuccess, returns zero.

int dgr_receive(Dgr dgr, unsigned short *fromPortNbr, unsigned int *fromIpAddress, char *content, int
*length, int *errnbr, int timeoutSeconds, DgrRC *rc)

Delivers the oldest undeliveredDGR ev ent queued for delivery.

DGR ev ents are of two type: (a) messages received from a remoteDGR service access point and (b)
notices of previously sent messages thatDGR has determined either have been or cannot be delivered,
as requested in thenotificationFlagsparameters provided to thedgr_send()calls that sent those
messages.

In the former case,dgr_receive()will place the content of the inbound message incontent, its length in
length, and theIP address and port number of the sender infromIpAddressand fromPortNbr, and it
will set *rc to DgrDatagramReceived and return zero.

In the latter case,dgr_receive()will place the content of the affectedoutbound message incontent
and its length inlength and return zero.If the event being reported is a delivery success, then
DgrDatagramAcknowledged will be placed in*rc . Otherwise, DgrDatagramNotAcknowledged will
be placed in*rc and the relevant errno (if any) will be placed in*errnbr.

The contentbuffer should be at least 65535 bytes in length to enable delivery of the content of the
received or delivered/undeliverable message.

timeoutSecondscontrols blocking behavior. If timeoutSecondsis DGR_BLOCKING (i.e., −1),
dgr_receive()will not return until (a) there is either an inbound message to deliver or an outbound
message delivery result to report, or (b) the function is interrupted by means ofdgr_interrupt(). If
timeoutSecondsis DGR_POLL (i.e., zero),dgr_receive()returns immediately; if there is currently no
inbound message to deliver and no outbound message delivery result to report, the function sets*rc to
DgrTimedOut and returns zero.For any other positive value oftimeoutSeconds, dgr_receive()returns
after the indicated number of seconds have lapsed (in which case the returned value of*rc is
DgrTimedOut), or when there is a message to deliver or a delivery result to report, or when the
function is interrupted by means ofdgr_interrupt(), whichever occurs first. When the function returns
due to interruption bydgr_interrupt(), the value placed in*rc is DgrInterrupted instead of
DgrDatagramReceived.

rc is the location in which to store theDGR return code resulting from the attempt to receive content.

On any I/O error or other unrecoverable system error, returns −1. Otherwise always returns zero,
placing DgrFailed in*rc and writing a failure message in the event of an operating error.

perl v5.18.2 2016-09-07 2

dgr::doc::pod3::dgr(3) DGRlibrary functions dgr::doc::pod3::dgr(3)

void dgr_interrupt(Dgr dgr)
Interrupts adgr_receive()invocation that is currently blocked. Designedto be called from a signal
handler; for this purpose,dgr may need to be obtained from a static variable.

SEE ALSO
ltp (3), file2dgr(1), dgr2file(1)

perl v5.18.2 2016-09-07 3

dtpc::doc::pod3::dtpc(3) DTPClibrary functions dtpc::doc::pod3::dtpc(3)

NAME
dtpc − Delay−Tolerant Payload Conditioning (DTPC) communications library

SYNOPSIS
#include "dtpc.h"

[see description for available functions]

DESCRIPTION
The dtpc library provides functions enabling application software to use Delay-Tolerant Payload
Conditioning (DTPC) when exchanging information over a delay-tolerant network. DTPC is an application
service protocol, running in a layer immediately above Bundle Protocol, that offers delay-tolerant support
for several end-to-end services to applications that may require them. These services include delivery of
application data items in transmission (rather than reception) order; detection of reception gaps in the
sequence of transmitted application data items, with end-to-end negative acknowledgment of the missing
data; end-to-end positive acknowledgment of successfully received data; end-to-end retransmission of
missing data, driven either by negative acknowledgment or timer expiration; suppression of duplicate
application data items; aggregation of small application data items into large bundle payloads, to reduce
bundle protocol overhead; and application-controlled elision of redundant data items in aggregated
payloads, to improve link utiliization.

int dptc_attach()
Attaches the application toDTPC functionality on the local computer. Returns 0 on success, −1 on any
error.

void dptc_detach()
Terminates all access toDTPC functionality on the local computer.

int dtpc_entity_is_started()
Returns 1 if the localDTPCentity has been started and not yet stopped, 0 otherwise.

int dtpc_open(unsigned int topicID, DtpcElisionFn elisionFn, DtpcSAP *dtpcsapPtr)
Establishes the application as the sole authorized client for posting and receiving application data
items on topictopicID within the localBP node. Onsuccess, the service access point for posting and
receiving such data items is placed in*dtpcsapPtr, the elision callback functionelisionFn (if not
NULL) is associated with this topic, and 0 is returned. Returns −1 on any error.

int dtpc_send(unsigned int profileID, DtpcSAP sap, char *destEid, unsigned int maxRtx, unsigned int
aggrSizeLimit, unsigned int aggrTimeLimit, int lifespan, BpExtendedCOS *extendedCOS, unsigned char
srrFlags, BpCustodySwitch custodySwitch, char *reportToEid, int classOfService, Object item, unsigned
int length)

Inserts an application data item into an outboundDTPCapplication data unit destined fordestEid.

Transmission of that outboundADU will be subject to the profile identified byprofileID, as asserted by
dtpcadmin(1), if profileID is non-zero.In that case,maxRtx, aggrSizeLimit, aggrTimeLimit, lifespan,
extendedCOS, srrFlags, custodySwitch, reportToEid, andclassOfServiceare ignored.

If profileID is zero then the profile asserted bydtpcadmin(1) that matchesmaxRtx, aggrSizeLimit,
aggrTimeLimit, lifespan, extendedCOS, srrFlags, custodySwitch, reportToEid, and classOfServicewill
govern transmission of theADU, unless no such profile has been asserted, in which casedtpc_send()
returns 0 indicating user error.

maxRtxis the maximum number of times any single DTPC ADU transmitted subject to the indicated
profile may be retransmitted by theDTPC entity. If maxRtxis zero, then theDTPC transport service
features (in-order delivery, end-to-end acknowledgment, etc.) are disabled for this profile.

aggrSizeLimit is the size threshold for concluding aggregation of an outboundADU and requesting
transmission of thatADU. If aggrSizeLimitis zero, then theDTPC transmission optimization features
(aggregation and elision) are disabled for this profile.

aggrTimeLimit is the time threshold for concluding aggregation of an outboundADU and requesting

perl v5.18.2 2016-09-07 1

dtpc::doc::pod3::dtpc(3) DTPClibrary functions dtpc::doc::pod3::dtpc(3)

transmission of thatADU. If aggrTimeLimit is zero, then theDTPC transmission optimization features
(aggregation and elision) are disabled for this profile.

lifespan, extendedCOS, srrFlags, custodySwitch, reportToEid, and classOfServiceare as defined for
bp_send (seebp(3)).

item must be an object allocated withinION’s SDR ‘‘ heap’’, and length must be the length of that
object. Theitem will be inserted into the outboundADU’s list of data items posted for the topic
associated withsap, and the elision callback function declared forsap (if any, and if the applicable
profile does not disable transmission optimization features) will be invoked immediately after insertion
of the application data item but beforeDTPC makes any decision on whether or not to initiate
transmission of the outboundADU.

The function returns 1 on success, 0 on any user application error, −1 on any system error.

int dtpc_receive(DtpcSAP sap, DtpcDelivery *dlvBuffer, int timeoutSeconds)
Receives a single DTPCapplication data item, or reports on some failure ofDTPC reception activity.

The ‘‘result’’ fi eld of the dlvBuffer structure will be used to indicate the outcome of the data reception
activity.

If at least one application data item on the topic associated withsaphas not yet been delivered to the
SAP, then the payload of the oldest such item will be returned indlvBuffer−>item and
dlvBuffer−>result will be set to PayloadPresent. Ifthere is no such item,dtpc_receive()blocks for up
to timeoutSecondswhile waiting for one to arrive.

If timeoutSecondsis DTPC_POLL(i.e., zero) and no application data item is awaiting delivery, or if
timeoutSecondsis greater than zero but no item arrives before timeoutSecondshave elapsed, then
dlvBuffer−>result will be set to ReceptionTimedOut. IftimeoutSecondsis DTPC_BLOCKING(i.e., −1)
thenbp_receive()blocks until either an item arrives or the function is interrupted by an invocation of
dtpc_interrupt().

dlvBuffer−>result will be set to ReceptionInterrupted in the event that the calling process received and
handled some signal other thanSIGALRM while waiting for a bundle.

dlvBuffer−>result will be set to DtpcServiceStopped in the event that DTPC service has been
terminated on the local node.

The application data item delivered in theDTPC delivery structure, if any, will be an object allocated
within ION’s SDR ‘‘ heap’’; the length of that object will likewise be provided in the DtpcDelivery
structure.

Be sure to calldtpc_release_delivery()after every successful invocation ofdtpc_receive().

The function returns 0 on success, −1 on any error.

void dtpc_interrupt(DtpcSAP sap)
Interrupts adtpc_receive()invocation that is currently blocked. Thisfunction is designed to be called
from a signal handler; for this purpose,sapmay need to be obtained from a static variable.

void dtpc_release_delivery(DtpcDelivery *dlvBuffer)
Releases resources allocated to the indicatedDTPCdelivery.

void dtpc_close(DtpcSAP sap)
Removes the application as the sole authorized client for posting and receiving application data items
on the topic indicated insapwithin the localBP node. Theapplication relinquishes its ability to send
and receive application data items on the indicated topic.

SEE ALSO
dtpcadmin(1), dtpcrc(5), bp(3)

perl v5.18.2 2016-09-07 2

ici::doc::pod3::ion(3) ICIlibrary functions ici::doc::pod3::ion(3)

NAME
ion − Interplanetary Overlay Network common definitions and functions

SYNOPSIS
#include "ion.h"

[see description for available functions]

DESCRIPTION
The Interplanetary Overlay Network (ION) software distribution is an implementation of Delay-Tolerant
Networking (DTN) architecture as described in InternetRFC 4838. It is designed to enable inexpensive
insertion of DTN functionality into embedded systems such as robotic spacecraft. The intent ofION
deployment in space flight mission systems is to reduce cost and risk in mission communications by
simplifying the construction and operation of automated digital data communication networks spanning
space links, planetary surface links, and terrestrial links.

The ION distribution comprises the following software packages:

ici (Interplanetary Communication Infrastructure), a set of general-purpose libraries providing
common functionality to the other packages.

ltp (Licklider Transmission Protocol), a coreDTN protocol that provides transmission reliability based
on delay-tolerant acknowledgments, timeouts, and retransmissions.

dgr (Datagram Retransmission), a library that enables data to be transmitted viaUDP with reliability
comparable to that provided byTCP. DGR is an alternative implementation ofLTP, designed for use
within an internet.

bssp (Bundle Streaming Service Protocol), a protocol that supports delay-tolerant data streaming.
BSSP delivers data in transmission order with minimum latency but possibly with omissions, for
immediate display, and at the same time it delivers the same data reliably in background so that the
streamed data can be ‘‘rewound’’ f or possibly improved presentation.

bp (Bundle Protocol), a coreDTN protocol that provides delay-tolerant forwarding of data through a
network in which continuous end-to-end connectivity is never assured, including support for delay-
tolerant dynamic routing. The Bundle Protocol (BP) specification is defined in InternetRFC 5050.

ams (Asynchronous Message Service),cfdp (CCSDS File Delivery Protocol),dtpc (Delay-Tolerant
Payload Conditioning), andbss (Bundle Streaming Service), application-layer services that are not
part of theDTN architecture but utilize underlyingDTN protocols.

Taken together, the packages included in theION software distribution constitute a communication
capability characterized by the following operational features:

Reliable conveyance of data over a DTN, i.e., a network in which it might never be possible for any
node to have reliable information about the detailed current state of any other node.

Built on this capability, reliable distribution of short messages to multiple recipients (subscribers)
residing in such a network.

Management of traffic through such a network.

Facilities for monitoring the performance of the network.

Robustness against node failure.

Portability across heterogeneous computing platforms.

High speed with low overhead.

Easy integration with heterogeneous underlying communication infrastructure, ranging from Internet
to dedicated spacecraft communication links.

While most of the ici package consists of libraries providing functionality that may be of general utility in

perl v5.18.2 2016-09-07 1

ici::doc::pod3::ion(3) ICIlibrary functions ici::doc::pod3::ion(3)

any complex embedded software system, the functions and macros described below are specifically
designed to support operations ofION’s delay-tolerant networking protocol stack.

TIMESTAMPBUFSZ
This macro returns the recommended size of a buffer that is intended to contain a timestamp in ION-
standard format:

yyyy/mm/dd−hh:mm:ss

int ionAttach()
Attaches the invoking task toION infrastructure as previously established by running theionadmin
utility program. Returns zero on success, −1 on any error.

void ionDetach()
Detaches the invoking task fromION infrastructure. Inparticular, releases handle allocated for access
to ION’s non-volatile database.NOTE, though, thationDetach()has no effect when the invoking task
is running in a non-memory-protected environment, such as VxWorks, where allION resource access
variables are shared by all tasks: no single task could detach without crashing all otherION tasks.

void ionProd(uvast fromNode, uvast toNode, unsigned int xmitRate, unsigned int owlt)
This function is designed to be called from an operating environment command or a fault protection
routine, to enable operation of a node to resume when all of its scheduled contacts are in the past
(making it impossible to use aDTN communication contact to assert additional future communication
contacts). Thefunction asserts a single new unidirectional contact conforming to the arguments
provided, including the applicable one-way light time, with start time equal to the current time (at the
moment of execution of the function) and end time equal to the start time plus 2 hours. The result of
executing the function is written to theION log using standardION status message logging functions.

NOTE that the ionProd() function must be invoked twice in order to establish bidirectional
communication.

void ionTerminate()
Shuts down the entireION node, terminating all daemons. The state of the node is retained in the
node’sSDRheap.

int ionStartAttendant(ReqAttendant *attendant)
Initializes the semaphore inattendantso that it can be used for blockingZCO space requisitions by
ionRequestZcoSpace(). Returns 0 on success, −1 on any error.

void ionPauseAttendant(ReqAttendant *attendant)
‘‘ Ends’’ the semaphore inattendantso that the task that is blocked on taking it is interrupted and may
respond to an error or shutdown condition.

void ionResumeAttendant(ReqAttendant *attendant)
Reinitializes the semaphore inattendant so that it can again be used for blockingZCO space
requisitions.

void ionStopAttendant(ReqAttendant *attendant)
Destroys the semaphore inattendant, preventing a potential resource leak.

int ionRequestZcoSpace(ZcoAcct acct, vast fileSpaceNeeded, vast bulkSpaceNeeded, vast
heapSpaceNeeded, unsigned char coarsePriority, unsigned char finePriority, ReqAttendant *attendant,
ReqTicket *ticket)

Lodges a request for space in the pool identified byacct. If the requested space can be provided
immediately, it is reserved for use by the calling task and*ticket is set to zero. Otherwise, ifattendant
is NULL, no space is reserved and again *ticket is set to zero. Otherwise, the request has been queued
for service when space becomes available and*ticket is set to the address of a ticket referencing this
request; the calling task should pend on the semaphore inattendant, and upon taking the semaphore it
mustionShred()the ticket and may then consider the requested space reserved for its use. Return 0 on
success, −1 on any failure.

perl v5.18.2 2016-09-07 2

ici::doc::pod3::ion(3) ICIlibrary functions ici::doc::pod3::ion(3)

void ionShred(ReqTicket *ticket)
Acknowledges the reservation ofZCO space requested by the call toionRequestZcoSpace()that
returnedticket. Note that failure to acknowledge a serviced ticket promptly (within 3 seconds of
receiving it) will be interpreted as refusal of the reserved ZCO space, resulting in that space being
made available for use by other tasks.

Object ionCreateZco(ZcoMedium source, Object location, vast offset, vast length, unsigned char
coarsePriority, unsigned char finePriority, ZcoAcct acct, ReqAttendant *attendant)

This function provides a ‘‘blocking’’ i mplementation of admission control inION. Like zco_create(),
it constructs a zero-copy object (seezco(3)) that contains a single extent of source data residing at
location in source, of which the firstoffsetbytes are omitted and the next lengthbytes are included.
But unlike zco_create(), ionCreateZco()can be configured to block (rather than return an immediate
error indication) so long as the total amount of space insourcethat is available for new ZCO formation
is less thanlength. ionCreateZco()operates by callingionRequestZcoSpace(), then pending on the
semaphore inattendantas necessary before creating theZCO. ionCreateZco()returns when either (a)
space has become available and theZCO has been created, in which case the location of theZCO is
returned, or (b) the function has failed (in which case ((Object) −1) is returned), or (c) eitherattendant
was null and sufficient space for the first extent of theZCO was not immediately available or else the
function was interrupted byionPauseAttendant()before space for theZCO became available (in which
case 0 is returned).

vast ionAppendZcoExtent(Object zco, ZcoMedium source, Object location, vast offset, vast length,
unsigned char coarsePriority, unsigned char finePriority, ReqAttendant *attendant)

Similar to ionCreateZco()except that instead of creating a new ZCO it appends an additional extent to
an existing ZCO. Returns −1 on failure, 0 on interruption byionPauseAttendant()or if attendantwas
NULL and sufficient space for the extent was not immediately available, lengthon success.

SdrgetIonsdr()
Returns a pointer to theSDR management object, previously acquired by callingionAttach(), or zero
on any error.

PsmPartitiongetIonwm()
Returns a pointer to theION working memory partition, previously acquired by callingionAttach(), or
zero on any error.

int getIonMemoryMgr()
Returns the memory managerID for operations onION’s working memory partition, previously
acquired by callingionAttach(), or −1 on any error.

int ionLocked();
Returns 1 if the calling task is the owner of the currentSDR transaction. Assuringthat ION is locked
while related critical operations are performed is essential to the avoidance of race conditions.

uvastgetOwnNodeNbr()
Returns the Bundle Protocol node number identifying this node, as declared whenION was initialized
by ionadmin.

time_tgetUTCTime()
Returns the currentUTC time, as computed from local clock time and the computer’s current offset
from UTC (due to clock drift,not due to time zone difference; theutcdelta) as managed from
ionadmin.

int ionClockIsSynchronized()
Returns 1 if the computer on which the localION node is running has a synchronized clock , i.e., a
clock that reports the currentUTC time as a value that differs from the correct time by an interval
approximately equal to the currently asserted offset from UTC due to clock drift; returns zero
otherwise.

If the machine’s clock is synchronized then its reported values (as returned bygetUTCTime()) can
safely be used as the creation times of new bundles and the expiration time of such a bundle can

perl v5.18.2 2016-09-07 3

ici::doc::pod3::ion(3) ICIlibrary functions ici::doc::pod3::ion(3)

accurately be computed as the sum of the bundle’s creation time and time to live. If not, then the
creation timestamp time of new bundles sourced at the localION node must be zero and the creation
timestamp sequence numbers must increase monotonically forever, nev er rolling over to zero.

void writeTimestampLocal(time_t timestamp, char *timestampBuffer)
Expresses the time value intimestampas a local timestamp string in ION-standard format, as noted
above, in timestampBuffer.

void writeTimestampUTC(time_t timestamp, char *timestampBuffer)
Expresses the time value intimestampas aUTC timestamp string in ION-standard format, as noted
above, in timestampBuffer.

time_t readTimestampLocal(char *timestampBuffer, time_t referenceTime)
Parses the local timestamp string intimestampBufferand returns the corresponding time value (as
would be returned bytime(2)), or zero if the timestamp string cannot be parsed successfully. The
timestamp string is normally expected to be an absolute expression of local time in ION-standard
format as noted above. Howev er, a relative time expression variant is also supported: if the first
character oftimestampBufferis ’+’ then the remainder of the string is interpreted as a count of
seconds; the sum of this value and the time value inreferenceTimeis returned.

time_t readTimestampUTC(char *timestampBuffer, time_t referenceTime)
Same asreadTimestampLocal()except that iftimestampBufferis not a relative time expression then it
is interpreted as an absolute expression ofUTC time in ION-standard format as noted above.

STATUS MESSAGES
ION useswriteMemo(), putErrmsg(), and putSysErrmsg()to log several different types of standardized
status messages.

Informational messages
These messages are generated to inform the user of the occurrence of events that are nominal but
significant, such as the controlled termination of a daemon or the production of a congestion forecast.
Each informational message has the following format:

{ yyyy/mm/dd hh:mm:ss} [i] text

Warning messages
These messages are generated to inform the user of the occurrence of events that are off-nominal but
are likely caused by configuration or operational errors rather than software failure. Eachwarning
message has the following format:

{ yyyy/mm/dd hh:mm:ss} [?] text

Diagnostic messages
These messages are produced by callingputErrmsg() or putSysErrmsg(). They are generated to
inform the user of the occurrence of events that are off-nominal and might be due to errors in software.
The location within theION software at which the off-nominal condition was detected is indicated in
the message:

{ yyyy/mm/dd hh:mm:ss} at l inennnof sourcefilename, text(argument)

Note that theargumentportion of the message (including its enclosing parentheses) will be provided
only when an argument value seems potentially helpful in fault analysis.

Bundle Status Report (BSR) messages
A BSRmessage informs the user of the arrival of a BSR,a Bundle Protocol report on the status of some
bundle. BSRsare issued in the course of processing bundles for which one or more status report
request flags are set, and they are also issued when bundles for which custody transfer is requested are
destroyed prior to delivery to their destination endpoints.A BSR message is generated by
ipnadminep upon reception of aBSR. The time and place (node) at which theBSR was issued are
indicated in the message:

{ yyyy/mm/dd hh:mm:ss} [s] (sourceEID)/creationTimeSeconds:counter/fragmentOffset status

perl v5.18.2 2016-09-07 4

ici::doc::pod3::ion(3) ICIlibrary functions ici::doc::pod3::ion(3)

flagsByteat timeonendpointID, ’reasonString’.

Communication statistics messages
A network performance report is a set of eight communication statistics messages, one for each of
eight different types of network activity. A report is issued every time contact transmission or
reception starts or stops, except when there is no activity of any kind on the local node since the prior
report. Whena report is issued, statistic messages are generated to summarize all network activity
detected since the prior report, after which all network activity counters and accumulators are reset to
zero.

NOTE also that thebpstats utility program can be invoked to issue an interim network performance
report at any time. Issuanceof interim status reports doesnot cause network activity counters and
accumulators to be reset to zero.

Statistics messages have the following format:

{ yyyy/mm/dd hh:mm:ss} [x] xxx from tttttttt to TTTTTTTT: (0) aaaa bbbbbbbbbb(1) cccc
dddddddddd(2) eeee ffffffffff (+) gggg hhhhhhhhhh

xxx indicates the type of network activity that the message is reporting on. Statistics for eight different
types of network activity are reported:

src This message reports on the bundles sourced at the local node during the indicated interval.

fwd
This message reports on the bundles forwarded by the local node. When a bundle is re-forwarded
due to custody transfer timeout it is counted a second time here.

xmt
This message reports on the bundles passed to the convergence layer protocol(s) for transmission
from this node.Again, a re-forwarded bundle that is then re-transmitted at the convergence layer
is counted a second time here.

rcv This message reports on the bundles from other nodes that were received at the local node.

dlv This message reports on the bundles delivered to applications via endpoints on the local node.

ctr This message reports on the custody refusal signals received at the local node.

rfw This message reports on bundles for which convergence-layer transmission failed at this node,
causing the bundles to be re-forwarded.

exp This message reports on the bundles destroyed at this node due toTTL expiration.

tttttttt and TTTTTTTTindicate the start and end times of the interval for which statistics are being
reported, expressed inyyyy/mm/dd−hh:mm:ssformat. TTTTTTTTis the current time andtttttttt is the
time of the prior report.

Each of the four value pairs following the colon (:) reports on the number of bundles counted for the
indicated type of network activity, for the indicated traffic flow, followed by the sum of the sizes of the
payloads of all those bundles. Thefour traffic flows for which statistics are reported are ‘‘(0)’ ’ the
priority−0 or ‘‘bulk’ ’ t raffic, ‘‘(1)’ ’ the priority−1 ‘‘standard’’ t raffic, ‘‘(2)’ ’ the priority−2 ‘‘expedited’’
traffic, and ‘‘(+)’’ the total for all classes of service.

Free-form messages
Other status messages are free-form, except that date and time are always noted just as for the
documented status message types.

SEE ALSO
ionadmin(1), rfxclock(1), bpstats(1), llcv (3), lyst(3), memmgr(3), platform(3), psm(3), sdr(3), zco(3),
ltp (3), bp(3), cfdp(3), ams(3), bss(3)

perl v5.18.2 2016-09-07 5

ici::doc::pod3::llcv(3) ICIlibrary functions ici::doc::pod3::llcv(3)

NAME
llcv − library for manipulating linked−list condition variable objects

SYNOPSIS
#include "llcv.h"

typedef struct llcv_str
{

Lyst list;
pthread_mutex_t mutex;
pthread_cond_t cv;

} * Llcv;

typedef int (*LlcvPredicate)(Llcv);

[see description for available functions]

DESCRIPTION
A ‘‘link ed-list condition variable’’ object (LLCV) is an inter-thread communication mechanism that pairs a
process-private linked list in memory with a condition variable as provided by the pthreads library. LLCVs
echo in thread programming the standardION inter-process or inter-task communication model that pairs
shared-memory semaphores with linked lists in shared memory or shared non-volatile storage.As in the
semaphore/list model, variable-length messages may be transmitted; the resources allocated to the
communication mechanism grow and shrink to accommodate changes in data rate; the rate at which
messages are issued is completely decoupled from the rate at which messages are received and processed.
That is, there is no flow control, no blocking, and therefore no possibility of deadlock or ‘‘deadly
embrace’’. Traffic spikes are handled without impact on processing rate, provided sufficient memory is
provided to accommodate the peak backlog.

An LLCV comprises a Lyst, a mutex, and a condition variable. TheLyst may be in either private or shared
memory, but the Lyst itself is not shared with other processes. The reader thread waits on the condition
variable until signaled by a writer that some condition is now true. Thestandard Lyst API functions are
used to populate and drain the linked list. In order to protect linked list integrity, each thread must call
llcv_lock() before operating on the Lyst andllcv_unlock() afterwards. Theother llcv functions merely
effect flow signaling in a way that makes it unnecessary for the reader to poll or busy-wait on the Lyst.

Llcv llcv_open(Lyst list, Llcv llcv)
Opens anLLCV, initializing as necessary. The list argument must point to an existing Lyst, which may
reside in either private or shared dynamic memory. llcv must point to an existing llcv_str management
object, which may reside in either static or dynamic (private or shared) memory— but NOT in stack
space. Returnsllcv on success,NULL on any error.

void llcv_lock(Llcv llcv)
Locks theLLCV ’s Lyst so that it may be updated or examined safely by the calling thread.Fails
silently on any error.

void llcv_unlock(Llcv llcv)
Unlocks theLLCV ’s Lyst so that another thread may lock and update or examine it. Fails silently on
any error.

int llcv_wait(Llcv llcv, LlcvPredicate cond, int microseconds)
Returns when the Lyst encapsulated within theLLCV meets the indicated condition.If microseconds
is non-negative, will return −1 and seterrno to ETIMEDOUT when the indicated number of
microseconds has passed, if and only if the indicated condition has not been met by that time.
Negative values of the microseconds argument other thanLLCV_BLOCKING (defined as −1) are
illegal. Returns−1 on any error.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::llcv(3) ICIlibrary functions ici::doc::pod3::llcv(3)

void llcv_signal(Llcv llcv, LlcvPredicate cond)
Locks the indicatedLLCV ’s Lyst; tests (evaluates) the indicated condition with regard to thatLLCV ; if
the condition is true, signals to the waiting reader on thisLLCV (if any) that the Lyst encapsulated in
the indicatedLLCV now meets the indicated condition; and unlocks the Lyst.

void llcv_signal_while_locked(Llcv llcv, LlcvPredicate cond)
Same asllcv_signal()except does not lock the Llcv’s mutex before signalling or unlock afterwards.
For use when the Llcv is already locked; prevents deadlock.

void llcv_close(Llcv llcv)
Destroys the indicatedLLCV ’s mutex and condition variable. Fails silently (and has no effect) if a
reader is currently waiting on the Llcv.

int llcv_lyst_is_empty(Llcv Llcv)
A built-in ‘‘convenience’’ predicate, for use when callingllcv_wait(), llcv_signal(), or
llcv_signal_while_locked(). Returns true if the length of the indicatedLLCV ’s encapsulated Lyst is
zero, false otherwise.

int llcv_lyst_not_empty(Llcv Llcv)
A built-in ‘‘convenience’’ predicate, for use when callingllcv_wait(), llcv_signal(), or
llcv_signal_while_locked(). Returns true if the length of theLLCV ’s encapsulated Lyst is non-zero,
false otherwise.

SEE ALSO
lyst(3)

perl v5.18.2 2016-09-07 2

ici::doc::pod3::lyst(3) ICIlibrary functions ici::doc::pod3::lyst(3)

NAME
lyst − library for manipulating generalized doubly linked lists

SYNOPSIS
#include "lyst.h"

typedef int (*LystCompareFn)(void *s1, void *s2);
typedef void (*LystCallback)(LystElt elt, void *userdata);

[see description for available functions]

DESCRIPTION
The ‘‘lyst’ ’ l ibrary uses two types of objects,Lyst objects andLystElt objects. ALyst knows how many
elements it contains, its first and last elements, the memory manager used to create/destroy the Lyst and its
elements, and how the elements are sorted.A LystElt knows its content (normally a pointer to an item in
memory), what Lyst it belongs to, and the LystElts before and after it in that Lyst.

Lyst lyst_create(void)
Create and return a new Lyst object without any elements in it. All operations performed on this Lyst
will use the allocation/deallocation functions of the default memory manager ‘‘std’’ (seememmgr(3)).
ReturnsNULL on any failure.

Lyst lyst_create_using(unsigned memmgrId)
Create and return a new Lyst object without any elements in it. All operations performed on this Lyst
will use the allocation/deallocation functions of the specified memory manager (seememmgr(3)).
ReturnsNULL on any failure.

void lyst_clear(Lyst list)
Clear a Lyst, i.e. free all elements oflist, calling the Lyst’s deletion function if defined, but without
destroying the Lyst itself.

void lyst_destroy(Lyst list)
Destroy a Lyst. Will free all elements oflist, calling the Lyst’s deletion function if defined.

void lyst_compare_set(Lyst list, LystCompareFn compareFn)
LystCompareFn lyst_compare_get(Lyst list)

Set/get comparison function for specified Lyst. Comparisonfunctions are called with two Lyst
element data pointers, and must return a negative integer if first is less than second, 0 if both are equal,
and a positive integer if first is greater than second (i.e., same return values asstrcmp(3)). The
comparison function is used by thelyst_insert(), lyst_search(), lyst_sort(), and lyst_sorted()functions.

void lyst_direction_set(Lyst list, LystSortDirection direction)
Set sort direction (eitherLIST_SORT_ASCENDINGor LIST_SORT_DESCENDING) for specified Lyst.
If no comparison function is set, then this controls whether new elements are added to the end or
beginning (respectively) of the Lyst whenlyst_insert()is called.

void lyst_delete_set(Lyst list, LystCallback deleteFn, void *userdata)
Set user deletion function for specified Lyst. This function is automatically called whenever an
element of the Lyst is deleted, to perform any user-required processing. When automatically called,
the deletion function is passed two arguments: the element being deleted and theuserdatapointer
specified in thelyst_delete_set()call.

void lyst_insert_set(Lyst list, LystCallback insertFn, void *userdata)
Set user insertion function for specified Lyst. Thisfunction is automatically called whenever a Lyst
element is inserted into the Lyst, to perform any user-required processing. When automatically called,
the insertion function is passed two arguments: the element being inserted and theuserdatapointer
specified in thelyst_insert_set()call.

unsigned long lyst_length(Lyst list)
Return the number of elements in the Lyst.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::lyst(3) ICIlibrary functions ici::doc::pod3::lyst(3)

LystElt lyst_insert(Lyst list, void *data)
Create a new element whose content is the pointer value data and insert it into the Lyst. Usesthe
Lyst’s comparison function to select insertion point, if defined; otherwise adds the new element at the
beginning or end of the Lyst, depending on the Lyst sort direction setting. Returns a pointer to the
newly created element, orNULL on any failure.

LystElt lyst_insert_first(Lyst list, void *data)
LystElt lyst_insert_last(Lyst list, void *data)

Create a new element and insert it at the beginning/end of the Lyst. If these functions are used when
inserting elements into a Lyst with a defined comparison function, then the Lyst may get out of order
and future calls tolyst_insert()can put new elements in unpredictable locations.Returns a pointer to
the newly created element, orNULL on any failure.

LystElt lyst_insert_before(LystElt element, void *data)
LystElt lyst_insert_after(LystElt element, void *data)

Create a new element and insert it before/after the specified element. If these functions are used when
inserting elements into a Lyst with a defined comparison function, then the Lyst may get out of order
and future calls to lyst_insert can put new elements in unpredictable locations. Returns a pointer to the
newly created element, orNULL on any failure.

void lyst_delete(LystElt element)
Delete the specified element from its Lyst and deallocate its memory. Calls the user delete function if
defined.

LystElt lyst_first(Lyst list)
LystElt lyst_last(Lyst list)

Return a pointer to the first/last element of a Lyst.

LystElt lyst_next(LystElt element)
LystElt lyst_prev(LystElt element)

Return a pointer to the element following/preceding the specified element.

LystElt lyst_search(LystElt element, void *searchValue)
Find the first matching element in a Lyst starting with the specified element.ReturnsNULL if no
matches are found. Uses the Lyst’s comparison function if defined, otherwise searches from the given
element to the end of the Lyst.

Lyst lyst_lyst(LystElt element)
Return the Lyst to which the specified element belongs.

void* lyst_data(LystElt element)
void* lyst_data_set(LystElt element, void *data)

Get/set the pointer value content of the specified Lyst element. The set routine returns the element’s
previous content, and the delete function isnot called. If the lyst_data_set()function is used on an
element of a Lyst with a defined comparison function, then the Lyst may get out of order and future
calls tolyst_insert()can put new elements in unpredictable locations.

void lyst_sort(Lyst list)
Sort the Lyst based on the current comparison function and sort direction.A stable insertion sort is
used that is very fast when the elements are already in order.

int lyst_sorted(Lyst list)
Determine whether or not the Lyst is sorted based on the current comparison function and sort
direction.

void lyst_apply(Lyst list, LystCallback applyFn, void *userdata)
Apply the functionapplyFn automatically to each element in the Lyst. Whenautomatically called,
applyFn is passed two arguments: a pointer to an element, and theuserdataargument specified in the
call to lyst_apply(). applyFnshould not delete or reorder the elements in the Lyst.

perl v5.18.2 2016-09-07 2

ici::doc::pod3::lyst(3) ICIlibrary functions ici::doc::pod3::lyst(3)

SEE ALSO
memmgr(3), psm(3)

perl v5.18.2 2016-09-07 3

ici::doc::pod3::memmgr(3) ICIlibrary functions ici::doc::pod3::memmgr(3)

NAME
memmgr − memory manager abstraction functions

SYNOPSIS
#include "memmgr.h"

typedef void *(* MemAllocator)
(char *fileName, int lineNbr, size_t size);

typedef void (* MemDeallocator)
(char *fileName, int lineNbr, void * blk);

typedef void *(* MemAtoPConverter) (unsigned int address);
typedef unsigned int (* MemPtoAConverter) (void * pointer);

unsigned int memmgr_add (char *name,
MemAllocator take,
MemDeallocator release,
MemAtoPConverter AtoP,
MemPtoAConverter PtoA);

int memmgr_find (char *name);
char *memmgr_name (int mgrId);
MemAllocator memmgr_take (int mgrId);
MemDeallocator memmgr_release (int mgrId);
MemAtoPConverter memmgr_AtoP (int mgrId);
MemPtoAConverter memmgr_PtoA (int mgrId;

int memmgr_open (int memKey,
unsigned long memSize,
char **memPtr,
int *smId,
char *partitionName,
PsmPartition *partition,
int *memMgr,
MemAllocator afn,
MemDeallocator ffn,
MemAtoPConverter apfn,
MemPtoAConverter pafn);

void memmgr_destroy (int smId,
PsmPartition *partition);

DESCRIPTION
‘‘ memmgr’’ i s an abstraction layer for administration of memory management. It enables multiple memory
managers to coexist in a single application. Each memory manager specification is required to include
pointers to a memory allocation function, a memory deallocation function, and functions for translating
between local memory pointers and ‘‘addresses’’, which are abstract memory locations that have private
meaning to the manager. The allocation function is expected to return a block of memory of size ‘‘size’’ (in
bytes), initialized to all binary zeroes.The fileName and lineNbr arguments to the allocation and
deallocation functions are expected to be the values of __FILE_ _and __LINE_ _at the point at which the
functions are called; this supports any memory usage tracing viasptrace(3) that may be implemented by
the underlying memory management system.

Memory managers are identified by number and by name.The identifying number for a memory manager
is an index into a private, fixed-length array of up to 8 memory manager configuration structures; that is,
memory manager number must be in the range 0−7.However, memory manager numbers are assigned
dynamically and not always predictably. To enable multiple applications to use the same memory manager
for a given segment of shared memory, a memory manager may be located by a predefined name of up to
15 characters that is known to all the applications.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::memmgr(3) ICIlibrary functions ici::doc::pod3::memmgr(3)

The memory manager with manager number 0 is always available; its name is ‘‘std’’. Its memory
allocation function iscalloc(), its deallocation function isfree(), and its pointer/address translation
functions are merely casts.

unsigned int memmgr_add(char *name, MemAllocator take, MemDeallocator release, MemAtoPConverter
AtoP, MemPtoAConverter PtoA)

Add a memory manager to the memory manager array, if not already defined; attempting to add a
previously added memory manager is not considered an error. name is the name of the memory
manager. take is a pointer to the manager’s memory allocation function;releaseis a pointer to the
manager’s memory deallocation function.AtoP is a pointer to the manager’s function for converting
an address to a local memory pointer;PtoA is a pointer to the manager’s pointer-to-address converter
function. Returnsthe memory managerID number assigned to the named manager, or −1 on any error.

NOTE: memmgr_add()is NOT thread-safe. Ina multithreaded execution image (e.g., VxWorks), all
memory managers should be loadedbeforeany subordinate threads or tasks are spawned.

int memmgr_find(char *name)
Return the memmgrID of the named manager, or −1 if not found.

char *memmgr_name(int mgrId)
Return the name of the manager given by mgrId.

MemAllocator memmgr_take(int mgrId)
Return the allocator function pointer for the manager given by mgrId.

memDeallocator memmgr_release(int mgrId)
Return the deallocator function pointer for the manager given by mgrId.

MemAtoPConverter memmgr_AtoP(int mgrId)
Return the address-to-pointer converter function pointer for the manager given by mgrId.

MemPtoAConverter memmgr_PtoA(int mgrId)
Return the pointer-to-address converter function pointer for the manager given by mgrId.

int memmgr_open(int memKey, unsigned long memSize, char **memPtr, int *smId, char *partitionName,
PsmPartition *partition, int *memMgr, MemAllocator afn, MemDeallocator ffn, MemAtoPConverter apfn,
MemPtoAConverter pafn);

memmgr_open()opens one avenue of access to aPSM managed region of shared memory, initializing
as necessary.

In order for multiple tasks to share access to this memory region, all must cite the samememkey and
partitionNamewhen they call memmgr_open(). If shared access is not necessary, thenmemKeycan be
SM_NO_KEYandpartitionNamecan be any valid partition name.

If it is known that a prior invocation of memmgr_open()has already initialized the region, then
memSizecan be zero andmemPtrmust beNULL. OtherwisememSizeis required and the required
value of memPtrdepends on whether or not the memory that is to be shared and managed has already
been allocated (e.g., it’s a fixed region of bus memory).If so, then the memory pointer variable that
memPtrpoints to must contain the address of that memory region. Otherwise,*memPtrmust contain
NULL.

memmgr_open()will allocate system memory as necessary and will in any case return the address of
the shared memory region in*memPtr.

If the shared memory is newly allocated or otherwise not yet underPSM management, then
memmgr_open()will invoke psm_manage() to manage the shared memory region. It will also add a
catalogue for the managed shared memory region as necessary.

If memMgris non-NULL, thenmemmgr_open()will additionally call memmgr_add()to establish a
new memory manager for this managed shared memory region, as necessary. The index of the
applicable memory manager will be returned inmemMgr. If that memory manager is newly created,
then the suppliedafn, ffn, apfn, and pafn functions (which can be written with reference to the memory

perl v5.18.2 2016-09-07 2

ici::doc::pod3::memmgr(3) ICIlibrary functions ici::doc::pod3::memmgr(3)

manager index value returned inmemMgr) hav e been established as the memory management
functions for local private access to this managed shared memory region.

Returns 0 on success, −1 on any error.

void memmgr_destroy(int smId, PsmPartition *partition);
memmgr_destroy()terminates all access to aPSM managed region of shared memory, inv oking
psm_erase()to destroy the partition andsm_ShmDestroy()to destroy the shared memory object.

EXAMPLE
/* this example uses the calloc/free memory manager, which is

* c alled "std", and is always defined in memmgr. */

#include "memmgr.h"

main()
{

int mgrId;
MemAllocator myalloc;
MemDeallocator myfree;
char *newBlock;

mgrId = memmgr_find("std");
myalloc = memmgr_take(mgrId);
myfree = memmgr_release(mgrId);
...

newBlock = myalloc(5000);
...
myfree(newBlock);

}

SEE ALSO
psm(3)

perl v5.18.2 2016-09-07 3

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

NAME
platform − C software portability definitions and functions

SYNOPSIS
#include "platform.h"

[see description for available functions]

DESCRIPTION
platform is a library of functions that simplify the porting of software written in C.It provides anAPI that
enables application code to access the resources of an abstract POSIX-compliant ‘‘least common
denominator’’ operating system— typically a large subset of the resources of the actual underlying
operating system.

Most of the functionality provided by the platform library is aimed at making communication code
portable: common functions for shared memory, semaphores, andIP sockets are provided. The
implementation of the abstract O/SAPI varies according to the actual operating system on which the
application runs, but theAPI’s behavior is always the same; applications that invoke the platform library
functions rather than native O/S system calls may forego some O/S−specific capability, but they gain
portability at little if any cost in performance.

Differences in word size among platforms are implemented by values of theSPACE_ORDERmacro. ‘‘Space
order’’ is the base 2 log of the number of octets in a word: for 32−bit machines the space order is 2 (2ˆ2 = 4
octets per word), for 64−bit machines it is 3 (2ˆ3 = 8 octets per word).

A consistent platform-independent representation of large integers is useful for some applications.For this
purpose,platform defines new typesvast anduvast (unsigned vast) which are consistently defined to be
64−bit integers regardless of the platform’s native word size.

The platform.h header file #includes many of the most frequently needed header files: sys/types.h, errno.h,
string.h, stdio.h, sys/socket.h, signal.h, dirent.h, netinet/in.h, unistd.h, stdlib.h, sys/time.h, sys/resource.h,
malloc.h, sys/param.h, netdb.h, sys/uni.h, and fcntl.h.Beyond this, platform attempts to enhance
compatibility by providing standard macros, type definitions, external references, or function
implementations that are missing from a few supported O/S’s but supported by all others.Finally, entirely
new, generic functions are provided to establish a common body of functionality that subsumes
significantly different O/S−specific capabilities.

PLATFORM COMP ATIBILITY P ATCHES
The platform library ‘‘patches’’ the APIs of supported O/S’s to guarantee that all of the following items
may be utilized by application software:

The strchr(), strrchr(), strcasecmp(), and strncasecmp() functions.

The unlink(), getpid(), and gettimeofday() functions.

The select() function.

The FD_BITMAP macro (used by select()).

The MAXHOSTNAMELEN macro.

The NULL macro.

The timer_t type definition.

PLATFORM GENERIC MACROS AND FUNCTIONS
The generic macros and functions in this section may be used in place of comparable O/S−specific
functions, to enhance the portability of code.(The implementations of these macros and functions are no-
ops in environments in which they are inapplicable, so they’re always safe to call.)

perl v5.18.2 2016-09-07 1

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

FDTABLE_SIZE
The FDTABLE_SIZE macro returns the total number of file descriptors defined for the process (or
VxWorks target).

ION_PATH_DELIMITER
The ION_PATH_DELIMITER macro returns theASCII character — either’/’ or ’\’ — that is used as a
directory name delimiter in path names for the file system used by the local platform.

oK(expression)
The oK macro simply casts the value ofexpressionto void, a way of handling function return codes
that are not meaningful in this context.

CHKERR(condition)
The CHKERR macro is an ‘‘assert’’ mechanism. Itcauses the calling function to return −1
immediately ifconditionis false.

CHKZERO(condition)
The CHKZERO macro is an ‘‘assert’’ mechanism. Itcauses the calling function to return 0
immediately ifconditionis false.

CHKNULL(condition)
The CHKNULL macro is an ‘‘assert’’ mechanism. Itcauses the calling function to returnNULL
immediately ifconditionis false.

CHKVOID(condition)
The CHKVOID macro is an ‘‘assert’’ mechanism. Itcauses the calling function to return immediately
if conditionis false.

void snooze(unsigned int seconds)
Suspends execution of the invoking task or process for the indicated number of seconds.

void microsnooze(unsigned int microseconds)
Suspends execution of the invoking task or process for the indicated number of microseconds.

void getCurrentTime(struct timeval * time)
Returns the current local time in a timeval structure (see gettimeofday(3C)).

void isprintf(char *buffer, int bufSize, char *format, ...)
isprintf() is a safe, portable implementation ofsnprintf(); see the snprintf(P) man page for details.
isprintf() differs from snprintf() in that it always NULL-terminates the string inbuffer, even if the
length of the composed string would equal or exceedbufSize. Buffer overruns are reported by log
message; unlikesnprintf(), isprintf() returns void.

size_t istrlen(const char *sourceString, size_t maxlen)
istrlen() is a safe implementation ofstrlen(); see thestrlen(3) man page for details.istrlen() differs
from strlen() in that it takes a second argument, the maximum valid length ofsourceString. The
function returns the number of non-NULL characters insourceStringpreceding the firstNULL
character insourceString, provided that aNULL character appears somewhere within the firstmaxlen
characters ofsourceString; otherwise it returnsmaxlen.

char *istrcpy(char *buffer, char *sourceString, int bufSize)
istrcpy() is a safe implementation ofstrcpy(); see thestrcpy(3) man page for details.istrcpy() differs
from strcpy()in that it takes a third argument, the total size of the buffer into whichsourceStringis to
be copied. istrcpy() always NULL-terminates the string inbuffer, even if the length ofsourceString
string would equal or exceedbufSize(in which casesourceStringis truncated to fit within the buffer).

char *istrcat(char *buffer, char *sourceString, int bufSize)
istrcat() is a safe implementation ofstrcat(); see thestrcat(3) man page for details.istrcat() differs
from strcat() in that it takes a third argument, the total size of the buffer for the string that is being
aggregated. istrcat() always NULL-terminates the string inbuffer, even if the length ofsourceString
string would equal or exceed the sum ofbufSizeand the length of the string currently occupying the
buffer (in which casesourceStringis truncated to fit within the buffer).

perl v5.18.2 2016-09-07 2

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

char *igetcwd(char *buf, size_t size)
igetcwd() is normally just a wrapper aroundgetcwd(3). It differs from getcwd(3) only when
FSWWDNAME is defined, in which case the implementation ofigetcwd() must be supplied in an
included file named ‘‘wdname.c’’; this adaptation option accommodates flight software environments
in which the current working directory name must be configured rather than discovered at run time.

void isignal(int signbr, void (*handler)(int))
isignal() is a portable, simplified interface to signal handling that is functionally indistinguishable
from signal(P). It assures that reception of the indicated signal will interrupt system calls inSVR4
fashion, even when running on a FreeBSD platform.

void iblock(int signbr)
iblock() simply prevents reception of the indicated signal by the calling thread. It provides a means of
controlling which of the threads in a process will receive the signal cited in an invocation ofisignal().

char *igets(int fd, char *buffer, int buflen, int *lineLen)
igets() reads a line of text, delimited by a newline character, from fd into buffer and writes aNULL
character at the end of the string. The newline character itself is omitted from the NULL-terminated
text line in buffer; if the newline is immediately preceded by a carriage return character (i.e., the line is
from aDOS text file), then the carriage return character is likewise omitted from the NULL-terminated
text line in buffer. End of file is interpreted as an implicit newline, terminating the line. If the number
of characters preceding the newline is greater than or equal tobuflen, only the first (buflen − 1)
characters of the line are written intobuffer. On error the function sets*lineLen to −1 and returns
NULL. On reading end-of-file, the function sets*lineLen to zero and returnsNULL. Otherwise the
function sets*lineLen to the length of the text line inbuffer, as if fromstrlen(3), and returnsbuffer.

int iputs(int fd, char *string)
iputs()writes tofd the NULL-terminated character string atstring. No terminating newline character
is appended tostring by iputs(). On error the function returns −1; otherwise the function returns the
length of the character string written tofd, as if fromstrlen(3).

vast strtovast(char *string)
Converts the leading characters ofstring, skipping leading white space and ending at the first
subsequent character that can’t be interpreted as contributing to a numeric value, to avast integer and
returns that integer.

uvast strtouvast(char *string)
Same asstrtovast()except the result is an unsignedvast integer value.

void findToken(char **cursorPtr, char **token)
Locates the next non-whitespace lexical token in a character array, starting at *cursorPtr. The
function NULL-terminates that token within the array and places a pointer to the token in*token.
Also accommodates tokens enclosed within matching single quotes, which may contain embedded
spaces and escaped single-quote characters. If no token is found,*token containsNULL on return
from this function.

void *acquireSystemMemory(size_t size)
Usesmemalign()to allocate a block of system memory of lengthsize, starting at an address that is
guaranteed to be an integral multiple of the size of a pointer to void, and initializes the entire block to
binary zeroes. Returns the starting address of the allocated block on success; returnsNULL on any
error.

int createFile(const char *name, int flags)
Creates a file of the indicated name, using the indicated file creation flags. This function provides
common file creation functionality across VxWorks and Unix platforms, invoking creat() under
VxWorks andopen()elsewhere. For return values, seecreat(2) andopen(2).

unsigned int getInternetAddress(char *hostName)
Returns theIP address of the indicated host machine, or zero if the address cannot be determined.

perl v5.18.2 2016-09-07 3

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

char *getInternetHostName(unsigned int hostNbr, char *buffer)
Writes the host name of the indicated host machine intobuffer and returnsbuffer, or returnsNULL on
any error. The size ofbuffer should be (MAXHOSTNAMELEN + 1).

int getNameOfHost(char *buffer, int bufferLength)
Writes the first (bufferLength− 1) characters of the host name of the local machine intobuffer.
Returns 0 on success, −1 on any error.

unsigned intgetAddressOfHost()
Returns theIP address for the host name of the local machine, or 0 on any error.

void parseSocketSpec(char *socketSpec, unsigned short *portNbr, unsigned int *hostNbr)
ParsessocketSpec, extracting host number (IP address) and port number from the string.socketSpecis
expected to be of the form ‘‘{ @ | hostname }[:<portnbr>]’’, where @ signifies ‘‘the host name of the
local machine’’. If host number can be determined, writes it into*hostNbr; otherwise writes 0 into
*hostNbr. If port number is supplied and is in the range 1024 to 65535, writes it into*portNbr;
otherwise writes 0 into*portNbr.

void printDottedString(unsigned int hostNbr, char *buffer)
Composes a dotted-string (xxx.xxx.xxx.xxx) representation of the IPv4 address inhostNbrand writes
that string intobuffer. The length ofbuffer must be at least 16.

char *getNameOfUser(char *buffer)
Writes the user name of the invoking task or process intobuffer and returnsbuffer. The size ofbuffer
must be at leastL_cuserid, a constant defined in the stdio.h header file. Returnsbuffer.

int reUseAddress(int fd)
Makes the address that is bound to the socket identified byfd reusable, so that the socket can be closed
and immediately reopened and re-bound to the same port number. Returns 0 on success, −1 on any
error.

int makeIoNonBlocking(int fd)
Makes I/O on the socket identified byfd non-blocking; returns −1 on failure. Anattempt to read on a
non-blocking socket when no data are pending, or to write on it when its output buffer is full, will not
block; it will instead return −1 and cause errno to be set toEWOULDBLOCK.

int watchSocket(int fd)
Turns on the ‘‘linger’’ and ‘‘keepalive’’ options for the socket identified byfd. See socket (2) for
details. Returns0 on success, −1 on any failure.

void closeOnExec(int fd)
Ensures thatfd will NOT be open in any child processfork()ed from the invoking process. Has no
effect on a VxWorks platform.

EXCEPTION REPORTING
The functions in this section offer platform-independent capabilities for reporting on processing exceptions.

The underlying mechanism forICI’s exception reporting is a pair of functions that record error messages in
a privately managed pool of static memory. These functions— postErrmsg()andpostSysErrmsg()— are
designed to return very rapidly with no possibility of failing, themselves. Nonethelessthey are not safe to
call from an interrupt service routing (ISR). Although each merely copies its text to the next available
location in the error message memory pool, that pool is protected by a mutex; multiple processes might be
queued up to take that mutex, so the total time to execute the function is non-deterministic.

Built on top of postErrmsg()and postSysErrmsg()are theputErrmsg()and putSysErrmsg()functions,
which may take longer to return. Each one simply calls the corresponding ‘‘post’’ f unction but then calls
the writeErrmsgMemos()function, which callswriteMemo()to print (or otherwise deliver) each message
currently posted to the pool and then destroys all of those posted messages, emptying the pool.

Recommended general policy on using theICI exception reporting functions (which the functions in the
ION distribution libraries are supposed to adhere to) is as follows:

perl v5.18.2 2016-09-07 4

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

In the implementation of any ION library function or any ION
task's top−level driver function, any condition that prevents
the function from continuing execution toward producing the
effect it is designed to produce is considered an "error".

Detection of an error should result in the printing of an
error message and, normally, the immediate return of whatever
return value is used to indicate the failure of the function
in which the error was detected. By convention this value
is usually −1, but both zero and NULL are appropriate
failure indications under some circumstances such as object
creation.

The CHKERR, CHKZERO, CHKNULL, and CHKVOID macros are used to
implement this behavior in a standard and lexically terse
manner. Use of these macros offers an additional feature:
for debugging purposes, they can easily be configured to
call sm_Abort() to terminate immediately with a core dump
instead of returning a error indication. This option is
enabled by setting the compiler parameter CORE_FILE_NEEDED
to 1 at compilation time.

In the absence of either any error, the function returns a
value that indicates nominal completion. By convention this
value is usually zero, but under some circumstances other
values (such as pointers or addresses) are appropriate
indications of nominal completion. Any additional information
produced by the function, such as an indication of "success",
is usually returned as the value of a reference argument.
[Note, though, that database management functions and the
SDR hash table management functions deviate from this rule:
most return 0 to indicate nominal completion but functional
failure (e.g., duplicate key or object not found) and return
1 to i ndicate functional success.]

So when returning a value that indicates nominal completion
of the function −− even if the result might be interpreted
as a failure at a higher level (e.g., an object identified
by a given string is not found, through no failure of the
search function) −− do NOT invoke putErrmsg().

Use putErrmsg() and putSysErrmsg() only when functions are
unable to proceed to nominal completion. Use writeMemo()
or writeMemoNote() if you just want to log a message.

Whenever returning a value that indicates an error:

If the failure is due to the failure of a system call
or some other non−ION function, assume that errno
has already been set by the function at the lowest
layer of the call stack; use putSysErrmsg (or
postSysErrmsg if in a hurry) to describe the nature
of the activity that failed. The text of the error
message should normally start with a capital letter

perl v5.18.2 2016-09-07 5

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

and should NOT end with a period.

Otherwise −− i.e., the failure is due to a condition
that was detected within ION −− use putErrmsg (or
postErrmg if pressed for time) to describe the nature
of the failure condition. This will aid in tracing
the failure through the function stack in which the
failure was detected. The text of the error message
should normally start with a capital letter and should
end with a period.

When a failure in a called function is reported to "driver"
code in an application program, before continuing or exiting
use writeErrmsgMemos() to empty the message pool and print a
simple stack trace identifying the failure.

char *system_error_msg()
Returns a brief text string describing the current system error, as identified by the current value of
errno.

void setLogger(Logger usersLoggerName)
Sets the user function to be used for writing messages to a user-defined ‘‘log’ ’ medium. Thelogger
function’s calling sequence must match the following prototype:

void usersLoggerName(char *msg);

The default Logger function simply writes the message to standard output.

void writeMemo(char *msg)
Writes one log message, using the currently defined message logging function.

void writeMemoNote(char *msg, char *note)
Writes a log message like writeMemo(), accompanied by the user-supplied context-specific text in
note.

void writeErrMemo(char *msg)
Writes a log message likewriteMemo(), accompanied by text describing the current system error.

char *itoa(int value)
Returns a string representation of the signed integer in value, nominally for immediate use as an
argument toputErrmsg(). [Note that the string is constructed in a static buffer; this function is not
thread−safe.]

char *utoa(unsigned int value)
Returns a string representation of the unsigned integer invalue, nominally for immediate use as an
argument toputErrmsg(). [Note that the string is constructed in a static buffer; this function is not
thread−safe.]

void postErrmsg(char *text, char *argument)
Constructs an error message noting the name of the source file containing the line at which this
function was called, the line number, the textof the message, and— if not NULL — a single textual
argumentthat can be used to give more specific information about the nature of the reported failure
(such as the value of one of the arguments to the failed function). The error message is appended to
the list of messages in a privately managed pool of static memory, ERRMSGS_BUFSIZEbytes in
length.

If text is NULL or is a string of zero length or begins with a newline character (i.e.,*text == ’\0’ or
’\n’), the function returns immediately and no error message is recorded.

The errmsgs pool is designed to be large enough to contain error messages from all levels of the
calling stack at the time that an error is encountered. If the remaining unused space in the pool is less

perl v5.18.2 2016-09-07 6

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

than the size of the new error message, however, the error message is silently omitted. In this case,
provided at least two bytes of unused space remain in the pool, a message comprising a single newline
character is appended to the list to indicate that a message was omitted due to excessive length.

void postSysErrmsg(char *text, char *arg)
Like postErrmsg()except that the error message constructed by the function additionally contains text
describing the current system error. text is truncated as necessary to assure that the sum of its length
and that of the description of the current system error does not exceed 1021 bytes.

int getErrmsg(char *buffer)
Copies the oldest error message in the message pool intobuffer and removes that message from the
pool, making room for new messages. Returnszero if the message pool cannot be locked for update
or there are no more messages in the pool; otherwise returns the length of the message copied into
buffer. Note that, for safety, the size ofbuffer should beERRMSGS_BUFSIZE.

Note that a returned error message comprising only a single newline character always signifies an error
message that was silently omitted because there wasn’t enough space left on the message pool to
contain it.

void writeErrmsgMemos()
Calls getErrmsg() repeatedly until the message pool is empty, using writeMemo() to log all the
messages in the pool.Messages that were omitted due to excessive length are indicated by logged
lines of the form ‘‘[message omitted due to excessive length]’’.

void putErrmsg(char *text, char *argument)
TheputErrmsg()function merely callspostErrmsg()and thenwriteErrmsgMemos().

void putSysErrmsg(char *text, char *arg)
TheputSysErrmsg()function merely callspostSysErrmsg()and thenwriteErrmsgMemos().

void discardErrmsgs()
CallsgetErrmsg()repeatedly until the message pool is empty, discarding all of the messages.

void printStackTrace()
On Linux machines only, useswriteMemo()to print a trace of the process’s current execution stack,
starting with the lowest level of the stack and proceeding to themain()function of the executable.

Note that (a)printStackTrace() is only implemented for Linux platforms at this time; (b) symbolic
names of functions can only be printed if the−rdynamic flag was enabled when the executable was
linked; (c) only the names of non-static functions will appear in the stack trace.

For more complete information about the state of the executable at the time the stack trace snapshot
was taken, use the Linuxaddr2line tool. To do this, cd into a directory in which the executable file
resides (such as /opt/bin) and submit an addr2line command as follows:

addr2line −ename_of_executable stack_frame_address

where bothname_of_executableand stack_frame_addressare taken from one of the lines of the
printed stack trace. addr2line will print the source file name and line number for that stack frame.

WA T CH CHARACTERS
The functions in this section offer platform-independent capabilities for recording ‘‘watch’’ characters
indicating the occurrence of protocol events. Seebprc(5), ltprc (5), cfdprc(5), etc. for details of the watch
character production options provided by the protocol packages.

void setWatcher(Watcher usersWatcherName)
Sets the user function to be used for recording watch characters to a user-defined ‘‘watch’’ medium.
The watcher function’s calling sequence must match the following prototype:

void usersWatcherName(char token);

The default Watcher function simply writes the token to standard output.

perl v5.18.2 2016-09-07 7

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

void iwatch(char token)
Records one ‘‘watch’’ character, using the currently defined watch character recording function.

SELF-DELIMITING NUMERIC VALUES (SDNV)
The functions in this section encode and decode SDNVs, portable variable-length numeric variables that
expand to whatever size is necessary to contain the values they contain. SDNVsare used extensively in the
BP andLTP libraries.

void encodeSdnv(Sdnv *sdnvBuffer, uvast value)
Determines the number of octets ofSDNV text needed to contain the value, places that number in the
lengthfield of theSDNV buffer, and encodes the value inSDNV format into the firstlengthoctets of
thetextfield of theSDNV buffer.

int decodeSdnv(uvast *value, unsigned char *sdnvText)
Determines the length of theSDNV located atsdnvText and returns this number after extracting the
SDNV’s value from those octets and storing it invalue. Returns 0 if the encoded number value will not
fit into an unsigned vast integer.

ARITHMETIC ON LARGE INTEGERS (SCALARS)
The functions in this section perform simple arithmetic operations on unsigned Scalar objects— structures
encapsulating large positive integers in a machine-independent way. Each Scalar comprises two integers, a
count of units [ranging from 0 to (2ˆ30 − 1), i.e., up to 1 gig] and a count of gigs [ranging from 0 to (2ˆ31
−1)]. A Scalar can represent a numeric value up to 2 billion billions, i.e., 2 million trillions.

void loadScalar(Scalar *scalar, signed int value)
Sets the value ofscalarto the absolute value ofvalue.

void increaseScalar(Scalar *scalar, signed int value)
Adds toscalarthe absolute value ofvalue.

void reduceScalar(Scalar *scalar, signed int value)
Adds toscalarthe absolute value ofvalue.

void multiplyScalar(Scalar *scalar, signed int value)
Multiplies scalarby the absolute value ofvalue.

void divideScalar(Scalar *scalar, signed int value)
Dividesscalarby the absolute value ofvalue.

void copyScalar(Scalar *to, Scalar *from)
Copies the value offrom into to.

void addToScalar(Scalar *scalar, Scalar *increment)
Adds increment(a Scalar rather than a C integer) toscalar.

void subtractFromScalar(Scalar *scalar, Scalar *decrement)
Subtractsdecrement(a Scalar rather than a C integer) fromscalar.

int scalarIsValid(Scalar *scalar)
Returns 1 if the arithmetic performed onscalarhas not resulted in overflow or underflow.

int scalarToSdnv(Sdnv *sdnv, Scalar *scalar)
If scalarpoints to a valid Scalar, stores the value ofscalar in sdnv; otherwise sets the length ofsdnvto
zero.

int sdnvToScalar(Scalar *scalar, unsigned char *sdnvText)
If sdnvText points to a sequence of bytes that, when interpreted as the text of an Sdnv, has a value that
can be represented in a 61−bit unsigned binary integer, then this function stores that value inscalar
and returns the detected Sdnv length. Otherwisereturns zero.

Note that Scalars and Sdnvs are both representations of potentially large unsigned integer values. Any
Scalar can alternatively be represented as an Sdnv. Howev er, it is possible for a valid Sdnv to be too
large to represent in a Scalar.

perl v5.18.2 2016-09-07 8

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

PRIVATE MUTEXES
The functions in this section provide platform-independent management of mutexes for synchronizing
operations of threads or tasks in a common private address space.

int initResourceLock(ResourceLock *lock)
Establishes an inter-thread lock for use in locking some resource. Returns 0 if successful, −1 if not.

void killResourceLock(ResourceLock *lock)
Deletes the resource lock referred to bylock.

void lockResource(ResourceLock *lock)
Checks the state oflock. If the lock is already owned by a different thread, the call blocks until the
other thread relinquishes the lock. If the lock is unowned, it is given to the current thread and the lock
count is set to 1. If the lock is already owned by this thread, the lock count is incremented by 1.

void unlockResource(ResourceLock *lock)
If called by the current owner oflock, decrementslock’s lock count by 1; if zero, relinquishes the lock
so it may be taken by other threads. Care must be taken to make sure that one, and only one,
unlockResource()call is issued for eachlockResource()call issued on a given resource lock.

SHARED MEMOR Y I PC DEVICES
The functions in this section provide platform-independent management ofIPC mechanisms for
synchronizing operations of threads, tasks, or processes that may occupy different address spaces but share
access to a common system (nominally, processor) memory.

NOTE that this is distinct from the VxWorks ‘‘VxMP’ ’ capability enabling tasks to share access to bus
memory or dual-ported board memory from multiple processors. The ‘‘platform’’ system will supportIPC
devices that utilize this capability at some time in the future, but that support is not yet implemented.

int sm_ipc_init()
Acquires and initializes shared-memoryIPC management resources.Must be called before any other
shared-memoryIPC function is called. Returns 0 on success, −1 on any failure.

void sm_ipc_stop()
Releases shared-memoryIPC management resources, disabling the shared-memoryIPC functions until
sm_ipc_init()is called again.

int sm_GetUniqueKey()
Some of the ‘‘sm_’’ (shared memory) functions described below associate new communication objects
with key values that uniquely identify them, so that different processes can access them independently.
Ke y values are typically defined as constants in application code.However, when a new
communication object is required for which no specific need was anticipated in the application, the
sm_GetUniqueKey() function can be invoked to obtain a new, arbitrary key value that is known not to
be already in use.

sm_SemId sm_SemCreate(int key, int semType)
Creates a shared-memory semaphore that can be used to synchronize activity among tasks or processes
residing in a common system memory but possibly multiple address spaces; returns a reference handle
for that semaphore, orSM_SEM_NONEon any failure. If key refers to an existing semaphore, returns
the handle of that semaphore.If key is the constant value SM_NO_KEY, automatically obtains an
unused key. On VxWorks platforms,semTypedetermines the order in which the semaphore is given to
multiple tasks that attempt to take it while it is already taken: if set toSM_SEM_PRIORITYthen the
semaphore is given to tasks in task priority sequence (i.e., the highest-priority task waiting for it
receives it when it is released), while otherwise (SM_SEM_FIFO) the semaphore is given to tasks in the
order in which they attempted to take it. On all other platforms, onlySM_SEM_FIFObehavior is
supported andsemTypeis ignored.

int sm_SemTake(sm_SemId semId)
Blocks until the indicated semaphore is no longer taken by any other task or process, then takes it.
Return 0 on success, −1 on any error.

perl v5.18.2 2016-09-07 9

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

void sm_SemGive(sm_SemId semId)
Gives the indicated semaphore, so that another task or process can take it.

void sm_SemEnd(sm_SemId semId)
This function is used to pass a termination signal to whatever task is currently blocked on taking the
indicated semaphore, if any. It sets to 1 the ‘‘ended’’ fl ag associated with this semaphore, so that a test
for sm_SemEnded()will return 1, and it gives the semaphore so that the blocked task will have an
opportunity to test that flag.

int sm_SemEnded(sm_SemId semId)
This function returns 1 if the ‘‘ended’’ fl ag associated with the indicated semaphore has been set to 1;
returns zero otherwise. When the function returns 1 it also gives the semaphore so that any other tasks
that might be pended on the same semaphore are also given an opportunity to test it and discover that
it has been ended.

void sm_SemUnend(sm_SemId semId)
This function is used to reset an ended semaphore, so that a restarted subsystem can reuse that
semaphore rather than delete it and allocate a new one.

int sm_SemUnwedge(sm_SemId semId, int timeoutSeconds)
Used to release semaphores that have been taken but never released, possibly because the tasks or
processes that took them crashed before releasing them. Attempts to take the semaphore; if this
attempt does not succeed withintimeoutSecondsseconds (providing time for normal processing to be
completed, in the event that the semaphore is legitimately and temporarily locked by some task), the
semaphore is assumed to be wedged. In any case, the semaphore is then released.Returns 0 on
success, −1 on any error.

void sm_SemDelete(sm_SemId semId)
Destroys the indicated semaphore.

sm_SemId sm_GetTaskSemaphore(int taskId)
Returns theID of the semaphore that is dedicated to the private use of the indicated task, or
SM_SEM_NONEon any error.

This function implements the concept that for each task there can always be one dedicated semaphore,
which the task can always use for its own purposes, whose key value may be known a priori because
the key of the semaphore is based on the task’s ID. The design of the function rests on the assumption
that each task’s ID, whether a VxWorks taskID or a Unix processID, maps to a number that is out of
the range of all possible key values that are arbitrarily produced bysm_GetUniqueKey(). For
VxWorks, we assume this to be true because taskID is a pointer to task state in memory which we
assume not to exceed 2GB; the unique key counter starts at 2GB.For Unix, we assume this to be true
because processID is an index into a process table whose size is less than 64K; unique keys are
formed by shifting processID left 16 bits and adding the value of an incremented counter which is
always greater than zero.

int sm_ShmAttach(int key, int size, char **shmPtr, int *id)
Attaches to a segment of memory to which tasks or processes residing in a common system memory,
but possibly multiple address spaces, all have access.

This function registers the invoking task or process as a user of the shared memory segment identified
by key. If key is the constant valueSM_NO_KEY,automatically setskey to some unused key value. Ifa
shared memory segment identified bykey already exists, thensize may be zero and the value of
*shmPtr is ignored. Otherwise the size of the shared memory segment must be provided insizeand a
new shared memory segment is created in a manner that is dependent on*shmPtr: if *shmPtr is NULL
then size bytes of shared memory are dynamically acquired, allocated, and assigned to the newly
created shared memory segment; otherwise the memory located atshmPtr is assumed to have been
pre-allocated and is merely assigned to the newly created shared memory segment.

On success, stores the unique shared memoryID of the segment in*id for possible future destruction,
stores a pointer to the segment’s assigned memory in*shmPtr, and returns 1 (if the segment is newly

perl v5.18.2 2016-09-07 10

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

created) or 0 (otherwise). Returns −1 on any error.

void sm_ShmDetach(char *shmPtr)
Unregisters the invoking task or process as a user of the shared memory starting atshmPtr.

void sm_ShmDestroy(int id)
Destroys the shared memory segment identified byid, releasing any memory that was allocated when
the segment was created.

PORTABLE MULTI-TASKING
int sm_TaskIdSelf()

Returns the unique identifying number of the invoking task or process.

int sm_TaskExists(int taskId)
Returns non-zero if a task or process identified bytaskId is currently running on the local processor,
zero otherwise.

void *sm_TaskVar(void **arg)
Posts or retrieves the value of the ‘‘task variable’’ belonging to the invoking task. Each task has access
to a single task variable, initialized toNULL, that resides in the task’s private state; this can be
convenient for passing task-specific information to a signal handler, for example. Ifarg is non-NULL,
then*arg is posted as the new value of the task’s private task variable. Inany case, the value of that
task variable is returned.

void sm_TaskSuspend()
Indefinitely suspends execution of the invoking task or process.Helpful if you want to freeze an
application at the point at which an error is detected, then use a debugger to examine its state.

void sm_TaskDelay(int seconds)
Same assnooze(3).

void sm_TaskYield()
RelinquishesCPU temporarily for use by other tasks.

int sm_TaskSpawn(char *name, char *arg1, char *arg2, char *arg3, char *arg4, char *arg5, char *arg6, char
*arg7, char *arg8, char *arg9, char *arg10, int priority, int stackSize)

Spawns/forks a new task/process, passing it up to ten command-line arguments.nameis the name of
the function (VxWorks) or executable image (UNIX) to be executed in the new task/process.

For UNIX, namemust be the name of some executable program in the$PATHof the invoking process.

For VxWorks, namemust be the name of some function named in an application-defined private
symbol table (if PRIVATE_SYMTAB is defined) or the system symbol table (otherwise).If
PRIVATE_SYMTAB is defined, the application must provide a suitable adaptation of the symtab.c
source file, which implements the private symbol table.

‘‘ priority’’ and ‘‘stackSize’’ are ignored underUNIX. Under VxWorks, if zero they default to the
values in the application-defined private symbol table if provided, or otherwise toICI_PRIORITY
(nominally 100) and 32768 respectively.

Returns the task/processID of the new task/process on success, or −1 on any error.

void sm_TaskKill(int taskId, int sigNbr)
Sends the indicated signal to the indicated task or process.

void sm_TaskDelete(int taskId)
Terminates the indicated task or process.

void sm_Abort()
Terminates the calling task or process.If not called whileION is in flight configuration, a stack trace
is printed or a core file is written.

perl v5.18.2 2016-09-07 11

ici::doc::pod3::platform(3) ICIlibrary functions ici::doc::pod3::platform(3)

int pseudoshell(char *script)
Parsesscript into a command name and up to 10 arguments, then passes the command name and
arguments tosm_TaskSpawn()for execution. Thesm_TaskSpawn()function is invoked with priority
and stack size both set to zero, causing default values (possibly from an application-defined private
symbol table) to be used.Tokens in script are normally whitespace-delimited, but a token that is
enclosed in single-quote characters (’) may contain embedded whitespace and may contain escaped
single-quote characters (‘‘\’ ’’). Onany parsing failure returns −1; otherwise returns the value returned
by sm_TaskSpawn().

USER’S GUIDE
Compiling an application that uses ‘‘platform’’:

Just be sure to ‘‘#include ’’platform.h"" at the top of each source file that includes any platform
function calls.

Linking/loading an application that uses ‘‘platform’’:
a. In a Solaris environment, link with these libraries:

−lplatform −socket −nsl −posix4 −c

b. In a Linux environment, simply link with platform:

−lplatform

c. In a VxWorks environment, use

ld 1, 0, "libplatform.o"

to load platform on the target before loading applications.

SEE ALSO
gettimeofday(3C)

perl v5.18.2 2016-09-07 12

ici::doc::pod3::psm(3) ICIlibrary functions ici::doc::pod3::psm(3)

NAME
psm − Personal Space Management

SYNOPSIS
#include "psm.h"

typedef enum { Okay, Redundant, Refused } PsmMgtOutcome;
typedef unsigned long PsmAddress;
typedef struct psm_str
{

char *space;
int freeNeeded;
struct psm_str *trace;
int traceArea[3];

} P smView, *PsmPartition;

[see description for available functions]

DESCRIPTION
PSM is a library of functions that support personal space management, that is, user management of an
application-configured memory partition.PSM is designed to be faster and more efficient than malloc/free
(for details, see theDETAILED DESCRIPTION below), but more importantly it provides a memory
management abstraction that insulates applications from differences in the management of private versus
shared memory.

PSM is often used to manage shared memory partitions. On most operating systems, separate tasks that
connect to a common shared memory partition are given the same base address with which to access the
partition. Onsome systems (such as Solaris) this is not necessarily the case; an absolute address within
such a shared partition will be mapped to different pointer values in different tasks. If a pointer value is
stored within shared memory and used without conversion by multiple tasks, segment violations will occur.

PSM gets around this problem by providing functions for translating between local pointer values and
relative addresses within the shared memory partition.For complete portability, applications which store
addresses in shared memory should store these addresses asPSM relative addresses and convert them to
local pointer values before using them. The PsmAddress data type is provided for this purpose, along with
the conversion functionspsa()andpsp().

int psm_manage(char*start, unsigned int length, char *name, PsmPartition *partitionPointer,
PsmMgtOutcome *outcome)

Puts thelengthbytes of memory atstart underPSM management, associating this memory partition
with the identifying stringname(which is required and which can have a maximum string length of
31). PSMcan manage any contiguous range of addresses to which the application has access, typically
a block of heap memory returned by a malloc call.

Every other PSM API function must be passed a pointer to a local ‘‘partition’’ state structure
characterizing the PSM-managed memory to which the function is to be applied.The partition state
structure itself may be pre-allocated in static or local (or shared) memory by the application, in which
case a pointer to that structure must be passed topsm_manage() as the value of*partitionPointer; if
*partitionPointer is null, psm_manage() will use malloc() to allocate this structure dynamically from
local memory and will store a pointer to the structure in*partitionPointer.

psm_manage() formats the managed memory as necessary and returns −1 on any error, 0 otherwise.
The outcome to the attempt to manage memory is placed inoutcome. An outcome of Redundant
means that the memory atstart is already underPSM management with the same name and size.An
outcome of Refused means thatPSMwas unable to put the memory atstart underPSMmanagement as
directed; a diagnostic message was posted to the message pool (see discussion ofputErrmsg() in
platform(3)).

perl v5.18.2 2016-09-07 1

ici::doc::pod3::psm(3) ICIlibrary functions ici::doc::pod3::psm(3)

char *psm_name(PsmPartition partition)
Returns the name associated with the partition at the time it was put under management.

char *psm_space(PsmPartition partition)
Returns the address of the space managed byPSM for partition. This function is provided to enable
the application to do an operating-system release (such asfree()) of this memory when the managed
partition is no longer needed.NOTE that callingpsm_erase()or psm_unmanage() [or any other PSM
function, for that matter] after releasing that space is virtually guaranteed to result in a segmentation
fault or other seriously bad behavior.

void *psp(PsmPartition partition, PsmAddress address)
addressis an offset within the space managed for the partition. Returns the conversion of that offset
into a locally usable pointer.

PsmAddress psa(PsmPartition partition, void *pointer)
Returns the conversion ofpointer into an offset within the space managed for the partition.

PsmAddress psm_malloc(PsmPartition partition, unsigned int length)
Allocates a block of memory from the ‘‘large pool’’ of the indicated partition. (See theDETAILED
DESCRIPTIONbelow.) lengthis the size of the block to allocate; the maximum size is 1/2 of the total
address space (i.e., 2G for a 32−bit machine).ReturnsNULL if no free block could be found.The
block returned is aligned on a doubleword boundary.

void psm_panic(PsmPartition partition)
Forces the ‘‘large pool’’ memory allocation algorithm to hunt laboriously for free blocks in buckets
that may not contain any. This setting remains in force for the indicatedpartition until a subsequent
psm_relax()call reverses it.

void psm_relax(PsmPartition partition)
Reversespsm_panic(). Lets the ‘‘large pool’’ memory allocation algorithm returnNULL when no free
block can be found easily.

PsmAddress psm_zalloc(PsmPartition partition, unsigned int length)
Allocates a block of memory from the ‘‘small pool’’ of the indicated partition, if possible; if the
requested block size— length — is too large for small pool allocation (which is limited to 64 words,
i.e., 256 bytes for a 32−bit machine), or if no small pool space is available and the size of the small
pool cannot be increased, then allocates from the large pool instead. Small pool allocation is
performed by an especially speedy algorithm, and minimum space is consumed in memory
management overhead for small-pool blocks.ReturnsNULL if no free block could be found.The
block returned is aligned on a word boundary.

void psm_free(PsmPartition partition, PsmAddress block)
Frees for subsequent re-allocation the indicated block of memory from the indicated partition.block
may have been allocated by eitherpsm_malloc()or psm_zalloc().

int psm_set_root(PsmPartition partition, PsmAddress root)
Sets the ‘‘root’’ word of the indicated partition (a word at a fixed, private location in thePSM
bookkeeping data area) to the indicated value. Thisfunction is typically useful in a shared-memory
environment, such as a VxWorks address space, in which a task wants to retrieve from the indicated
partition some data that was inserted into the partition by some other task; the partition root word
enables multiple tasks to navigate the same data in the samePSM partition in shared memory. The
argument is normally a pointer to something like a linked list of the linked lists that populate the
partition; in particular, it is likely to be an object catalog (seepsm_add_catlg()). Returns0 on success,
−1 on any failure (e.g., the partition already has a root object, in which casepsm_erase_root()must be
called beforepsm_set_root()).

PsmAddress psm_get_root(PsmPartition partition)
Retrieves the current value of the root word of the indicated partition.

perl v5.18.2 2016-09-07 2

ici::doc::pod3::psm(3) ICIlibrary functions ici::doc::pod3::psm(3)

void psm_erase_root(PsmPartition partition)
Erases the current value of the root word of the indicated partition.

PsmAddress psm_add_catlg(PsmPartition partition)
Allocates space for an object catalog in the indicated partition and establishes the new catalog as the
partition’s root object. Returns 0 on success, −1 on any error (e.g., the partition already has some
other root object).

int psm_catlg(PsmPartition partition, char *objName, PsmAddress objLocation)
Inserts an entry for the indicated object into the catalog that is the root object for this partition.The
length ofobjNamecannot exceed 32 bytes, andobjNamemust be unique in the catalog.Returns 0 on
success, −1 on any error.

int psm_uncatlg(PsmPartition partition, char *objName)
Removes the entry for the named object from the catalog that is the root object for this partition, if that
object is found in the catalog. Returns 0 on success, −1 on any error.

int psm_locate(PsmPartition partition, char *objName, PsmAddress *objLocation, PsmAddress *entryElt)
Places in*objLocation the address associated withobjNamein the catalog that is the root object for
this partition and places in*entryElt the address of the list element that points to this catalog entry. If
nameis not found in catalog, set*entryElt to zero. Returns 0 on success, −1 on any error.

void psm_usage(PsmPartition partition, PsmUsageSummary *summary)
Loads the indicated PsmUsageSummary structure with a snapshot of the indicated partition’s usage
status. PsmUsageSummaryis defined by:

typedef struct {
char partitionName[32];
unsigned int partitionSize;
unsigned int smallPoolSize;
unsigned int smallPoolFreeBlockCount[SMALL_SIZES];
unsigned int smallPoolFree;
unsigned int smallPoolAllocated;
unsigned int largePoolSize;
unsigned int largePoolFreeBlockCount[LARGE_ORDERS];
unsigned int largePoolFree;
unsigned int largePoolAllocated;
unsigned int unusedSize;

} P smUsageSummary;

void psm_report(PsmUsageSummary *summary)
Sends to stdout the content ofsummary, a snapshot of a partition’s usage status.

void psm_unmanage(PsmPartition partition)
Terminates localPSMmanagement of the memory inpartition and destroys the partition state structure
*partition, but doesn’t erase anything in the managed memory;PSM management can be re-
established by a subsequent call topsm_manage().

void psm_erase(PsmPartition partition)
Unmanages the indicated partition and additionally discards all information in the managed memory,
preventing re-management of the partition.

MEMOR Y USAGE TRACING
If PSM_TRACEis defined at the time thePSMsource code is compiled, the system includes built-in support
for simple tracing of memory usage: memory allocations are logged, and memory deallocations are
matched to logged allocations, ‘‘closing’’ them. Thisenables memory leaks and some other kinds of
memory access problems to be readily investigated.

int psm_start_trace(PsmPartition partition, int traceLogSize, char *traceLogAddress)
Begins an episode ofPSM memory usage tracing.traceLogSizeis the number of bytes of shared
memory to use for trace activity logging; the frequency with which ‘‘closed’’ t race log events must be

perl v5.18.2 2016-09-07 3

ici::doc::pod3::psm(3) ICIlibrary functions ici::doc::pod3::psm(3)

deleted will vary inversely with the amount of memory allocated for the trace log.traceLogAddressis
normally NULL, causing the trace system to allocatetraceLogSizebytes of shared memory
dynamically for trace logging; if non-NULL, it must point totraceLogSizebytes of shared memory
that have been pre-allocated by the application for this purpose. Returns 0 on success, −1 on any
failure.

void psm_print_trace(PsmPartition partition, int verbose)
Prints a cumulative trace report and current usage report forpartition. If verboseis zero, only
exceptions (notably, trace log events that remain open— potential memory leaks) are printed;
otherwise all activity in the trace log is printed.

void psm_clear_trace(PsmPartition partition)
Deletes all closed trace log events from the log, freeing up memory for additional tracing.

void psm_stop_trace(PsmPartition partition)
Ends the current episode ofPSM memory usage tracing. If the shared memory used for the trace log
was allocated bypsm_start_trace(), releases that shared memory.

EXAMPLE
For an example of the use of psm, see the file psmshell.c in thePSMsource directory.

USER’S GUIDE
Compiling aPSMapplication

Just be sure to ‘‘#include ’’psm.h"" at the top of each source file that includes anyPSM function calls.

Linking/loading aPSMapplication
a. In aUNIX environment, link with libpsm.a.

b. In a VxWorks environment, use

ld 1, 0, "libpsm.o"

to loadPSMon the target before loading anyPSMapplications.

Typical usage:
a. Callpsm_manage() to initiate management of the partition.

b. Call psm_malloc()(and/orpsm_zalloc()) to allocate space in the partition; callpsm_free()to release
space for later re-allocation.

c. Whenpsm_malloc()returnsNULL and you’re willing to wait a while for a more exhaustive free
block search, callpsm_panic()before retryingpsm_malloc(). When you’re no longer so desperate for
space, callpsm_relax().

d. To store a vital pointer in the single predefined location in the partition thatPSM reserves for this
purpose, callpsm_set_root(); to retrieve that pointer, call psm_get_root().

e. To get a snapshot of the current configuration of the partition, callpsm_usage(). To print this
snapshot to stdout, callpsm_report().

f. When you’re done with the partition but want to leave it in its current state for future re-management
(e.g., if the partition is in shared memory), callpsm_unmanage(). If you’re done with the partition
forever, call psm_erase().

DETAILED DESCRIPTION
PSM supports user management of an application-configured memory partition. The partition is
functionally divided into two pools of variable size: a ‘‘small pool’’ of l ow-overhead blocks aligned on
4−byte boundaries that can each contain up to 256 bytes of user data, and a ‘‘large pool’’ of high-overhead
blocks aligned on 8−byte boundaries that can each contain up to 2GB of user data.

Space in the small pool is allocated in any one of 64 different block sizes; each possible block size is (4i +
n) where i is a ‘‘block list index’’ f rom 1 through 64 and n is the length of thePSM overhead information
per block [4 bytes on a 32−bit machine].Given a user request for a block of size q where q is in the range 1
through 256 inclusive, we return the first block on the j’th small-pool free list where j = (q − 1) / 4. If there

perl v5.18.2 2016-09-07 4

ici::doc::pod3::psm(3) ICIlibrary functions ici::doc::pod3::psm(3)

is no such block, we increase the size of the small pool [incrementing its upper limit by (4 * (j + 1)) + n],
initialize the increase as a free block from list j, and return that block. No attempt is made to consolidate
physically adjacent blocks when they are freed or to bisect large blocks to satisfy requests for small ones; if
there is no free block of the requested size and the size of the small pool cannot be increased without
encroaching on the large pool (or if the requested size exceeds 256), we attempt to allocate a large-pool
block as described below. The differences between small-pool and large-pool blocks are transparent to the
user, and small-pool and large-pool blocks can be freely intermixed in an application.

Small-pool blocks are allocated and freed very rapidly, and space overhead consumption is small, but
capacity per block is limited and space assigned to small-pool blocks of a given size is never again available
for any other purpose.The small pool is designed to satisfy requests for allocation of a stable overall
population of small, volatile objects such as List and ListElt structures (seelyst(3)).

Space in the large pool is allocated from any one of 29 buckets, one for each power of 2 in the range 8
through 2G. The size of each block can be expressed as (n + 8i + m) where i is any integer in the range 1
through 256M, n is the size of the block’s leading overhead area [8 bytes on a 32−bit machine], and m is
the size of the block’s trailing overhead area [also 8 bytes on a 32−bit machine].Given a user request for a
block of size q where q is in the range 1 through 2G inclusive, we first compute r as the smallest multiple of
8 that is greater than or equal to q.We then allocate the first block in bucket t such that 2 ** (t + 3) is the
smallest power of 2 that is greater than r [or, if r is a power of 2, the first block in bucket t such that 2 ** (t
+ 3) = r]. That is, we try to allocate blocks of size 8 from bucket 0 [2**3 = 8], blocks of size 16 from
bucket 1 [2**4 = 16], blocks of size 24 from bucket 2 [2**5 = 32, 32 > 24], blocks of size 32 from bucket 2
[2**5 = 32], and so on.t is the first bucket whose free blocks areALL guaranteed to be at least as large as
r; bucket t − 1 may also contain some blocks that are as large as r (e.g., bucket 1 will contain blocks of size
24 as well as blocks of size 16), but we would have to do a possibly time consuming sequential search
through the free blocks in that bucket to find a match, because free blocks within a bucket are stored in no
particular order.

If bucket t is empty, we allocate the first block from the first non-empty bucket corresponding to a greater
power of two; if all eligible bucket are empty, we increase the size of the large pool [decrementing its lower
limit by (r + 16)], initialize the increase as a free block and ‘‘free’’ i t, and try again. If the size of the large
pool cannot be increased without encroaching on the small pool, then if we are desperate we search
sequentially through all blocks in bucket t − 1 (some of which may be of size r or greater) and allocate the
first block that is big enough, if any. Otherwise, no block is returned.

Having selected a free block to allocate, we remove the allocated block from the free list, split off as a new
free block all bytes in excess of (r + 16) bytes [unless that excess is too small to form a legal-size block],
and return the remainder to the user. When a block is freed, it is automatically consolidated with the
physically preceding block (if that block is free) and the physically subsequent block (if that block is free).

Large-pool blocks are allocated and freed quite rapidly; capacity is effectively unlimited; space overhead
consumption is very high for extremely small objects but becomes an insignificant fraction of block size as
block size increases. The large pool is designed to serve as a general-purpose heap with minimal
fragmentation whose overhead is best justified when used to store relatively large, long-lived objects such
as image packets.

The general goal of this memory allocation scheme is to satisfy memory management requests rapidly and
yet minimize the chance of refusing a memory allocation request when adequate unused space exists but is
inaccessible (because it is fragmentary or is buried as unused space in a block that is larger than necessary).
The size of a small-pool block delivered to satisfy a request for q bytes will never exceed q + 3 (alignment),
plus 4 bytes of overhead. Thesize of a large-pool block delivered to satisfy a request for q bytes will never
exceed q + 7 (alignment) + 20 (the maximum excess that can’t be split off as a separate free block), plus 16
bytes of overhead.

Neither the small pool nor the large pool ever decrease in size, but large-pool space previously allocated
and freed is available for small-pool allocation requests if no small-pool space is available. Small-pool
space previously allocated and freed cannot easily be reassigned to the large pool, though, because blocks
in the large pool must be physically contiguous to support defragmentation. No such reassignment
algorithm has yet been developed.

perl v5.18.2 2016-09-07 5

ici::doc::pod3::psm(3) ICIlibrary functions ici::doc::pod3::psm(3)

SEE ALSO
lyst(3)

perl v5.18.2 2016-09-07 6

ici::doc::pod3::sdr(3) ICIlibrary functions ici::doc::pod3::sdr(3)

NAME
sdr − Simple Data Recorder library

SYNOPSIS
#include "sdr.h"

[see below for available functions]

DESCRIPTION
SDR is a library of functions that support the use of an abstract data recording device called an ‘‘SDR’’
(‘‘simple data recorder’’) for persistent storage of data.The SDR abstraction insulates software not only
from the specific characteristics of any single data storage device but also from some kinds of persistent
data storage and retrieval chores. Theunderlying principle is that anSDRprovides standardized support for
user data organization at object granularity, with direct access to persistent user data objects, rather than
supporting user data organization only at ‘‘file’ ’ granularity and requiring the user to implement access to
the data objects accreted within those files.

The SDR library is designed to provide some of the same kinds of directory services as a file system
together with support for complex data structures that provide more operational flexibility than files. (As an
example of this flexibility , consider how much easier and faster it is to delete a given element from the
middle of a linked list than it is to delete a range of bytes from the middle of a text file.) The intent is to
enable the software developer to take maximum advantage of the high speed and direct byte addressability
of a non-volatile flat address space in the management of persistent data.The SDR equivalent of a
‘‘ record’’ of data is simply a block of nominally persistent memory allocated from this address space.The
SDR equivalent of a ‘‘file’ ’ is a collectionobject. Like files, collections can have names, can be located by
name within persistent storage, and can impose structure on the data items they encompass. But,as
discussed later, SDR collection objects can impose structures other than the strictFIFO accretion of records
or bytes that characterizes a file.

The notional data recorder managed by theSDR library takes the form of a single array of randomly
accessible, contiguous, nominally persistent memory locations called aheap. Physically, the heap may be
implemented as a region of shared memory, as a single file of predefined size, or both— that is, the heap
may be a region of shared memory that is automatically mirrored in a file.

SDR services that manageSDR data are provided in several layers, each of which relies on the services
implemented at lower levels:

At the highest level, a cataloguing service enables retrieval of persistent objects by name.

Services that manage three types of persistent data collections are provided for use both by
applications and by the cataloguing service: linked lists, self-delimiting tables (which function as
arrays that remember their own dimensions), and self-delimiting strings (short character arrays that
remember their lengths, for speedier retrieval).

BasicSDRheap space management services, analogous tomalloc()andfree(), enable the creation and
destruction of objects of arbitrary type.

Farther down the service stack are memcpy-like low-level functions for reading from and writing to
the heap.

Protection ofSDR data integrity across a series of reads and writes is provided by atransaction
mechanism.

SDR persistent data are referenced in application code by Object values and Address values, both of which
are simply displacements (offsets) withinSDR address space. The difference between the two is that an
Object is always the address of a block of heap space returned by some call tosdr_malloc(), while an
Address can refer to any byte in the address space. That is, an Address is theSDR functional equivalent of
a C pointer inDRAM, and some Addresses point to Objects.

Before usingSDRservices, the services must be loaded to the target machine and initialized by invoking the
sdr_initialize()function and the management profiles of one or moreSDR’s must be loaded by invoking the

perl v5.18.2 2016-09-07 1

ici::doc::pod3::sdr(3) ICIlibrary functions ici::doc::pod3::sdr(3)

sdr_load_profile()function. Thesesteps are normally performed only once, at application load time.

An application gains access to anSDR by passing the name of theSDR to thesdr_start_using()function,
which returns an Sdr pointer. Most otherSDR library functions take an Sdr pointer as first argument.

All writing to an SDR heap must occur during atransactionthat was initiated by the task issuing the write.
Transactions are single-threaded; if task B wants to start a transaction while a transaction begun by task A
is still in progress, it must wait until A’s transaction is either ended or cancelled.A transaction is begun by
calling sdr_begin_xn(). The current transaction is normally ended by calling thesdr_end_xn()function,
which returns an error return code value in the event that any serious SDR-related processing error was
encountered in the course of the transaction.Transactions may safely be nested, provided that every level
of transaction activity that is begun is properly ended.

The current transaction may instead be cancelled by callingsdr_cancel_xn(), which is normally used to
indicate that some sort of serious SDR-related processing error has been encountered.Canceling a
transaction reverses allSDR update activity performed up to that point within the scope of the transaction
— and, if the canceled transaction is an inner, nested transaction, allSDRupdate activity performed within
the scope of every outer transaction encompassing that transactionand ev ery other transaction nested
within any of those outer transactions— provided theSDR was configured for transactionre versibility.
When anSDR is configured for reversibility, all heap write operations performed during a transaction are
recorded in a log file that is retained until the end of the transaction. Each log file entry notes the location
at which the write operation was performed, the length of data written, and the content of the overwritten
heap bytes prior to the write operation.Canceling the transaction causes the log entries to be read and
processed in reverse order, restoring all overwritten data. Ending the transaction, on the other hand, simply
causes the log to be discarded.

If a log file exists at the time that the profile for anSDR is loaded (typically during application
initialization), the transaction that was being logged is automatically canceled and reversed. Thisensures
that, for example, a power failure that occurs in the middle of a transaction will never wreck theSDR’s data
integrity: either all updates issued during a given transaction are reflected in the current dataspace content
or none are.

As a further measure to protectSDR data integrity, an SDR may additionally be configured forobject
bounding. When anSDR is configured to be ‘‘bounded’’, every heap write operation is restricted to the
extent of a single object allocated from heap space; that is, it’s impossible to overwrite part of one object by
writing beyond the end of another. To enable the library to enforce this mechanism, application code is
prohibited from writing anywhere but within the extent of an object that either (a) was allocated from
managed heap space during the same transaction (directly or indirectly via some collection management
function) or (b) wasstaged — identified as an update target — duringthe same transaction (again, either
directly or via some collection management function).

Note that both transaction reversibility and object bounding consume processing cycles and inhibit
performance to some degree. Determiningthe right balance between operational safety and processing
speed is left to the user.

Note also that, sinceSDR transactions are single-threaded, they can additionally be used as a general
mechanism for simply implementing ‘‘critical sections’’ in software that is already usingSDR for other
purposes: the beginning of a transaction marks the start of code that can’t be executed concurrently by
multiple tasks. To support this use of theSDR transaction mechanism, the additional transaction
termination functionsdr_exit_xn()is provided. sdr_exit_xn()simply ends a transaction without either
signaling an error or checking for errors.Like sdr_cancel_xn(), sdr_exit_xn()has no return value; unlike
sdr_cancel_xn(), it assures that ending an inner, nested transaction does not cause the outer transaction to
be aborted and backed out. But this capability must be used carefully: the protection ofSDR data integrity
requires that transactions which are ended bysdr_exit_xn()must not encompass any SDR update activity
whatsoever.

The heap space management functions of theSDR library are adapted directly from the Personal Space
Management (psm) function library. The manual page forpsm(3) explains the algorithms used and the
rationale behind them. The principal difference betweenPSM memory management andSDR heap

perl v5.18.2 2016-09-07 2

ici::doc::pod3::sdr(3) ICIlibrary functions ici::doc::pod3::sdr(3)

management is that, for performance reasons,SDR reserves the ‘‘small pool’’ f or its own use only; all user
data space is allocated from the ‘‘large pool’’, via thesdr_malloc()function.

RETURN VALUES AND ERROR HANDLING
Whenever an SDR function call fails, a diagnostic message explaining the failure of the function is recorded
in the error message pool managed by the ‘‘platform’’ system (see the discussion ofputErrmsg() in
platform(3)).

The failure of any function invoked in the course of anSDR transaction causes all subsequentSDR activity
in that transaction to fail immediately. This can streamlineSDR application code somewhat: it may not be
necessary to check the return value of every SDR function call executed during a transaction. If the
sdr_end_xn()call returns zero, all updates performed during the transaction must have succeeded.

SYSTEM ADMINISTRATION FUNCTIONS
int sdr_initialize(int wmSize, char *wmPtr, int wmKey, char *wmName)

Initializes theSDR system.sdr_initialize()must be called once every time the computer on which the
system runs is rebooted, before any call to any otherSDR library function.

This function attaches to a pool of shared memory, managed byPSM (seepsm(3), that enablesSDR
library operations. If theSDRsystem is to access a common pool of shared memory with one or more
other systems, the key of that shared memory segment must be provided inwmKey and thePSM
partition name associated with that memory segment must be provided inwmName; otherwisewmKey
must be zero andwmNamemust beNULL, causingsdr_initialize()to assign default values. Ifa shared
memory segment identified by the effective value ofwmKey already exists, thenwmSizemay be zero
and the value ofwmPtr is ignored. Otherwise the size of the shared memory pool must be provided in
wmSizeand a new shared memory segment is created in a manner that is dependent onwmPtr: if
wmPtr is NULL then wmSizebytes of shared memory are dynamically acquired, allocated, and
assigned to the newly created shared memory segment; otherwise the memory located atwmPtr is
assumed to have been pre-allocated and is merely assigned to the newly created shared memory
segment.

sdr_initialize()also creates a semaphore to serialize access to theSDR system’s private array ofSDR
profiles.

Returns 0 on success, −1 on any failure.

void sdr_wm_usage(PsmUsageSummary *summary)
Loadssummarywith a snapshot of the usage of theSDR system’s private working memory. To print
the snapshot, usepsm_report(). (Seepsm(3).)

void sdr_shutdown()
Ends all access to all SDRs (seesdr_stop_using()), detaches from theSDR system’s working memory
(releasing the memory if it was dynamically allocated bysdr_initialize()), and destroys theSDR
system’s private semaphore.After sdr_shutdown(), sdr_initialize() must be called again before any
call to any otherSDR library function.

DATABASE ADMINISTRATION FUNCTIONS
int sdr_load_profile(char *name, int configFlags, long heapWords, int heapKey, int logSize, int logKey,
char *pathName, char *restartCmd, unsigned int restartLatency)

Loads the profile for anSDR into the system’s private list ofSDRprofiles. AlthoughSDRs themselves
are persistent,SDR profiles are not: in order for an application to access anSDR, sdr_load_profile()
must have been called to load the profile of theSDRsince the last invocation ofsdr_initialize().

nameis the name of theSDR,required for any subsequentsdr_start_using()call.

configFlagsspecifies the configuration of theSDR, the bitwise ‘‘or’ ’ of some combination of the
following:

SDR_IN_DRAM
SDRdataspace is implemented as a region of shared memory.

perl v5.18.2 2016-09-07 3

ici::doc::pod3::sdr(3) ICIlibrary functions ici::doc::pod3::sdr(3)

SDR_IN_FILE
SDRdataspace is implemented as a file.

SDR_REVERSIBLE
SDR transactions are logged and are reversed if canceled.

SDR_BOUNDED
Heap updates are not allowed to cross object boundaries.

heapWordsspecifies the size of the heap in words; word size depends on machine architecture, i.e., a
word is 4 bytes on a 32−bit machine, 8 bytes on a 64−bit machine. Note that eachSDR prepends to
the heap a ‘‘map’’ of predefined, fixed size. The total amount of space occupied by anSDR dataspace
in memory and/or in a file is the sum of the size of the map plus the product of word size and
heapWords.

heapKey is ignored if configFlags does not includeSDR_IN_DRAM. It should normally be
SM_NO_KEY, causing the shared memory region for theSDR dataspace to be allocated dynamically
and shared using a dynamically selected shared memory key. If specified,heapKey must be a shared
memory key identifying a pre-allocated region of shared memory whose length is equal to the total
SDRdataspace size, shared via the indicated key.

logSizespecifies the maximum size of the transaction log (in bytes) if and only if the log is to be
written to memory rather than to a file; otherwise it must be zero.logKey is ignored iflogSizeis zero.
It should normally beSM_NO_KEY, causing the shared memory region for the transaction log to be
allocated dynamically and shared using a dynamically selected shared memory key. If specified,
logKey must be a shared memory key identifying a pre-allocated region of shared memory whose
length is equal tologSize, shared via the indicated key.

pathNameis ignored ifconfigFlagsincludes neitherSDR_REVERSIBLEnor SDR_IN_FILE. It is the
fully qualified name of the directory into which theSDR’s log file and/or dataspace file will be written.
The name of the log file (if any) will be ‘‘<sdrname>.sdrlog’’. The name of the dataspace file (if any)
will be ‘‘<sdrname>.sdr’’; this file will be automatically created and filled with zeros if it does not
exist at the time theSDR’s profile is loaded.

If a cleanup task must be run whenever a transaction is reversed, the command to execute this task
must be provided in restartCmdand the number of seconds to wait for this task to finish before
resuming operations must be provided inrestartLatency. If restartCmdis NULL or restartLatencyis
zero then no cleanup task will be run upon transaction reversal.

Returns 0 on success, −1 on any error.

int sdr_reload_profile(char *name, int configFlags, long heapWords, int heapKey, int logSize, int logKey,
char *pathName, char *restartCmd, unsigned int restartLatency)

For use when the state of anSDR is thought to be inconsistent, perhaps due to crash of a program that
had a transaction open. Unloads the profile for theSDR, forcing the reversal of any transaction that is
currently in progress when theSDR’s profile is re-loaded.Then callssdr_load_profile()to re-load the
profile for theSDR. Same return values as sdr_load_profile.

Sdr sdr_start_using(char *name)
LocatesSDR profile by nameand returns a handle that can be used for all functions that operate on
thatSDR. On any failure, returnsNULL.

char *sdr_name(Sdr sdr)
Returns the name of the sdr.

long sdr_heap_size(Sdr sdr)
Returns the total size of theSDRheap, in bytes.

void sdr_stop_using(Sdr sdr)
Terminates access to theSDR via this handle. Other users of theSDR are not affected. Freesthe Sdr
object.

perl v5.18.2 2016-09-07 4

ici::doc::pod3::sdr(3) ICIlibrary functions ici::doc::pod3::sdr(3)

void sdr_abort(Sdr sdr)
Terminates the task. In flight configuration, also terminates all use of theSDRsystem by all tasks.

void sdr_destroy(Sdr sdr)
Ends all access to thisSDR, unloads theSDR’s profile, and erases theSDR from memory and file
system.

DATABASE TRANSACTION FUNCTIONS
void sdr_begin_xn(Sdr sdr)

Initiates a transaction. Note that transactions are single-threaded; any task that callssdr_begin_xn()is
suspended until all previously requested transactions have been ended or canceled.

int sdr_in_xn(Sdr sdr)
Returns 1 if called in the course of a transaction, 0 otherwise.

void sdr_exit_xn(Sdr sdr)
Simply abandons the current transaction, ceasing the calling task’s lock onION. Must not be used if
any dataspace modifications were performed during the transaction;sdr_end_xn()must be called
instead, to commit those modifications.

void sdr_cancel_xn(Sdr sdr)
Cancels the current transaction. If reversibility is enabled for theSDR,canceling a transaction reverses
all heap modifications performed during that transaction.

int sdr_end_xn(Sdr sdr)
Ends the current transaction. Returns 0 if the transaction completed without any error; returns −1 if
any operation performed in the course of the transaction failed, in which case the transaction was
automatically canceled.

DATABASE I/O FUNCTIONS
void sdr_read(Sdr sdr, char *into, Address from, int length)

Copieslength characters atfrom (a location in the indicatedSDR) to the memory location given by
into. The data are copied from the shared memory region in which theSDR resides, if any; otherwise
they are read from the file in which theSDR resides.

void sdr_peek(sdr, variable, from)
sdr_peek()is a macro that usessdr_read()to load variable from the indicated address in theSDR
dataspace; the size ofvariable is used as the number of bytes to copy.

void sdr_write(Sdr sdr, Address into, char *from, int length)
Copieslengthcharacters atfrom (a location in memory) to theSDR heap location given by into. Can
only be performed during a transaction, and if theSDR is configured for object bounding then heap
locationsinto through (into + (length− 1)) must be within the extent of some object that was either
allocated or staged within the same transaction. The data are copied both to the shared memory region
in which theSDR resides, if any, and also to the file in which theSDR resides, if any.

void sdr_poke(sdr, into, variable)
sdr_poke()is a macro that usessdr_write() to storevariable at the indicated address in theSDR
dataspace; the size ofvariable is used as the number of bytes to copy.

char *sdr_pointer(Sdr sdr, Address address)
Returns a pointer to the indicated location in the heap − a ‘‘heap pointer’’ − or NULL if the indicated
address is invalid. NOTE that this functioncannot be usedif the SDR does not reside in a shared
memory region.

Providing an alternative to using sdr_read()to retrieve objects into local memory, sdr_pointer()can
help make SDR-based applications run very quickly, but it must be usedWITH GREAT CAUTION!
Never use a direct pointer into the heap when not within a transaction, because you will have no
assurance at any time that the object pointed to by that pointer has not changed (or is even still there).
And NEVER de-reference a heap pointer in order to write directly into the heap: this makes transaction
reversal impossible. Whenever writing to theSDR,always usesdr_write().

perl v5.18.2 2016-09-07 5

ici::doc::pod3::sdr(3) ICIlibrary functions ici::doc::pod3::sdr(3)

Address sdr_address(Sdr sdr, char *pointer)
Returns the address within theSDRheap of the indicated location, which must be (or be derived from)
a heap pointer as returned bysdr_pointer(). Returns zero if the indicated location is not greater than
the start of the heap mirror. NOTE that this functioncannot be usedif the SDR does not reside in a
shared memory region.

void sdr_get(sdr, variable, heap_pointer)
sdr_get() is a macro that usessdr_read() to load variable from the SDR address given by
heap_pointer; heap_pointermust be (or be derived from) a heap pointer as returned bysdr_pointer().
The size ofvariable is used as the number of bytes to copy.

void sdr_set(sdr, heap_pointer, variable)
sdr_set()is a macro that usessdr_write()to storevariableat theSDR address given by heap_pointer;
heap_pointermust be (or be derived from) a heap pointer as returned bysdr_pointer(). The size of
variable is used as the number of bytes to copy.

HEAP SPACE MANAGEMENT FUNCTIONS
Object sdr_malloc(Sdr sdr, unsigned long size)

Allocates a block of space from the of the indicatedSDR’s heap. size is the size of the block to
allocate; the maximum size is 1/2 of the maximum address space size (i.e., 2G for a 32−bit machine).
Returns block address if successful, zero if block could not be allocated.

Object sdr_insert(Sdr sdr, char *from, unsigned long size)
Usessdr_malloc()to obtain a block of space of sizesizeand, if this allocation is successful, uses
sdr_write() to copy sizebytes of data from memory atfrom into the newly allocated block.Returns
block address if successful, zero if block could not be allocated.

Object sdr_stow(sdr, variable)
sdr_stow()is a macro that usessdr_insert()to insert a copy of variable into the dataspace. The size of
variable is used as the number of bytes to copy.

int sdr_object_length(Sdr sdr, Object object)
Returns the number of bytes of heap space allocated to the application data atobject.

void sdr_free(Sdr sdr, Object object)
Frees for subsequent re-allocation the heap space occupied byobject.

void sdr_stage(Sdr sdr, char *into, Object from, int length)
Like sdr_read(), this function will copy length characters atfrom (a location in the heap of the
indicatedSDR) to the memory location given by into. Unlike sdr_get(), sdr_stage() requires thatfrom
be the address of some allocated object, not just any location within the heap.sdr_stage(), when
called from within a transaction, notifies theSDR library that the indicated object may be updated later
in the transaction; this enables the library to retrieve the object’s size for later reference in validating
attempts to write into some location within the object.If length is zero, the object’s size is privately
retrieved by SDRbut none of the object’s content is copied into memory.

long sdr_unused(Sdr sdr)
Returns number of bytes of heap space not yet allocated to either the large or small objects pool.

void sdr_usage(Sdr sdr, SdrUsageSummary *summary)
Loads the indicated SdrUsageSummary structure with a snapshot of theSDR’s usage status.
SdrUsageSummary is defined by:

perl v5.18.2 2016-09-07 6

ici::doc::pod3::sdr(3) ICIlibrary functions ici::doc::pod3::sdr(3)

typedef struct
{

char sdrName[MAX_SDR_NAME + 1];
unsigned int dsSize;
unsigned int smallPoolSize;
unsigned int smallPoolFreeBlockCount[SMALL_SIZES];
unsigned int smallPoolFree;
unsigned int smallPoolAllocated;
unsigned int largePoolSize;
unsigned int largePoolFreeBlockCount[LARGE_ORDERS];
unsigned int largePoolFree;
unsigned int largePoolAllocated;
unsigned int unusedSize;

} S drUsageSummary;

void sdr_report(SdrUsageSummary *summary)
Sends to stdout a printed summary of theSDR’s usage status.

int sdr_heap_depleted(Sdr sdr)
A Boolean function: returns 1 if the total available space in theSDR’s heap (small pool free, large pool
free, and unused) is less than 1/16 of the total size of the heap. Otherwise returns zero.

HEAP SPACE USAGE TRACING
If SDR_TRACEis defined at the time theSDRsource code is compiled, the system includes built-in support
for simple tracing ofSDR heap space usage: heap space allocations are logged, and heap space
deallocations are matched to logged allocations, ‘‘closing’’ them. Thisenables heap space leaks and some
other kinds ofSDRheap access problems to be readily investigated.

int sdr_start_trace(Sdr sdr, int traceLogSize, char *traceLogAddress)
Begins an episode ofSDR heap space usage tracing.traceLogSizeis the number of bytes of shared
memory to use for trace activity logging; the frequency with which ‘‘closed’’ t race log events must be
deleted will vary inversely with the amount of memory allocated for the trace log.traceLogAddressis
normally NULL, causing the trace system to allocatetraceLogSizebytes of shared memory
dynamically for trace logging; if non-NULL, it must point totraceLogSizebytes of shared memory
that have been pre-allocated by the application for this purpose. Returns 0 on success, −1 on any
failure.

void sdr_print_trace(Sdr sdr, int verbose)
Prints a cumulative trace report and current usage report forsdr. If verboseis zero, only exceptions
(notably, trace log events that remain open— potentialSDR heap space leaks) are printed; otherwise
all activity in the trace log is printed.

void sdr_clear_trace(Sdr sdr)
Deletes all closed trace log events from the log, freeing up memory for additional tracing.

void sdr_stop_trace(Sdr sdr)
Ends the current episode ofSDRheap space usage tracing. If the shared memory used for the trace log
was allocated bysdr_start_trace(), releases that shared memory.

CATALOGUE FUNCTIONS
The SDR catalogue functions are used to maintain the catalogue of the names, types, and addresses of
objects within anSDR. The catalogue service includes functions for creating, deleting and finding
catalogue entries and a function for navigating through catalogue entries sequentially.

void sdr_catlg(Sdr sdr, char *name, int type, Object object)
Associatesobjectwith namein the indicatedSDR’s catalogue and notes thetypethat was declared for
this object. typeis optional and has no significance other than that conferred on it by the application.

The SDR catalogue is flat, not hierarchical like a directory tree, and all names must be unique.The
length ofnameis limited to 15 characters.

perl v5.18.2 2016-09-07 7

ici::doc::pod3::sdr(3) ICIlibrary functions ici::doc::pod3::sdr(3)

Object sdr_find(Sdr sdr, char *name, int *type)
Locates the Object associated withnamein the indicatedSDR’s catalogue and returns its address; also
reports the catalogued type of the object in*type if type is non-NULL. Returns zero if no object is
currently catalogued under this name.

void sdr_uncatlg(Sdr sdr, char *name)
Dissociates fromnamewhatever object in the indicatedSDR’s catalogue is currently catalogued under
that name.

Object sdr_read_catlg(Sdr sdr, char *name, int *type, Object *object, Object previous_entry)
Used to navigate through catalogue entries sequentially. If previous_entryis zero, reads the first entry
in the indicatedSDR’s catalogue; otherwise, reads the next catalogue entry following the one located at
previous_entry. In either case, returns zero if no such catalogue entry exists; otherwise, copies that
entry’s name, type, and catalogued object address intoname, *type, and *object, and then returns the
address of the catalogue entry (which may be used asprevious_entry in a subsequent call to
sdr_read_catlg()).

USER’S GUIDE
Compiling anSDRapplication

Just be sure to ‘‘#include ’’sdr.h"" at the top of each source file that includes anySDR function calls.

For UNIX applications, link with ‘‘−lsdr’’.

Loading anSDRapplication (VxWorks)
ld < "libsdr.o"

After the library has been loaded, you can begin loadingSDRapplications.

SEE ALSO
sdrlist(3), sdrstring(3), sdrtable(3)

perl v5.18.2 2016-09-07 8

ici::doc::pod3::sdrhash(3) ICIlibrary functions ici::doc::pod3::sdrhash(3)

NAME
sdrhash − Simple Data Recorder hash table management functions

SYNOPSIS
#include "sdr.h"

Object sdr_hash_create (Sdr sdr, int keyLength,
int estNbrOfEntries,
int meanSearchLength);

int sdr_hash_insert (Sdr sdr, Object hash, char *key,
Address value, Object *entry);

int sdr_hash_delete_entry (Sdr sdr, Object entry);
int sdr_hash_entry_value (Sdr sdr, Object hash, Object entry);
int sdr_hash_retrieve (Sdr sdr, Object hash, char *key,

Address *value, Object *entry);
int sdr_hash_count (Sdr sdr, Object hash);
int sdr_hash_revise (Sdr sdr, Object hash, char *key,

Address value);
int sdr_hash_remove (Sdr sdr, Object hash, char *key,

Address *value);
int sdr_hash_destroy (Sdr sdr, Object hash);

DESCRIPTION
TheSDRhash functions manage hash table objects in anSDR.

Hash tables associate values with keys. A value is always in the form of anSDR Address, nominally the
address of some stored object identified by the associated key, but the actual significance of a value may be
anything that fits into along. A key is always an array of from 1 to 255 bytes, which may have any
semantics at all.

Ke ys must be unique; no two distinct entries in anSDR hash table may have the same key. Any attempt to
insert a duplicate entry in anSDRhash table will be rejected.

All keys must be of the same length, and that length must be declared at the time the hash table is created.
Invoking a hash table function with a key that is shorter than the declared length will have unpredictable
results.

An SDR hash table is an array of linked lists. The location of a given value in the hash table is
automatically determined by computing a ‘‘hash’’ of the key, dividing the hash by the number of linked lists
in the array, using the remainder as an index to the corresponding linked list, and then sequentially
searching through the list entries until the entry with the matching key is found.

The number of linked lists in the array is automatically computed at the time the hash table is created,
based on the estimated maximum number of entries you expect to store in the table and the mean linked list
length (i.e., mean search time) you prefer. Increasing the maximum number of entries in the table and
decreasing the mean linked list length both tend to increase the amount ofSDRheap space occupied by the
hash table.

Object sdr_hash_create(Sdr sdr, int keyLength, int estNbrOfEntries, int meanSearchLength)
Creates anSDR hash table. Returns theSDR address of the new hash table on success, zero on any
error.

int sdr_hash_insert(Sdr sdr, Object hash, char *key, Address value, Object *entry)
Inserts an entry into the hash table identified byhash. On success, places the address of the new hash
table entry inentryand returns zero. Returns −1 on any error.

int sdr_hash_delete_entry(Sdr sdr, Object entry)
Deletes the hash table entry identified byentry. Returns zero on success, −1 on any error.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::sdrhash(3) ICIlibrary functions ici::doc::pod3::sdrhash(3)

Address sdr_hash_entry_value(Sdr sdr, Object hash, Object entry)
Returns the value of the hash table entry identified byentry.

int sdr_hash_retrieve(Sdr sdr, Object hash, char *key, Address *value, Object *entry)
Searches for the value associated withkey in this hash table, storing it invalue if found. If the entry
matchingkey was found, places the address of the hash table entry inentryand returns 1. Returns zero
if no such entry exists, −1 on any other failure.

int sdr_hash_count(Sdr sdr, Object hash)
Returns the number of entries in the hash table identified byhash.

int sdr_hash_revise(Sdr sdr, Object hash, char *key, Address value)
Searches for the hash table entry matchingkey in this hash table, replacing the associated value with
valueif found. Returns 1 if the entry matchingkey was found, zero if no such entry exists, −1 on any
other failure.

int sdr_hash_remove(Sdr sdr, Object hash, char *key, Address *value)
Searches for the hash table entry matchingkey in this hash table; if the entry is found, stores its value
in value, deletes the entry, and returns 1. Returns zero if no such entry exists, −1 on any other failure.

void sdr_hash_destroy(Sdr sdr, Object hash);
Destroyshash, destroying all entries in all linked lists of the array and destroying the hash table array
structure itself.DO NOT usesdr_free()to destroy a hash table, as this would leave the hash table’s
content allocated yet unreferenced.

SEE ALSO
sdr(3), sdrlist(3), sdrtable(3)

perl v5.18.2 2016-09-07 2

ici::doc::pod3::sdrlist(3) ICIlibrary functions ici::doc::pod3::sdrlist(3)

NAME
sdrlist − Simple Data Recorder list management functions

SYNOPSIS
#include "sdr.h"

typedef int (*SdrListCompareFn)(Sdr sdr, Address eltData, void *argData);
typedef void (*SdrListDeleteFn)(Sdr sdr, Object elt, void *argument);

[see description for available functions]

DESCRIPTION
The SDR list management functions manage doubly-linked lists in managedSDR heap space.The
functions manage two kinds of objects: lists and list elements.A l ist knows how many elements it contains
and what its start and end elements are. An element knows what list it belongs to and the elements before
and after it in the list. An element also knows its content, which is normally theSDR Address of some
object in theSDR heap. Alist may be sorted, which speeds the process of searching for a particular
element.

Object sdr_list_create(Sdr sdr)
Creates a new list object in theSDR; the new list object initially contains no list elements. Returns the
address of the new list, or zero on any error.

void sdr_list_destroy(Sdr sdr, Object list, SdrListDeleteFn fn, void *arg)
Destroys a list, freeing all elements of list.If fn is non-NULL, that function is called once for each
freed element; when called,fn is passed the Address that is the element’s data and theargument
pointer passed tosdr_list_destroy().

Do not usesdr_freeto destroy an SDR list, as this would leave the elements of the list allocated yet
unreferenced.

int sdr_list_length(Sdr sdr, Object list)
Returns the number of elements in the list, or −1 on any error.

void sdr_list_user_data_set(Sdr sdr, Object list, Address userData)
Sets the ‘‘user data’’ word of list to userData. Note thatuserDatais nominally an Address but can in
fact be any value that occupies a single word. It is typically used to point to anSDR object that
somehow characterizes the list as a whole, such as a name.

Address sdr_list_user_data(Sdrsdr, Object list)
Returns the value of the ‘‘user data’’ word of list, or zero on any error.

Object sdr_list_insert(Sdr sdr, Object list, Address data, SdrListCompareFn fn, void *dataBuffer)
Creates a new list element whose data value isdata and inserts that element into the list.If fn is
NULL, the new list element is simply appended to the list; otherwise, the new list element is inserted
after the last element in the list whose data value is ‘‘less than or equal to’’ the data value of the new
element (in dataBuffer) according to the collating sequence established byfn. Returns the address of
the newly created element, or zero on any error.

Object sdr_list_insert_first(Sdr sdr, Object list, Address data)
Object sdr_list_insert_last(Sdr sdr, Object list, Address data)

Creates a new element and inserts it at the front/end of the list. This function should not be used to
insert a new element into any ordered list; usesdr_list_insert()instead. Returnsthe address of the
newly created list element on success, or zero on any error.

Object sdr_list_insert_before(Sdr sdr, Object elt, Address data)
Object sdr_list_insert_after(Sdr sdr, Object elt, Address data)

Creates a new element and inserts it before/after the specified list element. This function should not be
used to insert a new element into any ordered list; usesdr_list_insert()instead. Returnsthe address of
the newly created list element, or zero on any error.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::sdrlist(3) ICIlibrary functions ici::doc::pod3::sdrlist(3)

void sdr_list_delete(Sdr sdr, Object elt, SdrListDeleteFn fn, void *arg)
Deleteelt from the list it is in. If fn is non-NULL, that function will be called upon deletion ofelt;
when called, that function is passed the Address that is the list element’s data value and thearg pointer
passed tosdr_list_delete().

Object sdr_list_first(Sdr sdr, Object list)
Object sdr_list_last(Sdr sdr, Object list)

Returns the address of the first/last element oflist, or zero on any error.

Object sdr_list_next(Sdr sdr, Object elt)
Object sdr_list_prev(Sdr sdr, Object elt)

Returns the address of the element following/precedingelt in that element’s list, or zero on any error.

Object sdr_list_search(Sdr sdr, Object elt, int reverse, SdrListCompareFn fn, void *dataBuffer);
Search a list for an element whose data matches the data indataBuffer, starting at the indicated initial
list element. If thecomparefunction is non-NULL, the list is assumed to be sorted in the order
implied by that function and the function is automatically called once for each element of the list until
it returns a value that is greater than or equal to zero (where zero indicates an exact match and a value
greater than zero indicates that the list contains no matching element); each timecompareis called it is
passed the Address that is the element’s data value and thedataBuffer value passed to
sm_list_search(). If re verse is non-zero, then the list is searched in reverse order (starting at the
indicated initial list element) and the search ends whencomparereturns a value that is less than or
equal to zero.If compareis NULL, then the entire list is searched (in either forward or reverse order,
as directed) until an element is located whose data value is equal to ((Address)dataBuffer). Returns
the address of the matching element if one is found, 0 otherwise.

Object sdr_list_list(Sdr sdr, Object elt)
Returns the address of the list to whichelt belongs, or 0 on any error.

Address sdr_list_data(Sdr sdr, Object elt)
Returns the Address that is the data value ofelt, or 0 on any error.

Address sdr_list_data_set(Sdr sdr, Object elt, Address data)
Sets the data value forelt to data, replacing the original value. Returnsthe original data value forelt,
or 0 on any error. The original data value forelt may or may not have been the address of an object in
heap data space; even if it was, that object wasNOT deleted.

Warning: changing the data value of an element of an ordered list may ruin the ordering of the list.

USAGE
When inserting elements or searching a list, the user may optionally provide a compare function of the
form:

int user_comp_name(Sdr sdr, Address eltData, void *dataBuffer);

When provided, this function is automatically called by the sdrlist function being invoked; when the
function is called it is passed the content of a list element (eltData, nominally the Address of an item in the
SDR’s heap space) and an argument,dataBuffer, which is nominally the address in local memory of some
other item in the same format. The user-supplied function normally compares some key values of the two
data items and returns 0 if they are equal, an integer less than 0 ifeltData’s key value is less than that of
dataBuffer, and an integer greater than 0 ifeltData’s key value is greater than that ofdataBuffer. These
return values will produce a list in ascending order. If the user desires the list to be in descending order, the
function must reverse the signs of these return values.

When deleting an element or destroying a list, the user may optionally provide a delete function of the
form:

void user_delete_name(Sdr sdr, Address eltData, void *argData)

When provided, this function is automatically called by the sdrlist function being invoked; when the
function is called it is passed the content of a list element (eltData, nominally the Address of an item in the
SDR’s heap space) and an argument,argData, which if non-NULL is normally the address in local memory

perl v5.18.2 2016-09-07 2

ici::doc::pod3::sdrlist(3) ICIlibrary functions ici::doc::pod3::sdrlist(3)

of a data item providing context for the list element deletion.The user-supplied function performs any
application-specific cleanup associated with deleting the element, such as freeing the element’s content data
item and/or otherSDRheap space associated with the element.

SEE ALSO
lyst(3), sdr(3), sdrstring(3), sdrtable(3), smlist(3)

perl v5.18.2 2016-09-07 3

ici::doc::pod3::sdrstring(3) ICIlibrary functions ici::doc::pod3::sdrstring(3)

NAME
sdrstring − Simple Data Recorder string functions

SYNOPSIS
#include "sdr.h"

Object sdr_string_create (Sdr sdr, char *from);
Object sdr_string_dup (Sdr sdr, Object from);
int sdr_string_length (Sdr sdr, Object string);
int sdr_string_read (Sdr sdr, char *into, Object string);

DESCRIPTION
SDR strings are used to record strings of up to 255ASCII characters in the heap space of anSDR. Unlike
standard C strings, which are terminated by a zero byte,SDR strings record the length of the string as part
of the string object.

To store strings longer than 255 characters, usesdr_malloc()andsdr_write()instead of these functions.

Object sdr_string_create(Sdr sdr, char *from)
Creates a ‘‘self-delimited string’’ in the heap of the indicatedSDR, allocating the required space and
copying the indicated content.from must be a standard C string for whichstrlen() must not exceed
255; if it does, or if insufficient SDR space is available, 0 is returned. Otherwise the address of the
newly createdSDRstring object is returned.To destroy, just usesdr_free().

Object sdr_string_dup(Sdr sdr, Object from)
Creates a duplicate of theSDRstring whose address isfrom, allocating the required space and copying
the original string’s content. If insufficient SDR space is available, 0 is returned. Otherwise the
address of the newly created copy of the original SDR string object is returned.To destroy, use
sdr_free().

int sdr_string_length(Sdr sdr, Object string)
Returns the length of the indicated self-delimited string (as would be returned bystrlen()), or −1 on
any error.

int sdr_string_read(Sdr sdr, char *into, Object string)
Retrieves the content of the indicated self-delimited string into memory as a standard C string (NULL
terminated). Lengthof into should normally beSDRSTRING_BUFSZ(i.e., 256) to allow for the largest
possibleSDRstring (255 characters) plus the terminatingNULL. Returns length of string (as would be
returned bystrlen()), or −1 on any error.

SEE ALSO
sdr(3), sdrlist(3), sdrtable(3), string(3)

perl v5.18.2 2016-09-07 1

ici::doc::pod3::sdrtable(3) ICIlibrary functions ici::doc::pod3::sdrtable(3)

NAME
sdrtable − Simple Data Recorder table management functions

SYNOPSIS
#include "sdr.h"

Object sdr_table_create (Sdr sdr, int rowSize, int rowCount);
int sdr_table_user_data_set (Sdr sdr, Object table, Address userData);
Address sdr_table_user_data (Sdr sdr, Object table);
int sdr_table_dimensions (Sdr sdr, Object table, int *rowSize,

int *rowCount);
int sdr_table_stage (Sdr sdr, Object table);
Address sdr_table_row (Sdr sdr, Object table,

unsigned int rowNbr);
int sdr_table_destroy (Sdr sdr, Object table);

DESCRIPTION
The SDR table functions manage table objects in theSDR. An SDR table comprises N rows of M bytes
each, plus optionally one word of user data (which is nominally the address of some other object in the
SDR’s heap space). When a table is created, the number of rows in the table and the length of each row are
specified; they remain fixed for the life of the table.The table functions merely maintain information about
the table structure and its location in theSDR and calculate row addresses; otherSDR functions such as
sdr_read()and sdr_write() are used to read and write the contents of the table’s rows. In particular, the
format of the rows of a table is left entirely up to the user.

Object sdr_table_create(Sdr sdr, int rowSize, int rowCount)
Creates a ‘‘self-delimited table’’, comprisingrowCountrows of rowSizebytes each, in the heap space
of the indicatedSDR. Note that the content of the table, a two-dimensional array, is a single SDRheap
space object of size (rowCountx rowSize). Returnsthe address of the new table on success, zero on
any error.

void sdr_table_user_data_set(Sdr sdr, Object table, Address userData)
Sets the ‘‘user data’’ word of table to userData. Note thatuserDatais nominally an Address but can
in fact be any value that occupies a single word. It is typically used to point to anSDR object that
somehow characterizes the table as a whole, such as anSDRstring containing a name.

Address sdr_table_user_data(Sdr sdr, Object table)
Returns the value of the ‘‘user data’’ word of table, or zero on any error.

void sdr_table_dimensions(Sdr sdr, Object table, int *rowSize, int *rowCount)
Reports on the row size and row count of the indicated table, as specified when the table was created.

void sdr_table_stage(Sdr sdr, Object table)
Stagestable so that the array it encapsulates may be updated; see the discussion ofsdr_stage() in
sdr(3). Theeffect of this function is the same as:

sdr_stage(sdr, NULL, (Object) sdr_table_row(sdr, table, 0), 0)

Address sdr_table_row(Sdr sdr, Object table, unsigned int rowNbr)
Returns the address of therowNbrth row of table, for use in reading or writing the content of this row;
returns −1 on any error.

void sdr_table_destroy(Sdr sdr, Object table)
Destroystable, releasing all bytes of all rows and destroying the table structure itself.DO NOT use
sdr_free()to destroy a table, as this would leave the table’s content allocated yet unreferenced.

SEE ALSO
sdr(3), sdrlist(3), sdrstring(3)

perl v5.18.2 2016-09-07 1

ici::doc::pod3::smlist(3) ICIlibrary functions ici::doc::pod3::smlist(3)

NAME
smlist − shared memory list management library

SYNOPSIS
#include "smlist.h"

typedef int (*SmListCompareFn)
(PsmPartition partition, PsmAddress eltData, void *argData);

typedef void (*SmListDeleteFn)
(PsmPartition partition, PsmAddress elt, void *argument);

[see description for available functions]

DESCRIPTION
The smlist library provides functions to create, manipulate and destroy doubly-linked lists in shared
memory. As with lyst(3), smlist uses two types of objects,list objects andelementobjects. However, as
these objects are stored in shared memory which is managed bypsm(3), pointers to these objects are
carried as PsmAddress values. Alist knows how many elements it contains and what its first and last
elements are. An element knows what list it belongs to and the elements before and after it in its list.An
element also knows its content, which is normally the PsmAddress of some object in shared memory.

PsmAddress sm_list_create(PsmPartition partition)
Create a new list object without any elements in it, within the memory segment identified bypartition.
Returns the PsmAddress of the list, or 0 on any error.

void sm_list_unwedge(PsmPartition partition, PsmAddress list, int interval)
Unwedge, as necessary, the mutex semaphore protecting shared access to the indicated list.For
details, see the explanation of thesm_SemUnwedge()function inplatform(3).

int sm_list_clear(PsmPartition partition, PsmAddress list, SmListDeleteFn delete, void *argument);
Empty a list. Frees each element of the list. If thedeletefunction is non-NULL, that function is called
once for each freed element; when called, that function is passed the PsmAddress of the list element
and theargumentpointer passed tosm_list_clear(). Returns 0 on success, −1 on any error.

int sm_list_destroy(PsmPartition partition, PsmAddress list, SmListDeleteFn delete, void *argument);
Destroy a list. Sameas sm_list_clear(), but additionally frees the list structure itself.Returns 0 on
success, −1 on any error.

int sm_list_user_data_set(PsmPartition partition, PsmAddress list, PsmAddress userData);
Set the value of a user data variable associated with the list as a whole. This value may be used for
any purpose; it is typically used to store the PsmAddress of a shared memory block containing data
(e.g., state data) which the user wishes to associate with the list.Returns 0 on success, −1 on any
error.

PsmAddress sm_list_user_data(PsmPartition partition, PsmAddress list);
Return the value of the user data variable associated with the list as a whole, or 0 on any error.

int sm_list_length(PsmPartition partition, PsmAddress list);
Return the number of elements in the list.

PsmAddress sm_list_insert(PsmPartition partition, PsmAddress list, PsmAddress data, SmListCompareFn
compare, void *dataBuffer);

Create a new list element whose data value isdata and insert it into the given list. If the compare
function isNULL, the new list element is simply appended to the list; otherwise, the new list element is
inserted after the last element in the list whose data value is ‘‘less than or equal to’’ the data value of
the new element (indataBuffer) according to the collating sequence established bycompare. Returns
the PsmAddress of the new element, or 0 on any error.

PsmAddress sm_list_insert_first(PsmPartition partition, PsmAddress list, PsmAddress data);

perl v5.18.2 2016-09-07 1

ici::doc::pod3::smlist(3) ICIlibrary functions ici::doc::pod3::smlist(3)

PsmAddress sm_list_insert_last(PsmPartition partition, PsmAddress list, PsmAddress data);
Create a new list element and insert it at the start/end of a list. Returns the PsmAddress of the new
element on success, or 0 on any error. Disregards any established sort order in the list.

PsmAddress sm_list_insert_before(PsmPartition partition, PsmAddress elt, PsmAddress data);
PsmAddress sm_list_insert_after(PsmPartition partition, PsmAddress elt, PsmAddress data);

Create a new list element and insert it before/after a given element. Returnsthe PsmAddress of the
new element on success, or 0 on any error. Disregards any established sort order in the list.

int sm_list_delete(PsmPartition partition, PsmAddress elt, SmListDeleteFn delete, void *argument);
Delete an element from a list. If thedelete function is non-NULL, that function is called upon
deletion of elt; when called, that function is passed the PsmAddress of the list element and the
argumentpointer passed tosm_list_delete(). Returns 0 on success, −1 on any error.

PsmAddress sm_list_first(PsmPartition partition, PsmAddress list);
PsmAddress sm_list_last(PsmPartition partition, PsmAddress list);

Return the PsmAddress of the first/last element inlist, or 0 on any error.

PsmAddress sm_list_next(PsmPartition partition, PsmAddress elt);
PsmAddress sm_list_prev(PsmPartition partition, PsmAddress elt);

Return the PsmAddress of the element following/precedingelt in that element’s list, or 0 on any error.

PsmAddress sm_list_search(PsmPartition partition, PsmAddress elt, SmListCompareFn compare, void
*dataBuffer);

Search a list for an element whose data matches the data indataBuffer. If the comparefunction is
non-NULL, the list is assumed to be sorted in the order implied by that function and the function is
automatically called once for each element of the list until it returns a value that is greater than or
equal to zero (where zero indicates an exact match and a value greater than zero indicates that the list
contains no matching element); each timecompareis called it is passed the PsmAddress that is the
element’s data value and thedataBuffervalue passed tosm_list_search(). If compareis NULL, then
the entire list is searched until an element is located whose data value is equal to ((PsmAddress)
dataBuffer). Returnsthe PsmAddress of the matching element if one is found, 0 otherwise.

PsmAddress sm_list_list(PsmPartition partition, PsmAddress elt);
Return the PsmAddress of the list to whichelt belongs, or 0 on any error.

PsmAddress sm_list_data(PsmPartition partition, PsmAddress elt);
Return the PsmAddress that is the data value forelt, or 0 on any error.

PsmAddress sm_list_data_set(PsmPartition partition, PsmAddress elt, PsmAddress data);
Set the data value forelt to data, replacing the original value. Returnsthe original data value forelt,
or 0 on any error. The original data value forelt may or may not have been the address of an object in
memory; even if it was, that object wasNOT deleted.

Warning: changing the data value of an element of an ordered list may ruin the ordering of the list.

USAGE
A user normally creates an element and adds it to a list by doing the following:

1 obtaining a shared memory block to contain the element’s data;

2 converting the shared memory block’s PsmAddress to a character pointer;

3 using that pointer to write the data into the shared memory block;

4 calling one of thesm_list_insertfunctions to create the element structure (which will include the
shared memory block’s PsmAddress) and insert it into the list.

When inserting elements or searching a list, the user may optionally provide a compare function of the
form:

int user_comp_name(PsmPartition partition, PsmAddress eltData,
void *dataBuffer);

When provided, this function is automatically called by the smlist function being invoked; when the

perl v5.18.2 2016-09-07 2

ici::doc::pod3::smlist(3) ICIlibrary functions ici::doc::pod3::smlist(3)

function is called it is passed the content of a list element (eltData, nominally the PsmAddress of an item in
shared memory) and an argument,dataBuffer, which is nominally the address in local memory of some
other item in the same format. The user-supplied function normally compares some key values of the two
data items and returns 0 if they are equal, an integer less than 0 ifeltData’s key value is less than that of
dataBuffer, and an integer greater than 0 ifeltData’s key value is greater than that ofdataBuffer. These
return values will produce a list in ascending order. If the user desires the list to be in descending order, the
function must reverse the signs of these return values.

When deleting an element or destroying a list, the user may optionally provide a delete function of the
form:

void user_delete_name(PsmPartition partition, PsmAddress elt, void *argData)

When provided, this function is automatically called by the smlist function being invoked; when the
function is called it is passed the address of a list element (elt and an argument,argData, which if non-
NULL is normally the address in local memory of a data item providing context for the list element
deletion. Theuser-supplied function performs any application-specific cleanup associated with deleting the
element, such as freeing the element’s content data item and/or other memory associated with the element.

EXAMPLE
For an example of the use of smlist, see the file smlistsh.c in the utils directory ofICI.

SEE ALSO
lyst(3), platform(3), psm(3)

perl v5.18.2 2016-09-07 3

ici::doc::pod3::zco(3) ICIlibrary functions ici::doc::pod3::zco(3)

NAME
zco − library for manipulating zero−copy objects

SYNOPSIS
#include "zco.h"

typedef enum
{

ZcoInbound = 0,
ZcoOutbound = 1,
ZcoUnknown = 2

} Z coAcct;

typedef enum
{

ZcoFileSource = 1,
ZcoBulkSource = 2,
ZcoObjSource = 3,
ZcoSdrSource = 4,
ZcoZcoSource = 5

} Z coMedium;

typedef void (*ZcoCallback)(ZcoAcct);

[see description for available functions]

DESCRIPTION
‘‘ Zero-copy objects’’ (ZCOs) are abstract data access representations designed to minimize I/O in the
encapsulation of application source data within one or more layers of communication protocol structure.
ZCOs are constructed within the heap space of anSDR to which implementations of all layers of the stack
must have access. EachZCO contains information enabling access to the source data objects, together with
(a) a linked list of zero or more ‘‘extents’’ that reference portions of these source data objects and (b) linked
lists of protocol header and trailer capsules that have been explicitly attached to theZCO since its creation.
The concatenation of the headers (in ascending stack sequence), source data object extents, and trailers (in
descending stack sequence) is what is to be transmitted or has been received.

Each source data object may be either a file (identified by pathname stored in a ‘‘file reference’’ object in
SDR heap) or an item in mass storage (identified by item number, with implementation-specific semantics,
stored in a ‘‘bulk reference’’ object inSDRheap) or an object inSDRheap space (identified by heap address
stored in an ‘‘object reference’’ object inSDR heap) or an array of bytes inSDR heap space (identified by
heap address).Each protocol header or trailer capsule indicates the length and the address (withinSDR
heap space) of a single protocol header or trailer at some layer of the stack.Note that the source data object
for eachZCO extent is specified indirectly, by reference to a content lien reference structure to a heap space
object, mass storage item, or file; the reference structures contain the actual locations of the source data
together with reference counts, enabling any number of ‘‘clones’’ of a giv en ZCO extent to be constructed
without consuming additional resources.These reference counts ensure that the reference structures and
the source data items they refer to are deleted automatically when (and only when) allZCO extents that
reference them have been deleted.

Note that the safety of shared access to aZCO is protected by the fact that theZCO resides inSDR heap
space and therefore cannot be modified other than in the course of anSDR transaction, which serializes
access. Moreover, extraction of data from aZCO may entail the reading of file-based source data extents,
which may cause file progress to be updated in one or more file reference objects in theSDRheap. For this
reason, allZCO ‘‘ transmit’’ and ‘‘receive’’ f unctions must be performed withinSDR transactions.

Note also thatZCO can more broadly be used as a general-purpose reference counting system for non-
volatile data objects, where a need for such a system is identified.

perl v5.18.2 2016-09-07 1

ici::doc::pod3::zco(3) ICIlibrary functions ici::doc::pod3::zco(3)

The total volume of file system space, mass storage space, andSDR heap space that may be occupied by
inbound and (separately) outboundZCO extents are system configuration parameters that may be set by
ZCO library functions. Those limits are enforced when extents are appended to ZCOs: total inbound and
outboundZCO file space, mass storage, andSDR heap occupancy are updated continuously as ZCOs are
created and destroyed, and the formation of a new extent is prohibited when the length of the extent
exceeds the difference between the applicable limit and the corresponding current occupancy total. Doing
separate accounting for inbound and outbound ZCOs enables inbound ZCOs to be formed (for data
reception purposes) even when the total current volume of outbound ZCOs has reached its limit, and vice
versa.

void zco_register_callback(ZcoCallback notify)
This function registers the ‘‘callback’’ f unction that theZCO system will invoke every time aZCO is
destroyed, makingZCO file, bulk, and/or heap space available for the formation of new ZCO extents.
This mechanism can be used, for example, to notify tasks that are waiting forZCO space to be made
available so that they can resume some communication protocol procedure.

void zco_unregister_callback()
This function simply unregisters the currently registered callback function forZCO destruction.

Object zco_create_file_ref(Sdr sdr, char *pathName, char *cleanupScript, ZcoAcct acct)
Creates and returns a new file reference object, which can be used as the source data extent location
for creating aZCO whose source data object is the file identified bypathName. cleanupScript, if not
NULL, is invoked at the moment the lastZCO that cites this file reference is destroyed [normally upon
delivery either down to the ‘‘ZCO transition layer’’ of the protocol stack or up to a ZCO-capable
application]. Azero-length string is interpreted as implicit direction to delete the referenced file when
the file reference object is destroyed. Maximumlength of cleanupScriptis 255. acct must be
ZcoInbound or ZcoOutbound, depending on whether the firstZCO that will reference this object will
be inbound or outbound. ReturnsSDR location of file reference object on success, 0 on any error.

Object zco_revise_file_ref(Sdr sdr, Object fileRef, char *pathName, char *cleanupScript)
Changes thepathNameand cleanupScriptof the indicated file reference.The new values of these
fields are validated as forzco_create_file_ref(). Returns 0 on success, −1 on any error.

char *zco_file_ref_path(Sdr sdr, Object fileRef, char *buffer, int buflen)
Retrieves the pathName associated withfileRefand stores it inbuffer, truncating it to fit (as indicated
by buflen) and NULL-terminating it. On success, returnsbuffer; returnsNULL on any error.

int zco_file_ref_xmit_eof(Sdr sdr, Object fileRef)
Returns 1 if the last octet of the referenced file (as determined at the time the file reference object was
created) has been read byZCO via a reader with file offset tracking turned on. Otherwise returns zero.

void zco_destroy_file_ref(Sdr sdr, Object fileRef)
If the file reference object residing at locationfileRefwithin the indicated Sdr is no longer in use (no
longer referenced by any ZCO), destroys this file reference object immediately. Otherwise, flags this
file reference object for destruction as soon as the last reference to it is removed.

Object zco_create_bulk_ref(Sdr sdr, unsigned long item, vast length, ZcoAcct acct)
Creates and returns a new bulk reference object, which can be used as the source data extent location
for creating aZCO whose source data object is the mass storage item of lengthlength identified by
item (the semantics of which are implementation-dependent).Note that the referenced item is
automatically destroyed at the time that the lastZCO that cites this bulk reference is destroyed
(normally upon delivery either down to the ‘‘ZCO transition layer’’ of the protocol stack or up to a
ZCO-capable application).acctmust be ZcoInbound or ZcoOutbound, depending on whether the first
ZCO that will reference this object will be inbound or outbound.ReturnsSDR location of bulk
reference object on success, 0 on any error.

void zco_destroy_bulk_ref(Sdr sdr, Object bulkRef)
If the bulk reference object residing at locationbulkRefwithin the indicated Sdr is no longer in use (no
longer referenced by any ZCO), destroys this bulk reference object immediately. Otherwise, flags this
bulk reference object for destruction as soon as the last reference to it is removed.

perl v5.18.2 2016-09-07 2

ici::doc::pod3::zco(3) ICIlibrary functions ici::doc::pod3::zco(3)

Object zco_create_obj_ref(Sdr sdr, Object object, vast length, ZcoAcct acct)
Creates and returns a new object reference object, which can be used as the source data extent location
for creating aZCO whose source data object is theSDR heap object of lengthlength identified by
object. Note that the referenced object is automatically freed at the time that the lastZCO that cites
this object reference is destroyed (normally upon delivery either down to the ‘‘ZCO transition layer’’ of
the protocol stack or up to a ZCO-capable application).acct must be ZcoInbound or ZcoOutbound,
depending on whether the firstZCO that will reference this object will be inbound or outbound.
ReturnsSDR location of object reference object on success, 0 on any error.

void zco_destroy_obj_ref(Sdr sdr, Object objRef)
If the object reference object residing at locationobjRefwithin the indicated Sdr is no longer in use
(no longer referenced by any ZCO), destroys this object reference object immediately. Otherwise,
flags this object reference object for destruction as soon as the last reference to it is removed.

void zco_status(Sdr sdr)
Uses theION logging function to write a report of the current contents of theZCO space accounting
database.

vast zco_get_file_occupancy(Sdr sdr, ZcoAcct acct)
Returns the total number of file system space bytes occupied by ZCOs (inbound or outbound) created
in this Sdr.

void zco_set_max_file_occupancy(Sdr sdr, vast occupancy, ZcoAcct acct)
Declares the total number of file system space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

vast zco_get_max_file_occupancy(Sdr sdr, ZcoAcct acct)
Returns the total number of file system space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

int zco_enough_file_space(Sdr sdr, vast length, ZcoAcct acct)
Returns 1 if the total remaining file system space available for ZCOs (inbound or outbound) in this Sdr
is greater thanlength. Returns 0 otherwise.

vast zco_get_bulk_occupancy(Sdr sdr, ZcoAcct acct)
Returns the total number of mass storage space bytes occupied by ZCOs (inbound or outbound)
created in this Sdr.

void zco_set_max_bulk_occupancy(Sdr sdr, vast occupancy, ZcoAcct acct)
Declares the total number of mass storage space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

vast zco_get_max_bulk_occupancy(Sdr sdr, ZcoAcct acct)
Returns the total number of mass storage space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

int zco_enough_bulk_space(Sdr sdr, vast length, ZcoAcct acct)
Returns 1 if the total remaining mass storage space available for ZCOs (inbound or outbound) in this
Sdr is greater thanlength. Returns 0 otherwise.

vast zco_get_heap_occupancy(Sdr sdr, ZcoAcct acct)
Returns the total number ofSDRheap space bytes occupied by ZCOs (inbound or outbound) created in
this Sdr.

void zco_set_max_heap_occupancy(Sdr sdr, vast occupancy, ZcoAcct acct)
Declares the total number ofSDR heap space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

vast zco_get_max_heap_occupancy(Sdr sdr, ZcoAcct acct)
Returns the total number ofSDR heap space bytes that may be occupied by ZCOs (inbound or
outbound) created in this Sdr.

perl v5.18.2 2016-09-07 3

ici::doc::pod3::zco(3) ICIlibrary functions ici::doc::pod3::zco(3)

int zco_enough_heap_space(Sdr sdr, vast length, ZcoAcct acct)
Returns 1 if the total remainingSDRheap space available for ZCOs (inbound or outbound) in this Sdr
is greater thanlength. Returns 0 otherwise.

int zco_extent_too_large(Sdr sdr, ZcoMedium source, vast length, ZcoAcct acct)
Returns 1 if the total remaining space available for ZCOs (inbound or outbound) isNOT enough to
contain a new extent of the indicated length in the indicated source medium. Returns 0 otherwise.

int zco_get_aggregate_length(Sdr sdr, Object location, vast offset, vast length, vast *fileSpaceOccupied,
vast *bulkSpaceOccupied, vast *heapSpaceOccupied)

Populates*fileSpaceOccupied, *bulkSpaceOccupied, and *heapSpaceOccupiedwith the total number
of ZCO space bytes occupied by the extents of the zco atlocation, from offsetto offset + length. If
offset isn’t the start of an extent oroffset + lengthisn’t the end of an extent, returns −1 in all three
fields.

Object zco_create(Sdr sdr, ZcoMedium firstExtentSourceMedium, Object firstExtentLocation, vast
firstExtentOffset, vast firstExtentLength, ZcoAcct acct, unsigned char provisional)

Creates a new inbound or outboundZCO. firstExtentLocationandfirstExtentLengthmust either both
be zero (indicating thatzco_append_extent()will be used to insert the first source data extent later) or
else both be non-zero.If firstExtentLocationis non-zero, then (a)firstExtentLocationmust be theSDR
location of a file reference object, bulk reference object, object reference object,SDR heap object, or
ZCO, depending on the value of firstExtentSourceMedium, and (b) firstExtentOffsetindicates how
many leading bytes of the source data object should be skipped over when adding the initial source
data extent to the new ZCO. A negative value forfirstExtentLengthindicates that the extent is already
known not to be too large for the available ZCO space, and the actual length of the extent is the
additive inv erse of this value. Anon-zero value forprovisional indicates that thisZCO will occupy
non-Restricted InboundZCO space. Thisspace is a critical resource, so provisional ZCOs are subject
to defensive destruction if they cannot immediately be migrated into the OutboundZCO space pool.
On success, returns theSDR location of the new ZCO. Returns 0 if there is insufficient ZCO space for
creation of the newZCO; returns ((Object) −1) on any error.

int zco_append_extent(Sdr sdr, Object zco, ZcoMedium sourceMedium, Object location, vast offset, vast
length)

Appends the indicated source data extent to the indicatedZCO, as described forzco_create(). Both the
locationandlengthof the source data must be non-zero.A neg ative value forlengthindicates that the
extent is already known not to be too large for the available ZCO space, and the actual length of the
extent is the additive inv erse of this value. For constraints on the value oflocation, seezco_create().
Returnslength on success, 0 if there is insufficient ZCO space for creation of the new source data
extent, −1 on any error.

int zco_prepend_header(Sdr sdr, Object zco, char *header, vast length)
int zco_append_trailer(Sdr sdr, Object zco, char *trailer, vast length)
void zco_discard_first_header(Sdr sdr, Object zco)
void zco_discard_last_trailer(Sdr sdr, Object zco)

These functions attach and remove the ZCO’s headers and trailers.headerand trailer are assumed to
be arrays of octets, not necessarily text. Attachinga header or trailer causes it to be written to the
SDR. The prepend and append functions return 0 on success, −1 on any error.

Object zco_header_text(Sdr sdr, Object zco, int skip, vast *length)
Skips over the firstskip headers ofzcoand returns the address of the text of next header, placing the
length of the header’s text in *length. Returns 0 on any error.

Object zco_trailer_text(Sdr sdr, Object zco, int skip, vast *length)
Skips over the firstskip trailers ofzcoand returns the address of the text of next trailer, placing the
length of the trailer’s text in *length. Returns 0 on any error.

void zco_destroy(Sdr sdr, Object zco)
Destroys the indicated Zco.This reduces the reference counts for all files andSDR objects referenced
in the ZCO’s extents, resulting in the freeing ofSDR objects and (optionally) the deletion of files as

perl v5.18.2 2016-09-07 4

ici::doc::pod3::zco(3) ICIlibrary functions ici::doc::pod3::zco(3)

those reference count drop to zero.

void zco_bond(Sdr sdr, Object zco)
Converts all headers and trailers of the indicated Zco to source data extents. Usethis function to
ensure that known header and trailer data are included when theZCO is cloned.

int zco_revise(Sdr sdr, Object zco, vast offset, char *buffer, vast length)
Writes the contents ofbuffer, for lengthlength, into zcoat offset offset. Returns 0 on success, −1 on
any error.

Object zco_clone(Sdr sdr, Object zco, vast offset, vast length)
Creates a new ZCO whose source data is a copy of a subset of the source data of the referencedZCO.
This procedure is required whenever it is necessary to process theZCO’s source data in multiple
different ways, for different purposes, and therefore theZCO must be in multiple states at the same
time. Portionsof the source data extents of the originalZCO are copied as necessary, but no header or
trailer capsules are copied.ReturnsSDR location of the new ZCO on success, (Object) −1 on any
error.

vast zco_clone_source_data(Sdr sdr, Object toZco, Object fromZco, vast offset, vast length)
Appends totoZco a copy of a subset of the source data offromZCO. Portions of the source data
extents offromZCOare copied as necessary. Returns total data length cloned, or −1 on any error.

vast zco_length(Sdr sdr, Object zco)
Returns length of entireZCO, including all headers and trailers and all source data extents. Thisis the
size of the object that would be formed by concatenating the text of all headers, trailers, and source
data extents into a single serialized object.

vast zco_source_data_length(Sdr sdr, Object zco)
Returns length of entireZCO minus the lengths of all attached header and trailer capsules.This is the
size of the object that would be formed by concatenating the text of all source data extents (including
those that are presumed to contain header or trailer text attached elsewhere) into a single serialized
object.

ZcoAcct zco_acct(Sdr sdr, Object zco)
Returns an indicator as to whetherzcois inbound or outbound.

int zco_is_provisional(Sdr sdr, Object zco)
Returns an indicator as to whether or notzcois flagged as ‘‘provisional’’.

void zco_start_transmitting(Object zco, ZcoReader *reader)
Used by underlying protocol layer to start extraction of an outboundZCO’s bytes (both from header
and trailer capsules and from source data extents) for ‘‘transmission’’ — i .e., the copying of bytes into
a memory buffer for delivery to some non-ZCO-aware protocol implementation. Initializes reading at
the first byte of the total concatenatedZCO object. Populatesreader, which is used to keep track of
‘‘ transmission’’ progress via thisZCO reference.

Note that this function can be called multiple times to restart reading at the start of theZCO. Note also
that multiple ZcoReader objects may be used concurrently, by the same task or different tasks, to
advance through theZCO independently.

void zco_track_file_offset(ZcoReader *reader)
Turns on file offset tracking for this reader.

vast zco_transmit(Sdr sdr, ZcoReader *reader, vast length, char *buffer)
Copieslengthas-yet-uncopied bytes of the total concatenatedZCO (referenced byreader) into buffer.
If buffer is NULL, skips over lengthbytes without copying. Returnsthe number of bytes copied (or
skipped) on success, 0 on any file access error, −1 on any other error.

void zco_start_receiving(Object zco, ZcoReader *reader)
Used by overlying protocol layer to start extraction of an inboundZCO’s bytes for ‘‘reception’’ — i .e.,
the copying of bytes into a memory buffer for delivery to a protocol header parser, to a protocol trailer
parser, or to the ultimate recipient (application). Initializes reading of headers, source data, and trailers

perl v5.18.2 2016-09-07 5

ici::doc::pod3::zco(3) ICIlibrary functions ici::doc::pod3::zco(3)

at the first byte of the concatenatedZCO objects. Populatesreader, which is used to keep track of
‘‘ reception’’ progress via thisZCO reference and is required.

vast zco_receive_headers(Sdr sdr, ZcoReader *reader, vast length, char *buffer)
Copieslengthas-yet-uncopied bytes of presumptive protocol header text fromZCO source data extents
into buffer. If buffer is NULL, skips over length bytes without copying. Returnsnumber of bytes
copied (or skipped) on success, 0 on any file access error, −1 on any other error.

void zco_delimit_source(Sdr sdr, Object zco, vast offset, vast length)
Sets the computed offset and length of actual source data in theZCO, thereby implicitly establishing
the total length of theZCO’s concatenated protocol headers asoffsetand the location of theZCO’s
innermost protocol trailer as the sum ofoffsetand length. Offset and length are typically determined
from the information carried in received presumptive protocol header text.

vast zco_receive_source(Sdr sdr, ZcoReader *reader, vast length, char *buffer)
Copieslengthas-yet-uncopied bytes of source data fromZCO extents intobuffer. If buffer is NULL,
skips over lengthbytes without copying. Returnsnumber of bytes copied (or skipped) on success, 0
on any file access error, −1 on any other error.

vast zco_receive_trailers(Sdr sdr, ZcoReader *reader, vast length, char *buffer)
Copieslengthas-yet-uncopied bytes of trailer data fromZCO extents intobuffer. If buffer is NULL,
skips over lengthbytes without copying. Returnsnumber of bytes copied (or skipped) on success, 0
on any file access error, −1 on any other error.

void zco_strip(Sdr sdr, Object zco)
Deletes all source data extents that contain only header or trailer data and adjusts the offsets and/or
lengths of all remaining extents to exclude any known header or trailer data. This function is useful
when handling aZCO that was received from an underlying protocol layer rather than from an
overlying application or protocol layer; use it before starting the transmission of theZCO to another
node or before enqueuing it for reception by an overlying application or protocol layer.

SEE ALSO
sdr(3)

perl v5.18.2 2016-09-07 6

ltp::doc::pod3::ltp(3) LTP library functions ltp::doc::pod3::ltp(3)

NAME
ltp − Licklider Transmission Protocol (LTP) communications library

SYNOPSIS
#include "ltp.h"

typedef enum
{

LtpNoNotice = 0,
LtpExportSessionStart,
LtpXmitComplete,
LtpExportSessionCanceled,
LtpExportSessionComplete,
LtpRecvGreenSegment,
LtpRecvRedPart,
LtpImportSessionCanceled

} L tpNoticeType;

[see description for available functions]

DESCRIPTION
The ltp library provides functions enabling application software to useLTP to send and receive information
reliably over a long-latency link. It conforms to theLTP specification as documented by the Delay-Tolerant
Networking Research Group of the Internet Research Task Force.

TheLTP notion ofengineID corresponds closely to the Internet notion of a host, and inION engine IDs are
normally indistinguishable from node numbers including the node numbers in Bundle Protocol endpoint
IDs conforming to the ‘‘ipn’’ scheme.

TheLTP notion ofclient ID corresponds closely to the Internet notion of ‘‘protocol number’’ as used in the
Internet Protocol. It enables data from multiple applications— clients — tobe multiplexed over a single
reliable link. However, for ION operations we normally useLTP exclusively for the transmission of Bundle
Protocol data, identified by clientID = 1.

int ltp_attach()
Attaches the application toLTP functionality on the lcoal computer. Returns 0 on success, −1 on any
error.

void ltp_detach()
Terminates all access toLTP functionality on the local computer.

int ltp_engine_is_started()
Returns 1 if the localLTP engine has been started and not yet stopped, 0 otherwise.

int ltp_send(uvast destinationEngineId, unsigned int clientId, Object clientServiceData, unsigned int
redLength, LtpSessionId *sessionId)

Sends a client service data unit to the application that is waiting for data tagged with the indicated
clientIdas received at the remoteLTP engine identified bydestinationEngineId.

clientServiceDatamust be a ‘‘zero-copy object’’ reference as returned byionCreateZco(). Note that
LTP will privately make and destroy its own reference to the client service data object; the application
is free to destroy its reference at any time.

redLength indicates the number of leading bytes of data inclientServiceDatathat are to be sent
reliably, i.e., with selective retransmission in response to explicit or implicit negative acknowledgment
as necessary. All remaining bytes of data inclientServiceDatawill be sent as ‘‘green’’ data, i.e.,
unreliably. If redLengthis zero, the entire client service data unit will be sent unreliably. If the entire
client service data unit is to be sent reliably, redLengthmay be simply be set toLTP_ALL_RED (i.e.,
−1).

On success, the function populates*sessionIdwith the source engineID and the ‘‘session number’’

perl v5.18.2 2016-09-07 1

ltp::doc::pod3::ltp(3) LTP library functions ltp::doc::pod3::ltp(3)

assigned to transmission of this client service data unit and returns zero.The session number may be
used to link futureLTP processing events, such as transmission cancellation, to the affected client
service data.ltp_send()returns −1 on any error.

int ltp_open(unsigned int clientId)
Establishes the application’s exclusive access to received service data units tagged with the indicated
client service dataID. At any time, only a single application task is permitted to receive service data
units for any single client service dataID.

Returns 0 on success, −1 on any error (e.g., the indicated client service is already being held open by
some other application task).

int ltp_get_notice(unsigned int clientId, LtpNoticeType *type, LtpSessionId *sessionId, unsigned char
*reasonCode, unsigned char *endOfBlock, unsigned int *dataOffset, unsigned int *dataLength, Object
*data)

Receives notices ofLTP processing events pertaining to the flow of service data units tagged with the
indicated client serviceID. The nature of each event is indicated by*type. Additional parameters
characterizing the event are returned in*sessionId, *reasonCode, *endOfBlock, *dataOffset,
*dataLength, and *data as relevant.

The value returned in*data is always a zero-copy object; use the zco_* functions defined in ‘‘zco.h’’
to retrieve the content of that object.

When the notice is an LtpRecvGreenSegment, theZCO returned in*data contains the content of a
single LTP green segment. Reassemblyof the green part of some block from these segments is the
responsibility of the application.

When the notice is an LtpRecvRedPart, theZCO returned in*data contains the red part of a possibly
aggregated block. The ZCO’s content may therefore comprise multiple service data objects.
Extraction of individual service data objects from the aggregated block is the responsibility of the
application. Asimple way to do this is to prepend the length of the service data object to the object
itself (using zco_prepend_header) before calling ltp_send, so that the receiving application can
alternate extraction of object lengths and objects from the delivered block’s red part.

The cancellation of an export session may result in delivery of multiple LtpExportSessionCanceled
notices, one for each service data unit in the export session’s (potentially) aggregated block. TheZCO
returned in*data for each such notice is a service data unitZCO that had previously been passed to
ltp_send().

ltp_get_notice()always blocks indefinitely until anLTP processing event is delivered.

Returns zero on success, −1 on any error.

void ltp_interrupt(unsigned int clientId)
Interrupts anltp_get_notice()invocation. Thisfunction is designed to be called from a signal handler;
for this purpose,clientIdmay need to be obtained from a static variable.

void ltp_release_data(Object data)
Releases the resources allocated to holddata, which must be areceived client service dataZCO.

void ltp_close(unsigned int clientId)
Terminates the application’s exclusive access to received service data units tagged with the indicated
client service dataID.

SEE ALSO
ltpadmin(1), ltprc (5), zco(3)

perl v5.18.2 2016-09-07 2

AMSRC(5) AMSconfiguration files AMSRC(5)

NAME
amsrc − CCSDS Asynchronous Message Service MIB initialization file

DESCRIPTION
The Management Information Base (MIB) for an AMS communicating entity (eitheramsd or an AMS
application module) must contain enough information to enable the entity to initiate participation inAMS
message exchange, such as the network location of the configuration server and the roles and message
subjects defined for some venture.

AMS entities automatically load their MIBs from initialization files at startup.WhenAMS is built with the
−DNOEXPAT compiler option set, theMIB initialization file must conform to theamsrcsyntax described
below; otherwise theexpat XML parsing library must be linked into theAMS executable and theMIB
initialization file must conform to theamsxmlsyntax described inamsxml(5).

The MIB initialization file listselementsof MIB update information, each of which may have one or more
attributes. An element may also have sub-elements that are listed within the declaration of the parent
element, and so on.

The declaration of an element may occupy a single line of text in theMIB initialization file or may extend
across multiple files.A single-line element declaration is indicated by a ’*’ in the first character of the line.
The beginning of a multi-line element declaration is indicated by a ’+’ in the first character of the line,
while the end of that declaration is indicated by a ’−’ in the first character of the line. In every case, the
type of element must be indicated by an element-type name beginning in the second character of the line
and terminated by whitespace.Every start-of-element linemust be matched by a subsequent end-of-
element line that precedes the start of any other element that is not a nested sub-element of this element.

Attributes are represented by whitespace-terminated <name>=<value> expressions immediately following
the element-type name on a ’*’ or ’+’ line. An attribute value that contains whitespace must be enclosed
within a pair of single-quote (’) characters.

Tw o types of elements are recognized in theMIB initialization file: control elements and configuration
elements. Acontrol element establishes the update context within which the configuration elements nested
within it are processed, while a configuration element declares values for one or more items ofAMS
configuration information in theMIB.

Note that an aggregate configuration element (i.e., one which may contain other interior configuration
elements; venture, for example) may be presented outside of any control element, simply to establish the
context in which subsequent control elements are to be interpreted.

CONTROL ELEMENTS
ams_mib_init

Initializes an emptyMIB. This element must be declared prior to the declaration of any other element.

Sub-elements: none

Attributes:

continuum_nbr
Identifies the local continuum.

ptsname
Identifies the primary transport service for the continuum.Valid values include ‘‘dgr’’ and
‘‘ udp’’.

pubkey
This is the name of the public key used for validating the digital signatures of meta-AMS
messages received from the configuration server for this continuum. The value of this attribute (if
present) must identify a key that has been loaded into theION security database, nominally by
ionsecadmin(1).

privkey
This is the name of the private key used for constructing the digital signatures of meta-AMS
messages sent by the configuration server for this continuum.This attribute shouldonly be

perl v5.18.2 2016-09-07 1

AMSRC(5) AMSconfiguration files AMSRC(5)

present in theMIB initialization file for amsd(). The value of this attribute (if present) must
identify a key that has been loaded into theION security database, nominally byionsecadmin(1).

ams_mib_add
This element contains a list of configuration items that are to be added to theMIB.

ams_mib_change
This element contains a list of configuration items that are to be revised in theMIB.

ams_mib_delete
This element contains a list of configuration items that are to be deleted from theMIB.

CONFIGURATION ELEMENTS
continuum

Identifies a known remote continuum.

Sub-elements: none

Attributes:

nbr Identifies the local continuum.

name
Identifies the local continuum.

neighbor
1 if the continuum is a neighbor of the local continuum, zero otherwise.

desc
A textual description of this continuum.

csendpoint
Identifies one of the network locations at which the configuration server may be reachable. If the
configuration server might be running at any one of several locations, the number of other locations
that are preferred to this one is noted; in this case, csendpoints must be listed within the ams_mib_add
element in descending order of preference, i.e., with the most preferred network location listed first.

Sub-elements: none

Attributes:

epspec
Identifies the endpoint at which the configuration server may be reachable. The endpoint
specification must conform the endpoint specification syntax defined for the continuum’s primary
transport service; see theAMS Blue Book for details.

after
If present, indicates the number of other configuration server network locations that are
considered preferable to this one. This attribute is used to ensure that csendpoints are listed in
descending order of preference.

amsendpoint
Normally the specifications of the transport service endpoints at which anAMS application module
can receive messages are computed automatically using standard transport-service-specific rules.
However, in some cases it might be necessary for a module to receive messages at one or more non-
standard endpoints; in these cases, amsendpoint elements can be declared in order to override the
standard endpoint specification rules.

Sub-elements: none

Attributes:

tsname
Identifies the transport service for which a non-standard endpoint specification is being supplied.

perl v5.18.2 2016-09-07 2

AMSRC(5) AMSconfiguration files AMSRC(5)

epspec
Identifies an endpoint at which the application module will be reachable, in the context of the
named transport service. The endpoint specification must conform the endpoint specification
syntax defined for the named transport service; see theAMS Blue Book for details.

application
Identifies one of the applications supported within this continuum.

Sub-elements: none

Attributes:

name
Identifies the application.

pubkey
This is the name of the public key used for validating the digital signatures of meta-AMS
messages received from the registrars for all cells of any message space in this continuum that is
characterized by this application name. The value of this attribute (if present) must identify a key
that has been loaded into theION security database, nominally byionsecadmin(1).

privkey
This is the name of the private key used for constructing the digital signatures of meta-AMS
messages sent by the registrars for all cells of any message space in this continuum that is
characterized by this application name. This attribute shouldonly be present in theMIB
initialization file for amsd(). The value of this attribute (if present) must identify a key that has
been loaded into theION security database, nominally byionsecadmin(1).

venture
Identifies one of the ventures operating within the local continuum.

Sub-elements: role, subject, unit, msgspace

Attributes:

nbr Identifies the venture.

appname
Identifies the application addressed by this venture.

authname
Identifies the authority under which the venture operates, distinguishing this venture from all
other ventures that address the same application.

gweid
Identifies theRAMS network endpoint ID of the RAMS gateway module for this venture’s
message space in the local continuum.Gateway endpoint ID is expressed as
<protocol_name>@<eid_string> whereprotocol_nameis either ‘‘bp’’ or ‘ ‘udp’’. If protocol
name is ‘‘bp’’ theneid_stringmust be a valid Bundle Protocol endpointID; otherwise,eid_string
must be of the form <hostname>:<port_number>. If the gweid attribute is omitted, theRAMS
gateway module’s RAMS network endpoint ID defaults to
‘‘ bp@ipn:<local_continuum_number>.<venture_number>’’.

net_config
Has the value ‘‘tree’’ if t he RAMS network supporting this venture is configured as a tree;
otherwise ‘‘mesh’’, indicating that theRAMS network supporting this venture is configured as a
mesh.

root_cell_resync_period
Indicates the number of seconds in the period on which resynchronization is performed for the
root cell of this venture’s message space in the local continuum. If this attribute is omitted,
resynchronization in that cell is disabled.

perl v5.18.2 2016-09-07 3

AMSRC(5) AMSconfiguration files AMSRC(5)

role
Identifies one of the functional roles in the venture that is the element that’s currently being
configured.

Sub-elements: none

Attributes:

nbr Identifies the role.

name
Identifies the role.

authname
Identifies the authority under which the venture operates, distinguishing this venture from all
other ventures that address the same application.

pubkey
This is the name of the public key used for validating the digital signatures of meta-AMS
messages received from all application modules that register in this functional role. The value of
this attribute (if present) must identify a key that has been loaded into theION security database,
nominally byionsecadmin(1).

privkey
This is the name of the private key used for constructing the digital signatures of meta-AMS
messages sent by all application modules that register in this functional role. This attribute
shouldonly be present in theMIB initialization file for application modules that register in this
role. Thevalue of this attribute (if present) must identify a key that has been loaded into theION
security database, nominally byionsecadmin(1).

subject
Identifies one of the subjects on which messages may be sent, within the venture that is the element
that’s currently being configured.

Sub-elements: sender, receiver

Attributes:

nbr Identifies the subject.

name
Identifies the subject.

desc
A textual description of this message subject.

symkey
This is the name of the symmetric key used for both encrypting and decrypting the content of
messages on this subject; if omitted, messages on this subject are not encrypted byAMS. If
authorized senders and receivers are defined for this subject, then this attribute shouldonly be
present in theMIB initialization file for application modules that register in roles that appear in
the subject’s lists of authorized senders and/or receivers. Thevalue of this attribute (if present)
must identify a key that has been loaded into theION security database, nominally by
ionsecadmin(1).

marshal
This is the name associated with the content marshaling function defined for this message subject.
If present, whenever a message on this subject is issued the associated function is automatically
called to convert the supplied content data to a platform-independent representation for
transmission; this conversion occurs before any applicable content encryption is performed.If
omitted, content data are transmitted without conversion to a platform-independent
representation. Marshalingfunctions are defined in the marshalRules table in the marshal.c
source file.

perl v5.18.2 2016-09-07 4

AMSRC(5) AMSconfiguration files AMSRC(5)

unmarshal
This is the name associated with the content unmarshaling function defined for this message
subject. If present, whenever a message on this subject is received the associated function is
automatically called to convert the transmitted content to local platform-specific representation;
this conversion occurs after any applicable content decryption is performed. If omitted, received
content data are delivered without conversion to a local platform-specific representation.
Unmarshaling functions are defined in the unmarshalRules table in the marshal.c source file.

sender
Identifies one of the roles in which application modules must register in order to be authorized senders
of messages on the subject that is the element that’s currently being configured.

Sub-elements: none

Attributes:

name
Identifies the sender. The value of this attribute must be the name of a role that has been defined
for the venture that is currently being configured.

receiver
Identifies one of the roles in which application modules must register in order to be authorized
receivers of messages on the subject that is the element that’s currently being configured.

Sub-elements: none

Attributes:

name
Identifies the receiver. The value of this attribute must be the name of a role that has been defined
for the venture that is currently being configured.

unit
Identifies one of the organizational units within the venture that is the element that’s currently being
configured.

Sub-elements: none

Attributes:

nbr Identifies the venture.

name
Identifies the venture.

resync_period
Indicates the number of seconds in the period on which resynchronization is performed, for the
cell of this venture’s message space that is the portion of the indicated unit which resides in the
local continuum. If this attribute is omitted, resynchronization in that cell is disabled.

msgspace
Identifies one of the message spaces in remote continua that are encompassed by the venture that is the
element that’s currently being configured.

Sub-elements: none

Attributes:

nbr Identifies the remote continuum within which the message space operates.

gweid
Identifies theRAMS network endpointID of the RAMS gateway module for this message space.
Gateway endpoint ID is expressed as <protocol_name>@<eid_string> whereprotocol_nameis
either ‘‘bp’’ or ‘ ‘udp’’. If protocol name is ‘‘bp’’ theneid_stringmust be a valid Bundle Protocol
endpointID; otherwise,eid_stringmust be of the form <hostname>:<port_number>.If the gweid

perl v5.18.2 2016-09-07 5

AMSRC(5) AMSconfiguration files AMSRC(5)

attribute is omitted, theRAMS network endpointID of the message space’s RAMS gateway
module defaults to ‘‘bp@ipn:<remote_continuum_number>.<venture_number>’’.

symkey
This is the name of the symmetric key used for both encrypting and decrypting all messages to
and from modules in the remote message space that are forwarded between the localRAMS
gateway server and modules in the local message space; if omitted, these messages are not
encrypted. Thevalue of this attribute (if present) must identify a key that has been loaded into
the ION security database, nominally byionsecadmin(1).

EXAMPLE
*ams_mib_init continuum_nbr=2 ptsname=dgr

+ams_mib_add

*continuum nbr=1 name=apl desc=APL

*csendpoint epspec=beaumont.stepsoncats.com:2357

*application name=amsdemo

+venture nbr=1 appname=amsdemo authname=test

*role nbr=2 name=shell

*role nbr=3 name=log

*role nbr=4 name=pitch

*role nbr=5 name=catch

*role nbr=6 name=benchs

*role nbr=7 name=benchr

*role nbr=96 name=amsd

*role nbr=97 name=amsmib

*role nbr=98 name=amsstop

*subject nbr=1 name=text desc=’ASCII text’

*subject nbr=2 name=noise desc=’moreASCII text’

*subject nbr=3 name=bench desc=’numbered msgs’

*subject nbr=97 name=amsmib desc=’MIB updates’

*subject nbr=98 name=amsstop desc=’shutdown’

*unit nbr=1 name=orbiters

*unit nbr=2 name=orbiters.near

*unit nbr=3 name=orbiters.far

*msgspace nbr=2

−venture

−ams_mib_add

SEE ALSO
amsxml(5)

perl v5.18.2 2016-09-07 6

AMSXML(5) AMS configuration files AMSXML(5)

NAME
amsxml − CCSDS Asynchronous Message Service MIB initialization XML file

DESCRIPTION
The Management Information Base (MIB) for an AMS communicating entity (eitheramsd or an AMS
application module) must contain enough information to enable the entity to initiate participation inAMS
message exchange, such as the network location of the configuration server and the roles and message
subjects defined for some venture.

AMS entities automatically load their MIBs from initialization files at startup.WhenAMS is built with the
−DNOEXPAT compiler option set, theMIB initialization file must conform to theamsrcsyntax described in
amsrc(5); otherwise theexpat XML parsing library must be linked into theAMS executable and theMIB
initialization file must conform to theamsxmlsyntax described below.

The XML statements in theMIB initialization file constituteelementsof MIB update information, each of
which may have one or moreattributes. An element may also have sub-elements that are listed within the
declaration of the parent element, and so on.

Tw o types of elements are recognized in theMIB initialization file: control elements and configuration
elements. Acontrol element establishes the update context within which the configuration elements nested
within it are processed, while a configuration element declares values for one or more items ofAMS
configuration information in theMIB.

For a discussion of the recognized control elements and configuration elements of theMIB initialization
file, see theamsrc(5) man page.NOTE, though, that all elements of an XML-basedMIB initialization file
must be sub-elements of a single sub-element of theXML extension typeams_load_mibin order for the
file to be parsed successfully by expat.

EXAMPLE
<?xml version=‘‘1.0’’ standalone=‘‘yes’’?>

<ams_mib_load>

<ams_mib_init continuum_nbr="2" ptsname="dgr"/>

<ams_mib_add>

<continuum nbr="1" name="apl" desc="APL"/>

<csendpoint epspec="beaumont.stepsoncats.com:2357"/>

<application name="amsdemo" />

<venture nbr="1" appname="amsdemo" authname="test">

<role nbr="2" name="shell"/>

<role nbr="3" name="log"/>

<role nbr="4" name="pitch"/>

<role nbr="5" name="catch"/>

<role nbr="6" name="benchs"/>

<role nbr="7" name="benchr"/>

<role nbr="96" name="amsd"/>

perl v5.18.2 2016-09-07 1

AMSXML(5) AMS configuration files AMSXML(5)

<role nbr="97" name="amsmib"/>

<role nbr="98" name="amsstop"/>

<subject nbr="1" name="text" desc="ASCII text"/>

<subject nbr="2" name="noise" desc="more ASCII text"/>

<subject nbr="3" name="bench" desc="numbered msgs"/>

<subject nbr="97" name="amsmib" desc="MIB updates"/>

<subject nbr="98" name="amsstop" desc="shutdown"/>

<unit nbr="1" name="orbiters"/>

<unit nbr="2" name="orbiters.near"/>

<unit nbr="3" name="orbiters.far"/>

<msgspace nbr="2"/>

</venture>

</ams_mib_add>

</ams_mib_load>

SEE ALSO
amsrc(5)

perl v5.18.2 2016-09-07 2

ACSRC(5) BPconfiguration files ACSRC(5)

NAME
acsrc − Aggregate Custody Signal management commands file

DESCRIPTION
Aggregate Custody Signal management commands are passed toacsadmineither in a file of text lines or
interactively at acsadmin’s command prompt (:). Commands are interpreted line-by line, with exactly one
command per line. The formats and effects of the Aggregate Custody Signal management commands are
described below.

GENERAL COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control.Setting echo to 1 causes all output printed by acsadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

1 <logLevel> [<heapWords>]
The initialize command. Untilthis command is executed, Aggregate Custody Signals are not in
operation on the localION node and mostacsadmincommands will fail.

The logLevel argument specifies at which log level the ACS appending and transmitting
implementation should record its activity to theION log file. This argument is the bitwise ‘‘OR’’ of the
following log levels:

0x01 ERROR
Errors inACS programming are logged.

0x02 WARN
Warnings like ‘‘out of memory’’ that don’t causeACS to fail but may change behavior are logged.

0x04 INFO
Informative information like ‘‘this custody signal is a duplicate’’ is logged.

0x08 DEBUG
Verbose information like the state of the pendingACS tree is logged.

The optionalheapWordsargument informsACS to allocate that many heap words in its own DRAM
SDR for constructing pendingACS. If not supplied, the default ACS_SDR_DEFAULT_HEAPWORDSis
used. Onceall ACS SDR is allocated, any incoming custodial bundles that would trigger anACS will
trigger a normal, non-aggregate custody signal instead, untilACS SDR is freed. If your node
intermittently emits non-aggregate custody signals when it should emitACS, you should increase
heapWords.

SinceACS usesSDR only for emitting Aggregate Custody Signals,ION can still receive ACS ev en if
this command is not executed, or allACS SDR memory is allocated.

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

s <minimumCustodyId>
This command sets the minimum custodyID that the local bundle agent may use in custody transfer
enhancement blocks that it emits.These custody IDs must be unique in the network (for the lifetime
of the bundles to which they refer).

The minimumCustodyIdprovided is stored inSDR, and incremented every time a new custodyID is
required. So,this command should be used only when the local bundle agent has discarded itsSDR
and restarted.

perl v5.18.2 2016-09-07 1

ACSRC(5) BPconfiguration files ACSRC(5)

CUSTODIAN COMMANDS
a custodianEid acsSize[acsDelay]

Theadd custodiancommand. Thiscommand provides information about theACS characteristics of a
remote custodian.custodianEid is the custodianEID for which this command is providing
information. acsSizeis the preferred size ofACS bundles sent tocustodianEid; ACS bundles this
implementation sends tocustodianEidwill aggregate until ACS are at mostacsSizebytes (ifacsSizeis
smaller than 19 bytes, someACS containing only one signal will exceedacsSizeand be sent anyways;
settingacsSizeto 0 causes ‘‘aggregates’’ of only 1 signal to be sent).

acsDelayis the maximum amount of time to delay anACS destined for this custodian before sending
it, in seconds; if not specified,DEFAULT_ACS_DELAY will be used.

EXAMPLES
a ipn:15.0 100 27

InformsACS on the local node that the local node should sendACS bundles destined for the custodian
ipn:15.0 whenever they are 100 bytes in size or have been delayed for 27 seconds, whichever comes
first.

SEE ALSO
acsadmin(1)

perl v5.18.2 2016-09-07 2

BPRC(5) BPconfiguration files BPRC(5)

NAME
bprc − Bundle Protocol management commands file

DESCRIPTION
Bundle Protocol management commands are passed tobpadmin either in a file of text lines or interactively
at bpadmin’s command prompt (:). Commands are interpreted line-by line, with exactly one command per
line. Theformats and effects of the Bundle Protocol management commands are described below.

GENERAL COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by bpadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed and the crypto suiteBP was
compiled with. HINT: combine withe 1command to log the version number at startup.

1 The initialize command. Untilthis command is executed, Bundle Protocol is not in operation on the
local ION node and mostbpadmincommands will fail.

r ’command_text’
The run command. Thiscommand will executecommand_textas if it had been typed at a console
prompt. Itis used to, for example, run another administrative program.

s Thestart command. Thiscommand starts all schemes and all protocols on the local node.

m heapmaxmax_database_heap_per_acquisition
Themanage heap for bundle acquisitioncommand. Thiscommand declares the maximum number
of bytes ofSDR heap space that will be occupied by any single bundle acquisition activity (nominally
the acquisition of a single bundle, but this is at the discretion of the convergence-layer input task).All
data acquired in excess of this limit will be written to a temporary file pending extraction and
dispatching of the acquired bundle or bundles. Default is the minimum allowed value (560 bytes),
which is the approximate size of aZCO file reference object; this is the minimumSDR heap space
occupancy in the event that all acquisition is into a file.

x Thestopcommand. Thiscommand stops all schemes and all protocols on the local node.

w { 0 | 1 | activity_spec}
The BP watch command. Thiscommand enables and disables production of a continuous stream of
user-selected Bundle Protocol activity indication characters.A watch parameter of ‘‘1’ ’ selects allBP
activity indication characters; ‘‘0’ ’ de-selects allBP activity indication characters; any other
activity_specsuch as ‘‘acz˜’’ selects all activity indication characters in the string, de-selecting all
others. BP will print each selected activity indication character tostdout ev ery time a processing event
of the associated type occurs:

a new bundle is queued for forwarding

b bundle is queued for transmission

c bundle is popped from its transmission queue

m custody acceptance signal is received

w custody of bundle is accepted

x custody of bundle is refused

y bundle is accepted upon arrival

z bundle is queued for delivery to an application

˜ bundle is abandoned (discarded) on attempt to forward it

perl v5.18.2 2016-09-07 1

BPRC(5) BPconfiguration files BPRC(5)

! bundle is destroyed due toTTL expiration

& custody refusal signal is received

bundle is queued for re-forwarding due toCL protocol failure

j bundle is placed in ‘‘limbo’’ f or possible future re-forwarding

k bundle is removed from ‘‘limbo’’ and queued for re-forwarding

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

SCHEME COMMANDS
a schemescheme_name’ forwarder_command’ ’ admin_app_command’

The add schemecommand. Thiscommand declares an endpoint naming ‘‘scheme’’ f or use in
endpoint IDs, which are structured as URIs:scheme_name:scheme−specific_part.
forwarder_commandwill be executed when the scheme is started on this node, to initiate operation of
a forwarding daemon for this scheme.admin_app_commandwill also be executed when the scheme
is started on this node, to initiate operation of a daemon that opens a custodian endpoint identified
within this scheme so that it can receive and process custody signals and bundle status reports.

c schemescheme_name’ forwarder_command’ ’ admin_app_command’
The change schemecommand. Thiscommand sets the indicated scheme’s forwarder_commandand
admin_app_commandto the strings provided as arguments.

d schemescheme_name
The delete schemecommand. Thiscommand deletes the scheme identified byscheme_name. The
command will fail if any bundles identified in this scheme are pending forwarding, transmission, or
delivery.

i schemescheme_name
This command will print information (number and commands) about the endpoint naming scheme
identified byscheme_name.

l scheme
This command lists all declared endpoint naming schemes.

s schemescheme_name
Thestart schemecommand. Thiscommand starts the forwarder and administrative endpoint tasks for
the indicated scheme task on the local node.

x schemescheme_name
Thestop schemecommand. Thiscommand stops the forwarder and administrative endpoint tasks for
the indicated scheme task on the local node.

ENDPOINT COMMANDS
a endpoint endpoint_ID{ q | x } [’ recv_script’]

The add endpoint command. Thiscommand establishes aDTN endpoint namedendpoint_IDon the
local node. The remaining parameters indicate what is to be done when bundles destined for this
endpoint arrive at a time when no application has got the endpoint open for bundle reception. If ’x’,
then such bundles are to be discarded silently and immediately. If ’ q’, then such bundles are to be
enqueued for later delivery and, ifrecv_scriptis provided,recv_scriptis to be executed.

c endpoint endpoint_ID{ q | x } [’ recv_script’]
Thechange endpointcommand. Thiscommand changes the action that is to be taken when bundles
destined for this endpoint arrive at a time when no application has got the endpoint open for bundle
reception, as described above.

d endpoint endpoint_ID
The delete endpointcommand. Thiscommand deletes the endpoint identified byendpoint_ID. The
command will fail if any bundles are currently pending delivery to this endpoint.

perl v5.18.2 2016-09-07 2

BPRC(5) BPconfiguration files BPRC(5)

i endpoint endpoint_ID
This command will print information (disposition and script) about the endpoint identified by
endpoint_ID.

l endpoint
This command lists all local endpoints, regardless of scheme name.

PROT OCOL COMMANDS
a protocol protocol_name payload_bytes_per_frame overhead_bytes_per_frame[nominal_data_rate]

The add protocol command. Thiscommand establishes access to the named convergence layer
protocol at the local node.The payload_bytes_per_frameandoverhead_bytes_per_framearguments
are used in calculating the estimated transmission capacity consumption of each bundle, to aid in route
computation and congestion forecasting.

The optionalnominal_data_rateargument overrides the hard-coded default continuous data rate for
the indicated protocol, for purposes of rate control.For all ‘ ‘promiscuous’’ prototocols − that is,
protocols whose outducts are not specifically dedicated to transmission to a single identified
convergence-layer protocol endpoing − the protocol’s applicable nominal continuous data rate is the
data rate that is always used for rate control over links served by that protocol; data rates are not
extracted from contact graph information.This is because only the induct and outduct throttles for
non-promiscuous protocols (LTP, TCP) can be dynamically adjusted in response to changes in data rate
between the local node and its neighbors, as enacted per the contact plan.Even for an outduct of a
non-promiscuous protocol the nominal data rate may be the authority for rate control, in the event that
the contact plan lacks identified contacts with the node to which the outduct is mapped.

d protocol protocol_name
The delete protocol command. Thiscommand deletes the convergence layer protocol identified by
protocol_name. The command will fail if any ducts are still locally declared for this protocol.

i protocol protocol_name
This command will print information about the convergence layer protocol identified by
protocol_name.

l protocol
This command lists all convergence layer protocols that can currently be utilized at the local node.

s protocol protocol_name
The start protocol command. Thiscommand starts all induct and outduct tasks for inducts and
outducts that have been defined for the indicatedCL protocol on the local node.

x protocol protocol_name
The stop protocol command. Thiscommand stops all induct and outduct tasks for inducts and
outducts that have been defined for the indicatedCL protocol on the local node.

INDUCT COMMANDS
a induct protocol_name duct_name’CLI_command’

The add induct command. Thiscommand establishes a ‘‘duct’’ f or reception of bundles via the
indicatedCL protocol. Theduct’s data acquisition structure is used and populated by the ‘‘induct’’
task whose operation is initiated byCLI_commandat the time the duct is started.

c induct protocol_name duct_name’CLI_command’
Thechange inductcommand. Thiscommand changes the command that is used to initiate operation
of the induct task for the indicated duct.

d induct protocol_name duct_name
The delete induct command. Thiscommand deletes the induct identified byprotocol_nameand
duct_name. The command will fail if any bundles are currently pending acquisition via this induct.

i induct protocol_name duct_name
This command will print information (theCLI command) about the induct identified byprotocol_name
andduct_name.

perl v5.18.2 2016-09-07 3

BPRC(5) BPconfiguration files BPRC(5)

l induct [protocol_name]
If protocol_nameis specified, this command lists all inducts established locally for the indicatedCL
protocol. Otherwiseit lists all locally established inducts, regardless of protocol.

s induct protocol_name duct_name
Thestart induct command. Thiscommand starts the indicated induct task as defined for the indicated
CL protocol on the local node.

x induct protocol_name duct_name
Thestop induct command. Thiscommand stops the indicated induct task as defined for the indicated
CL protocol on the local node.

OUTDUCT COMMANDS
a outduct protocol_name duct_name’CLO_command’ [max_payload_length]

The add outduct command. Thiscommand establishes a ‘‘duct’’ f or transmission of bundles via the
indicatedCL protocol. Theduct’s data transmission structure is serviced by the ‘‘outduct’’ task whose
operation is initiated byCLO_commandat the time the duct is started.A value of zero for
max_payload_lengthindicates that bundles of any size can be accommodated; this is the default.

c outduct protocol_name duct_name’CLO_command’ [max_payload_length]
The change outductcommand. Thiscommand sets new values for the indicated duct’s payload size
limit and the command that is used to initiate operation of the outduct task for this duct.

d outduct protocol_name duct_name
The delete outductcommand. Thiscommand deletes the outduct identified byprotocol_nameand
duct_name. The command will fail if any bundles are currently pending transmission via this outduct.

i outduct protocol_name duct_name
This command will print information (theCLO command) about the outduct identified by
protocol_nameandduct_name.

l outduct [protocol_name]
If protocol_nameis specified, this command lists all outducts established locally for the indicatedCL
protocol. Otherwiseit lists all locally established outducts, regardless of protocol.

s outduct protocol_name duct_name
The start outduct command. Thiscommand starts the indicated outduct task as defined for the
indicatedCL protocol on the local node.

b outduct protocol_name duct_name
The block outduct command. Thiscommand disables transmission of bundles via the indicated
outduct and reforwards all non-critical bundles currently queued for transmission via this outduct.

u outduct protocol_name duct_name
Theunblock outduct command. Thiscommand re-enables transmission of bundles via the indicated
outduct and reforwards all bundles in ‘‘limbo’ ’ in the hope that the unblocking of this outduct will
enable some of them to be transmitted.

x outduct protocol_name duct_name
The stop outduct command. Thiscommand stops the indicated outduct task as defined for the
indicatedCL protocol on the local node.

EXAMPLES
a scheme ipn ’ipnfw’ ’ipnadminep’

Declares the ‘‘ipn’’ scheme on the local node.

a protocol udp 1400 100 16384
Establishes access to the ‘‘udp’’ convergence layer protocol on the local node, estimating the number
of payload bytes per ultimate (lowest-layer) frame to be 1400 with 100 bytes of total overhead (BP,
UDP, IP, AOS) per lowest-layer frame, and setting the default nominal data rate to be 16384 bytes per
second.

perl v5.18.2 2016-09-07 4

BPRC(5) BPconfiguration files BPRC(5)

r ’ ipnadmin flyby.ipnrc’
Runs the administrative programipnadminfrom within bpadmin.

SEE ALSO
bpadmin(1), ipnadmin(1), dtn2admin(1)

perl v5.18.2 2016-09-07 5

BSSRC(5) BPconfiguration files BSSRC(5)

NAME
bssrc − IPN scheme configuration commands file adapted for Bundle Streaming Service

DESCRIPTION
IPN scheme configuration commands are passed tobssadmineither in a file of text lines or interactively at
bssadmin’s command prompt (:).Commands are interpreted line-by line, with exactly one command per
line.

IPN scheme configuration commands (a) manage a table of destination endpoints that are known to be
associated with Bundle Streaming Service (BSS) applications, (b) establish BSS-adapted egress plans for
direct transmission to neighboring nodes that are members of endpoints identified in the ‘‘ipn’’ URI scheme,
and (c) establish static default routing rules for forwarding bundles to specified destination nodes.

A BSS endpoint tableentry identifies anIPN endpointID — in which the node number and/or service
number may be the wild-card character ’*’— that is known to be associated with aBSS application.
These table entries enablebssfw to distinguishBSSbundles from non-BSS traffic and apply BSS-specific
egress planning logic to the former while handling the latter in exactly the same way asipnfw .

The egressplan established for a given neighboring node associates three default egressduct expressions
with that node: one forBSStraffic that must be forwarded as real-time streaming data (using a convergence-
layer protocol that does not perform retransmission), one forBSStraffic that must be forwarded as playback
data (using a reliable convergence-layer protocol), and one for non-BSS traffic. Thesedefault duct
expressions may be overridden by more narrowly scopedplanrules in specific circumstances: different
egress duct expressions may apply when the source endpoint for the subject bundle identifies a specific
node, a specific service, or both.

Each duct expression is a string of the form "protocol_name/outduct_name[,destination_induct_name]",
signifying that the bundle is to be queued for transmission via the indicated convergence layer protocol
outduct. destination_induct_namemust be provided when the indicated outduct is ‘‘promiscuous’’, i.e., not
configured for transmission only to a single neighboring node; this is protocol-specific.

The circumstances that characterize a specific rule within a general plan are expressed in aqualifier , a
string of the form "source_service_number source_node_number" where eithersource_service_numberor
source_node_numbermay be an asterisk character (*) signifying ‘‘all’’.

Note that egress plansmust be established for all neighboring nodes, regardless of whether or not contact
graph routing is used for computing dynamic routes to distant nodes. This is by definition: if there isn’t an
egress plan to a node, it can’t be considered a neighbor.

Static default routes are expressed asgroups in the ipn-scheme routing database.A group is a range of
node numbers identifying a set of nodes for which defined default routing behavior is established.
Whenever a bundle is to be forwarded to a node whose number is in the group’s node number rangeand it
has not been possible to compute a dynamic route to that node from the contact schedules that have been
provided to the local nodeand that node is not a neighbor to which the bundle can be directly transmitted,
BP will forward the bundle to thegateway node associated with this group. The gateway node for any
group is identified by an endpointID, which might or might not be an ipn-schemeEID; reg ardless, directing
a bundle to the gateway for a group causes the bundle to be re-forwarded to that intermediate destination
endpoint. Multiplegroups may encompass the same node number, in which case the gateway associated
with the most restrictive group (the one with the smallest range) is always selected.

The formats and effects of theBSSforwarding configuration commands are described below.

GENERAL COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by bssadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

perl v5.18.2 2016-09-07 1

BSSRC(5) BPconfiguration files BSSRC(5)

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

ENTRY COMMANDS
a entry service_nbr node_nbr

The add entry command. Thisasserts that all bundles whose destination endpointID matches
service_nbrand node_nbr(either or both of which may be the wild-card character ’*’) are to be
processed asBSStraffic.

d entry service_nbr node_nbr
Thedelete entrycommand. Thiscommand rescinds a priorBSSassertion characterized by the exact
sameservice_nbrandnode_nbr.

l entry
This command lists all entries in the node’s table of destination endpoint IDs that indicateBSStraffic.

PLAN COMMANDS
a plan node_nbr non−BSS_duct_expression BSS_non−reliable_duct_expression
BSS_reliable_duct_expression custody_expiration_interval

The add plan command. Thiscommand establishes an egress plan for the bundles that must be
transmitted to the neighboring node identified bynode_nbr. custody_expiration_intervalindicates the
number of seconds theBP agent must wait for custody acceptance after transmitting a bundle on either
BSSduct before automatically re-forwarding the bundle. Ageneral plan must be in place for a node
before any more specific rules are declared.

c plan node_nbr non−BSS_duct_expression BSS_non−reliable_duct_expression
BSS_reliable_duct_expression custody_expiration_interval

The change plancommand. Thiscommand changes the duct expressions and/or custody expiration
interval for the indicated plan.

d plan node_nbr
The delete plan command. Thiscommand deletes the egress plan for the node identified by
node_nbr, including all associated rules.

i plan node_nbr
This command will print information (the default duct expressions, custody expiration interval, and all
specific rules) about the egress plan for the node identified bynode_nbr.

l plan
This command lists all egress plans established in theBSSdatabase for the local node.

PLANRULE COMMANDS
a planrule node_nbr qualifier non−BSS_duct_expression BSS_non−reliable_duct_expression
BSS_reliable_duct_expression

Theadd planrule command. Thiscommand establishes a planrule, i.e., a set of duct expressions that
override the default duct expressions of the egress plan for the node identified bynode_nbrin the
ev ent that the source endpointID of the subject bundle matchesqualifier.

c planrule node_nbr qualifier non−BSS_duct_expression BSS_non−reliable_duct_expression
BSS_reliable_duct_expression

The change planrule command. Thiscommand changes the duct expressions for the indicated
planrule.

d planrule node_nbr qualifier
The delete planrule command. Thiscommand deletes the planrule identified bynode_nbrand
qualifier.

perl v5.18.2 2016-09-07 2

BSSRC(5) BPconfiguration files BSSRC(5)

i planrule node_nbr qualifier
This command will print information (the duct expressions) about the planrule identified bynode_nbr
andqualifier.

l planrule node_nbr
This command lists all planrules in the plan for the indicated node.

GROUP COMMANDS
a group first_node_nbr last_node_nbr gateway_endpoint_ID

The add group command. Thiscommand establishes a ‘‘group’’ f or static default routing as
described above.

c group first_node_nbr last_node_nbr gateway_endpoint_ID
The change group command. Thiscommand changes the gateway node number for the group
identified byfirst_node_nbrandlast_node_nbr.

d group first_node_nbr last_node_nbr
The delete group command. Thiscommand deletes the group identified byfirst_node_nbrand
last_node_nbr.

i group first_node_nbr last_node_nbr
This command will print information (the gateway endpoint ID) about the group identified by
first_node_nbrandlast_node_nbr.

l group
This command lists all groups defined in theBSSdatabase for the local node.

GROUPRULE COMMANDS
a grouprule first_node_nbr last_node_nbr qualifier gateway_endpoint_ID

Theadd grouprule command. Thiscommand establishes a grouprule, i.e., a gateway endpointID that
overrides the default gateway endpointID of the group identified byfirst_node_nbrandlast_node_nbr
in the event that the source endpointID of the subject bundle matchesqualifier.

c grouprule first_node_nbr last_node_nbr qualifier gateway_endpoint_ID
The change grouprule command. Thiscommand changes the gateway EID for the indicated
grouprule.

d grouprule first_node_nbr last_node_nbr qualifier
The delete grouprule command. Thiscommand deletes the grouprule identified byfirst_node_nbr,
last_node_nbr, andqualifier.

i grouprule first_node_nbr last_node_nbr qualifier
This command will print information (the duct expression) about the grouprule identified by
node_nbr, last_node_nbr, andqualifier.

l grouprule first_node_nbr last_node_nbr
This command lists all grouprules for the indicated group.

EXAMPLES
a plan 18 tcp/saturn.nasa.gov:5011 udp/*,saturn.nasa.gov:5012 tcp/saturn.nasa.gov:5011 3

Declares the egress plan to use for transmission from the local node to neighboring node 18.Any
bundle for which the computed ‘‘next hop’’ node is node 18 will be queued for transmission to Internet
host saturn.nasa.gov, using udp if the bundle is real-timeBSStraffic and tcp otherwise; forBSStraffic,
custodial retransmission will be initiated after 3 seconds if no custody acknowledgment is received.

a planrule 18 * 9 tcp/saturn.nasa.gov:5011 udp/*,saturn.nasa.gov:5012 tcp/neptune.nasa.gov:5011
Declares an egress plan override that applies to transmission to node 18 of any bundle whose source is
node 9, regardless of the service that was the source of the bundle. Eachsuch bundle must be queued
for transmission to Internet host neptune.nasa.gov, rather than default host saturn.nasa.gov, if it is non-
real-timeBSStraffic.

perl v5.18.2 2016-09-07 3

BSSRC(5) BPconfiguration files BSSRC(5)

a group 1 999 dtn://stargate
Declares a default route for bundles destined for all nodes whose numbers are in the range 1 through
999 inclusive: absent any other routing decision, such bundles are to be forwarded to ‘‘dtn://stargate’’.

SEE ALSO
bssadmin(1)

perl v5.18.2 2016-09-07 4

DTN2RC(5) BPconfiguration files DTN2RC(5)

NAME
dtn2rc − "dtn" scheme configuration commands file

DESCRIPTION
‘‘ dtn’’ scheme configuration commands are passed todtn2admin either in a file of text lines or
interactively at dtn2admin’s command prompt (:).Commands are interpreted line-by line, with exactly
one command per line.

‘‘ dtn’’ scheme configuration commands mainly establish static routing rules for forwarding bundles to
‘‘ dtn’’−scheme destination endpoints, identified by node names and demux names.

Static routes are expressed asplans in the ‘‘dtn’’−scheme routing database.A plan that is established for a
given node name associates a default routingdirective with the named node, and that default directive may
be overridden by more narrowly scopedrules in specific circumstances: a different directive may apply
when the destination endpointID specifies a particular demux name.

Each directive is a string of one of two possible forms:

f endpoint_ID

...or...

x protocol_name/outduct_name[,destination_induct_name],

The former form signifies that the bundle is to be forwarded to the indicated endpoint, requiring that it be
re-queued for processing by the forwarder for that endpoint (which might, but need not, be identified by
another ‘‘dtn’’−scheme endpointID). The latter form signifies that the bundle is to be queued for
transmission via the indicated convergence layer protocol outduct.destination_induct_namemust be
provided when the indicated outduct is ‘‘promiscuous’’, i.e., not configured for transmission only to a single
neighboring node; this is protocol-specific.

The node names and demux names cited in dtn2rc plans and overriding rules may be ‘‘wild-carded’’. That
is, when the last character of a node name is either ’*’ or ’˜’ (these two wild-card characters are equivalent
for this purpose), the plan or rule applies to all nodes whose names are identical to the wild-carded node
name up to the wild-card character; wild-carded demux names function in the same way. For example, a
bundle whose destinationEID’s node name is ‘‘//foghorn’’ would be routed by plans citing the following
node names: ‘‘//foghorn’’, ‘ ‘//fogh*’ ’, ‘ ‘//fog˜’ ’, ‘ ‘//*’ ’. When multiple plans are all applicable to the same
destinationEID, the one citing the longest (i.e., most narrowly targeted) node name will be applied; when
multiple rules overriding the same plan are all applicable to the same destinationEID, the one citing the
longest demux name will be applied.

The formats and effects of theDTN scheme configuration commands are described below.

GENERAL COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by dtn2admin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

PLAN COMMANDS
a plan node_name default_directive

The add plan command. Thiscommand establishes a static route for the bundles destined for the
node identified bynode_name. A general plan must be in place for a node before any more specific
routing rules are declared.

perl v5.18.2 2016-09-07 1

DTN2RC(5) BPconfiguration files DTN2RC(5)

d plan node_name
The delete plan command. Thiscommand deletes the static route for the node identified by
node_name, including all associated rules.

i plan node_name
This command will print information (the default directive and all specific rules) about the static route
for the node identified bynode_name.

l plan
This command lists all static routes established in theDTN database for the local node.

RULE COMMANDS
a rule node_name demux_name directive

The add rule command. Thiscommand establishes a rule, i.e., a directive that overrides the default
directive of the plan for the node identified bynode_namein the event that the demux name of the
subject bundle’s destination endpointID matchesdemux_name.

c rule node_name demux_name directive
Thechange rulecommand. Thiscommand changes the directive for the indicated rule.

d rule node_name demux_name
Thedelete rulecommand. Thiscommand deletes the rule identified bynode_nameanddemux_name.

i r ule node_name demux_name
This command will print information (the directive) about the rule identified bynode_nameand
demux_name.

l r ule node_name
This command lists all rules in the plan for the indicated node.

EXAMPLES
a plan //bbn2 f ipn:8.41

Declares a static route from the local node to node ‘‘//bbn2’’. By default, any bundle destined for any
endpoint whose node name is ‘‘//bbn2’’ w ill be forwarded to endpoint ‘‘ipn:8.41’’.

a plan //mitre1 x ltp/6
Declares a static route from the local node to node ‘‘//mitre1’’. By default, any bundle destined for
any endpoint whose node name is ‘‘mitre1’’ w ill be queued for transmission onLTP outduct 6.

a rule //mitre1 fwd x ltp/18
Declares an overriding static routing rule for any bundle destined for node ‘‘//mitre1’’ whose
destination demux name is ‘‘fwd’ ’. Eachsuch bundle must be queued for transmission onLTP outduct
18 rather than the default (LTP outduct 6).

SEE ALSO
dtn2admin(1)

perl v5.18.2 2016-09-07 2

IMCRC(5) BPconfiguration files IMCRC(5)

NAME
imcrc − IMC scheme configuration commands file

DESCRIPTION
IMC scheme configuration commands are passed toipnadmin either in a file of text lines or interactively at
ipnadmin’s command prompt (:).Commands are interpreted line-by line, with exactly one command per
line.

IMC scheme configuration commands simply establish which nodes are the local node’s parents and
children within a singleIMC multicast tree. This single spanning tree, an overlay on a single BP-based
network, is used to convey all multicast group membership assertions and cancellations in the network, for
all groups. Each node privately tracks which of its immediate ‘‘relatives’’ in the tree are members of which
multicast groups and on this basis selectively forwards — directly, to all (and only) interested relatives —
the bundles destined for the members of each group.

Note that all of a node’s immediate relatives in the multicast treemust be among its immediate neighbors
in the underlying network. This is because multicast bundles can only be correctly forwarded within the
tree if each forwarding node knows the identity of the relative that passed the bundle to it, so that the bundle
is not passed back to that relative creating a routing loop.The identity of that prior forwarding node can
only be known if the forwarding node was a neighbor, because no prior forwarding node (aside from the
source) other than the immediate proximate (neighboring) sender of a received bundle is ever known.

IMC group IDs are unsigned integers, just asIPN node IDs are unsigned integers. Themembers of a group
are nodes identified by node number, and the multicast tree parent and children of a node are neighboring
nodes identified by node number.

The formats and effects of theIMC scheme configuration commands are described below.

GENERAL COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by ipnadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

KINSHIP COMMANDS
a node_nbr{ 1 | 0 }

The add kin command. Thiscommand adds the neighboring node identified bynode_nbras an
immediate relative of the local node. The Boolean value that follows the node number indicates
whether or not this node is the local node’s parent within the tree.

c node_nbr{ 1 | 0 }
The change kin command. Thiscommand changes the parentage status of the indicated relative
according to Boolean value that follows the node number, as noted for theadd kin command.

d node_nbr
The delete kin command. Thiscommand deletes the immediate multicast tree relative identified by
node_nbr. That node still exists but it is no longer a parent or child of the local node.

i node_nbr
This command will print information (the parentage switch) for the multicast tree relative identified by
node_nbr.

l This command lists all of the local node’s multicast tree relatives, indicating which one is its parent in
the tree.

perl v5.18.2 2016-09-07 1

IMCRC(5) BPconfiguration files IMCRC(5)

EXAMPLES
a 983 1

Declares that 983 is the local node’s parent in the network’s multicast tree.

SEE ALSO
imcadmin(1)

perl v5.18.2 2016-09-07 2

IPNRC(5) BPconfiguration files IPNRC(5)

NAME
ipnrc − IPN scheme configuration commands file

DESCRIPTION
IPN scheme configuration commands are passed toipnadmin either in a file of text lines or interactively at
ipnadmin’s command prompt (:).Commands are interpreted line-by line, with exactly one command per
line.

IPN scheme configuration commands (a) establish egress plans for direct transmission to neighboring nodes
that are members of endpoints identified in the ‘‘ipn’’ URI scheme and (b) establish static default routing
rules for forwarding bundles to specified destination nodes.

The egressplan established for a given node associates a default egressduct expressionwith that node,
and that default duct expression may be overridden by more narrowly scopedplanrules in specific
circumstances: a different egress duct expression may apply when the source endpoint for the subject
bundle identifies a specific node, a specific service, or both.

Each duct expression is a string of the form "protocol_name/outduct_name[,destination_induct_name]",
signifying that the bundle is to be queued for transmission via the indicated convergence layer protocol
outduct. destination_induct_namemust be provided when the indicated outduct is ‘‘promiscuous’’, i.e., not
configured for transmission only to a single neighboring node; this is protocol-specific.

The circumstances that characterize a specific rule within a general plan are expressed in aqualifier , a
string of the form "source_service_number source_node_number" where eithersource_service_numberor
source_node_numbermay be an asterisk character (*) signifying ‘‘all’’.

Note that egress plansmust be established for all neighboring nodes, regardless of whether or not contact
graph routing is used for computing dynamic routes to distant nodes. This is by definition: if there isn’t an
egress plan to a node, it can’t be considered a neighbor.

Static default routes are declared asexits in the ipn-scheme routing database. An exit is a range of node
numbers identifying a set of nodes for which defined default routing behavior is established.Whenever a
bundle is to be forwarded to a node whose number is in the exit’s node number rangeand it has not been
possible to compute a dynamic route to that node from the contact schedules that have been provided to the
local nodeand that node is not a neighbor to which the bundle can be directly transmitted,BP will forward
the bundle to thegatewaynode associated with this exit. Thegateway node for any exit is identified by an
endpointID, which might or might not be an ipn-schemeEID; reg ardless, directing a bundle to the gateway
for an exit causes the bundle to be re-forwarded to that intermediate destination endpoint. Multiple exits
may encompass the same node number, in which case the gateway associated with the most restrictive exit
(the one with the smallest range) is always selected.

Note that ‘‘exits’’ were termed ‘‘groups’’ in earlier versions ofION. The term ‘‘exit’ ’ has been adopted
instead, to minimize any possible confusion with multicast groups.To protect backward compatibility, the
keywords ‘‘group’’ and ‘‘grouprule’’ continue to be accepted by ipnadmin as aliases for the new keywords
‘‘ exit’ ’ and ‘‘exitrule’’, but the older terminology is deprecated.

The formats and effects of theIPN scheme configuration commands are described below.

GENERAL COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by ipnadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

perl v5.18.2 2016-09-07 1

IPNRC(5) BPconfiguration files IPNRC(5)

PLAN COMMANDS
a plan node_nbr default_duct_expression

The add plan command. Thiscommand establishes an egress plan for the bundles that must be
transmitted to the neighboring node identified bynode_nbr. A general plan must be in place for a
node before any more specific rules are declared.

c plan node_nbr default_duct_expression
The change plancommand. Thiscommand changes the default duct expression for the indicated
plan.

d plan node_nbr
The delete plan command. Thiscommand deletes the egress plan for the node identified by
node_nbr, including all associated rules.

i plan node_nbr
This command will print information (the default duct expression and all specific rules) about the
egress plan for the node identified bynode_nbr.

l plan
This command lists all egress plans established in theIPN database for the local node.

PLANRULE COMMANDS
a planrule node_nbr qualifier duct_expression

The add planrule command. Thiscommand establishes a planrule, i.e., a duct expression that
overrides the default duct expression of the egress plan for the node identified bynode_nbrin the
ev ent that the source endpointID of the subject bundle matchesqualifier.

c planrule node_nbr qualifier duct_expression
The change planrule command. Thiscommand changes the duct expression for the indicated
planrule.

d planrule node_nbr qualifier
The delete planrule command. Thiscommand deletes the planrule identified bynode_nbrand
qualifier.

i planrule node_nbr qualifier
This command will print information (the duct expression) about the planrule identified bynode_nbr
andqualifier.

l planrule node_nbr
This command lists all planrules in the plan for the indicated node.

EXIT COMMANDS
a exit first_node_nbr last_node_nbr gateway_endpoint_ID

The add exit command. Thiscommand establishes an ‘‘exit’ ’ f or static default routing as described
above.

c exit first_node_nbr last_node_nbr gateway_endpoint_ID
The change exitcommand. Thiscommand changes the gateway node number for the exit identified
by first_node_nbrandlast_node_nbr.

d exit first_node_nbr last_node_nbr
The delete exit command. Thiscommand deletes the exit identified byfirst_node_nbr and
last_node_nbr.

i exit first_node_nbr last_node_nbr
This command will print information (the gateway endpoint ID) about the exit identified by
first_node_nbrandlast_node_nbr.

l exit
This command lists all exits defined in theIPN database for the local node.

perl v5.18.2 2016-09-07 2

IPNRC(5) BPconfiguration files IPNRC(5)

EXITRULE COMMANDS
a exitrule first_node_nbr last_node_nbr qualifier gateway_endpoint_ID

The add exitrule command. Thiscommand establishes an exitrule, i.e., a gateway endpoint ID that
overrides the default gateway endpointID of the exit identified byfirst_node_nbrandlast_node_nbrin
the event that the source endpointID of the subject bundle matchesqualifier.

c exitrule first_node_nbr last_node_nbr qualifier gateway_endpoint_ID
Thechange exitrulecommand. Thiscommand changes the gateway EID for the indicated exitrule.

d exitrule first_node_nbr last_node_nbr qualifier
The delete exitrule command. Thiscommand deletes the exitrule identified byfirst_node_nbr,
last_node_nbr, andqualifier.

i exitrule first_node_nbr last_node_nbr qualifier
This command will print information (the duct expression) about the exitrule identified bynode_nbr,
last_node_nbr, andqualifier.

l exitrule first_node_nbr last_node_nbr
This command lists all exitrules for the indicated exit.

EXAMPLES
a plan 18 ltp/18

Declares the egress plan to use for transmission from the local node to neighboring node 18.By
default, any bundle for which the computed ‘‘next hop’’ node is node 18 will be queued for
transmission onLTP outduct 18.

a planrule 18 * 9 tcp/119.31.01.18:4016
Declares an egress plan override that applies to transmission to node 18 of any bundle whose source is
node 9, regardless of the service that was the source of the bundle. Eachsuch bundle must be queued
for transmission onTCP outduct 119.31.01.18:4016 rather than the default (transmission onLTP
outduct 18).

a exit 1 999 dtn://stargate
Declares a default route for bundles destined for all nodes whose numbers are in the range 1 through
999 inclusive: absent any other routing decision, such bundles are to be forwarded to ‘‘dtn://stargate’’.

SEE ALSO
ipnadmin(1)

perl v5.18.2 2016-09-07 3

LGFILE(5) BPconfiguration files LGFILE(5)

NAME
lgfile − ION Load/Go source file

DESCRIPTION
The ION Load/Go system enables the execution ofION administrative programs at remote nodes:

The lgsendprogram reads a Load/Go source file from a local file system, encapsulates the text of that
source file in a bundle, and sends the bundle to a designatedDTN endpoint on the remote node.

An lgagent task running on the remote node, which has opened thatDTN endpoint for bundle
reception, receives the extracted payload of the bundle — thetext of the Load/Go source file— and
processes it.

Load/Go source file content is limited to newline-terminated lines ofASCII characters. Morespecifically,
the text of any Load/Go source file is a sequence ofline setsof two types:file capsulesanddirectives. Any
Load/Go source file may contain any number of file capsules and any number of directives, freely
intermingled in any order, but the typical structure of a Load/Go source file is simply a single file capsule
followed by a single directive.

Eachfile capsuleis structured as a single start-of-capsule line, followed by zero or more capsule text lines,
followed by a single end-of-capsule line. Each start-of-capsule line is of this form:

[file_name

Each capsule text line can be any line of ASCII text that does not begin with an opening ([) or closing (])
bracket character.

A text line that begins with a closing bracket character (]) is interpreted as an end-of-capsule line.

A directiveis any line of text that is not one of the lines of a file capsule and that is of this form:

!directive_text

Whenlgagent identifies a file capsule, it copies all of the capsule’s text lines to a new file namedfile_name
that it creates in the current working directory. Whenlgagent identifies a directive, it executes the directive
by passingdirective_textto thepseudoshell()function (seeplatform(3)). lgagentprocesses the line sets of
a Load/Go source file in the order in which they appear in the file, so thedirective_textof a directive may
reference a file that was created as the result of processing a prior file capsule line set in the same source
file.

Note that lgfile directives are passed topseudoshell(), which on a VxWorks platform will always spawn a
new task; the first argument indirective_textmust be a symbol that VxWorks can resolve to a function, not
a shell command.Also note that the arguments indirective_textwill be actual task arguments, not shell
command-line arguments, so they should never be enclosed in double-quote characters (").However, any
argument that contains embedded whitespace must be enclosed in single-quote characters (’) so that
pseudoshell()can parse it correctly.

EXAMPLES
Presenting the following lines of source file text tolgsend:

[cmd33.bprc

x protocol ltp

]

!bpadmin cmd33.bprc

should cause the receiving node to halt the operation of theLTP convergence-layer protocol.

SEE ALSO
lgsend(1), lgagent (1), platform(3)

perl v5.18.2 2016-09-07 1

BSSPRC(5) BSSPconfiguration files BSSPRC(5)

NAME
bssprc − Bundle Streaming Service Protocol management commands file

DESCRIPTION
BSSPmanagement commands are passed tobsspadmin either in a file of text lines or interactively at
bsspadmin’s command prompt (:). Commands are interpreted line-by line, with exactly one command per
line. Theformats and effects of theBSSPmanagement commands are described below.

COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control.Setting echo to 1 causes all output printed by bsspadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

1 est_max_nbr_of_sessions
The initialize command. Untilthis command is executed,BSSPis not in operation on the localION
node and mostbsspadmincommands will fail.

The command usesest_max_nbr_of_sessionsto configure the hashtable it will use to manage access to
transmission sessions that are currently in progress.For optimum performance,
est_max_nbr_of_sessionsshould normally equal or exceed the summation ofmax_nbr_of_sessions
over all spans as discussed below.

a span peer_engine_nbr max_nbr_of_sessions max_block_size’BE−BSO_command’ ’ RL−BSO_command
[queuing_latency]

The add span command. Thiscommand declares that aspan of potentialBSSPdata interchange
exists between the localBSSPengine and the indicated (neighboring)BSSPengine.

The max_block_sizeis expressed as a number of bytes of data.max_block_sizeis used to configure
transmission buffer sizes; as such, it limits client data item size.

max_nbr_of_ _sessionsconstitutes, in effect, the localBSSPengine’s retransmission ‘‘window’’ f or
this span. The retransmission windows of the spans impose flow control on BSSP transmission,
reducing the chance ofx allocation of all available space in theION node’s data store toBSSP
transmission sessions.

BE−BSO_commandis script text that will be executed whenBSSPis started on this node, to initiate
operation of the best-efforts transmission channel task for this span. Note that "peer_engine_nbr"
will automatically be appended toBE−BSO_commandby bsspadmin before the command is
executed, so only the link-service-specific portion of the command should be provided in the
LSO_commandstring itself.

RL−BSO_commandis script text that will be executed whenBSSPis started on this node, to initiate
operation of the reliable transmission channel task for this span.Note that "peer_engine_nbr" will
automatically be appended toRL−BSO_commandby bsspadminbefore the command is executed, so
only the link-service-specific portion of the command should be provided in theLSO_commandstring
itself.

queuing_latencyis the estimated number of seconds that we expect to lapse between reception of a
segment at this node and transmission of an acknowledging segment, due to processing delay in the
node. (Seethe ’m ownqtime’ command below.) The default value is 1.

If queuing latencya neg ative number, the absolute value of this number is used as the actual queuing
latency and session purging is enabled; otherwise session purging is disabled. If session purging is
enabled for a span then at the end of any period of transmission over this span all of the span’s export

perl v5.18.2 2016-09-07 1

BSSPRC(5) BSSPconfiguration files BSSPRC(5)

sessions that are currently in progress are automatically canceled. Notionally this forces re-forwarding
of theDTN bundles in each session’s block, to avoid having to wait for the restart of transmission on
this span before those bundles can be successfully transmitted.

c span peer_engine_nbr max_nbr_of_sessions max_block_size’BE−BSO_command’ ’ RL−BSO_command
[queuing_latency]

Thechange spancommand. Thiscommand sets the indicated span’s configuration parameters to the
values provided as arguments.

d span peer_engine_nbr
The delete spancommand. Thiscommand deletes the span identified bypeer_engine_nbr. The
command will fail if any outbound segments for this span are pending transmission or any inbound
blocks from the peer engine are incomplete.

i span peer_engine_nbr
This command will print information (all configuration parameters) about the span identified by
peer_engine_nbr.

l span
This command lists all declaredBSSPdata interchange spans.

s ’BE−BSI_command’ ’ RL−BSI_command’
The start command. Thiscommand starts reliable and best-efforts link service output tasks for all
BSSPspans (to remote engines) from the localBSSPengine, and it starts the reliable and best-efforts
link service input tasks for the local engine.

m ownqtime own_queuing_latency
The manage own queuing timecommand. Thiscommand sets the number of seconds of predicted
additional latency attributable to processing delay within the local engine itself that should be included
whenever BSSPcomputes the nominal round-trip time for an exchange of data with any remote engine.
The default value is 1.

x The stop command. Thiscommand stops all link service input and output tasks for the localBSSP
engine.

w { 0 | 1 | <activity_spec> }
TheBSSPwatch command. Thiscommand enables and disables production of a continuous stream of
user-selectedBSSPactivity indication characters.A watch parameter of ‘‘1’ ’ selects allBSSPactivity
indication characters; ‘‘0’ ’ de-selects allBSSPactivity indication characters; any other activity_spec
such as ‘‘df=’ ’ selects all activity indication characters in the string, de-selecting all others.BSSPwill
print each selected activity indication character tostdout ev ery time a processing event of the
associated type occurs:

d bssp send completed

e bssp block constructed for issuance

f bssp block issued

g bssp block popped from best-efforts transmission queue

h positive ACK received for bssp block, session ended

s bssp block received

t bssp block popped from reliable transmission queue

= unacknowledged best-efforts block requeued for reliable transmission

{ session canceled locally by sender

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

perl v5.18.2 2016-09-07 2

BSSPRC(5) BSSPconfiguration files BSSPRC(5)

EXAMPLES
a span 19 20 4096 ’udpbso node19.ohio.edu:5001’ ’tcpbso node19.ohio.edu:5001’

Declares a data interchange span between the localBSSPengine and the remote engine (ION node)
numbered 19. There can be at most 20 concurrent sessions ofBSSPtransmission activity to this node.
Maximum block size for this span is set to 4096 bytes, and the best-efforts and reliable link service
output tasks that are initiated whenBSSPis started on the localION node will execute theudpbsoand
tcpbsoprograms as indicated.

m ownqtime 2
Sets local queuing delay allowance to 2 seconds.

SEE ALSO
bsspadmin(1), udpbsi(1), udpbso(1), tcpbsi(1), tcpbso(1)

perl v5.18.2 2016-09-07 3

CFDPRC(5) CFDPconfiguration files CFDPRC(5)

NAME
cfdprc − CCSDS File Delivery Protocol management commands file

DESCRIPTION
CFDP management commands are passed tocfdpadmin either in a file of text lines or interactively at
cfdpadmin’s command prompt (:). Commands are interpreted line-by line, with exactly one command per
line. Theformats and effects of theCFDPmanagement commands are described below.

COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by cfdpadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

1 The initialize command. Untilthis command is executed,CFDP is not in operation on the localION
node and mostcfdpadmincommands will fail.

a entity > <entity nbr> <UT protocol name> <UT endpoint name> <rtt> <incstype> <outcstype>
The add entity command. Thiscommand will add a new remote CFDP entity to the CFDP
management information base.Valid UT protocol names are bp and tcp. Endpoint name isEID for bp,
socket spec (IP address:port number) for tcp. RTT is round-trip time, used to set acknowledgement
timers. incstype is the type of checksum to use when validating data received from this entity; valid
values are 0 (modular checksum) and 1 (CRC32). outcstypeis the type of checksum to use when
computing the checksum for transmitting data to this entity.

c entity > <entity nbr> <UT protocol name> <UT endpoint name> <rtt> <incstype> <outcstype>
The change entity command. Thiscommand will change information associated with an existing
entity in theCFDPmanagement information base.

d entity > <entity nbr>
Thedelete entitycommand. Thiscommand will delete an existing entity from theCFDPmanagement
information base.

i [<entity nbr>]
The info command. Whenentity nbr is provided, this command will print information about the
indicate entity. Otherwise this command will print information about the current state of the local
CFDPentity, including the current settings of all parameters that can be managed as described below.

s ’UTScommand’
Thestart command. Thiscommand starts the UT-layer service task for the localCFDPentity.

m discard { 0 | 1 }
The manage discard command. Thiscommand enables or disables the discarding of partially
received files upon cancellation of a file reception.

m requirecrc { 0 | 1 }
The manageCRC data integrity command. Thiscommand enables or disables the attachment of
CRCs to all PDUs issued by the localCFDPentity.

m fillchar file_fill_character
The manage fill character command. Thiscommand establishes the fill character to use for the
portions of an incoming file that have not yet been received. Thefill character is normally expressed
in hex, e.g., 0xaa.

perl v5.18.2 2016-09-07 1

CFDPRC(5) CFDPconfiguration files CFDPRC(5)

m ckperiod check_cycle_period
The manage check interval command. Thiscommand establishes the number of seconds following
reception of theEOF PDU — or following expiration of a prior check cycle — afterwhich the local
CFDPwill check for completion of a file that is being received.

m maxtimeoutscheck_cycle_limit
Themanage check limitcommand. Thiscommand establishes the number of check cycle expirations
after which the localCFDPentity will invoke the check cycle expiration fault handler upon expiration
of a check cycle.

m maxtrnbr max_transaction_number
The manage transaction numberscommand. Thiscommand establishes the largest possible
transaction number used by the localCFDPentity for file transmission transactions. After this number
has been used, the transaction number assigned to the next transaction will be 1.

m segsizemax_bytes_per_file_data_segment
The manage segment sizecommand. Thiscommand establishes the number of bytes of file data in
each file dataPDU transmitted by the localCFDP entity in the absence of an application-supplied
reader function.

m inactivity inactivity_period
The manage inactivity period command. This command establishes the number of seconds that a
CFDPfile transfer is allowed to go idle before being canceled for inactivity. The default is one day.

x Thestopcommand. Thiscommand stops the UT-layer service task for the localCFDPengine.

w { 0 | 1 | <activity_spec> }
The CFDP watch command. Thiscommand enables and disables production of a continuous stream
of user-selectedCFDP activity indication characters.A watch parameter of ‘‘1’ ’ selects allCFDP
activity indication characters; ‘‘0’ ’ de-selects allCFDP activity indication characters; any other
activity_specsuch as ‘‘p’ ’ selects all activity indication characters in the string, de-selecting all others.
CFDPwill print each selected activity indication character tostdout ev ery time a processing event of
the associated type occurs:

p CFDP PDUtransmitted

q CFDP PDUreceived

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

EXAMPLES
m requirecrc 1

Initiates attachment of CRCs to all subsequently issuedCFDPPDUs.

SEE ALSO
cfdpadmin(1), bputa(1)

perl v5.18.2 2016-09-07 2

DTPCRC(5) DTPCconfiguration files DTPCRC(5)

NAME
dtpcrc − Delay−Tolerant Payload Conditioning management commands file

DESCRIPTION
DTPC management commands are passed todtpcadmin either in a file of text lines or interactively at
dtpcadmin’s command prompt (:). Commands are interpreted line-by line, with exactly one command per
line. Theformats and effects of theDTPCmanagement commands are described below.

COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by dtpcadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

1 The initialize command. Untilthis command is executed,DTPC is not in operation on the localION
node and mostdtpcadmincommands will fail.

a profile profileID maxRtx aggrSizeLimit aggrTimeLimit TTL class_of_service report_to_endpointID
[statusReportFlags]

Theadd profile command. Thiscommand notes the definition of a singleDPTC transmission profile.
A transmission profile asserts theBP andDTPC configuration parameter values that will be applied to
all application data items (encapsulated inDTPCapplication data units and transmitted in bundles) that
are issued subject to this profile.Transmission profiles are globally defined; all transmission profiles
must be provided, with identical parameter values, to all inter-communicatingDTPCprotocol entities.

profileID must be the positive integer that uniquely defines the profile.

maxRtxis the maximum number of times any single DTPC ADU transmitted subject to the indicated
profile may be retransmitted by theDTPC entity. If maxRtxis zero, then theDTPC transport service
features (in-order delivery, end-to-end acknowledgment, etc.) are disabled for this profile.

aggrSizeLimit is the size threshold for concluding aggregation of an outboundADU and requesting
transmission of thatADU. If aggrSizeLimitis zero, then theDTPC transmission optimization features
(aggregation and elision) are disabled for this profile.

aggrTimeLimit is the time threshold for concluding aggregation of an outboundADU and requesting
transmission of thatADU. If aggrTimeLimit is zero, then theDTPC transmission optimization features
(aggregation and elision) are disabled for this profile.

class_of_serviceis the class-of-service string as defined forbptrace(1).

report_to_endpointIDidentifies theBP endpoint to which all status reports generated from bundles
transmitted subject to this profile will be sent.

statusReportFlags, if present, must be a sequence of status report flags, separated by commas, with no
embedded whitespace. Each status report flag must be one of the following: rcv, ct, fwd, dlv, del.

d profile profileId
The delete profile command. Thiscommand erases the definition of theDTPC transmission profile
identified byprofileId.

i profile profileId
This command will print information (all configuration parameters) about the profile identified by
profileId.

perl v5.18.2 2016-09-07 1

DTPCRC(5) DTPCconfiguration files DTPCRC(5)

l profile
This command lists all knownDTPC transmission profiles.

s Thestart command. Thiscommand starts theDTPCclock and daemon tasks for the localBP node.

x Thestop command. Thiscommand stops allDTPC tasks and notifies allDTPCapplications thatDTPC
service has been stopped.

w { 0 | 1 | <activity_spec> }
The DTPC watch command. Thiscommand enables and disables production of a continuous stream
of user-selectedDTPC activity indication characters.A watch parameter of ‘‘1’ ’ selects allDTPC
activity indication characters; ‘‘0’ ’ de-selects allDTPC activity indication characters; any other
activity_specsuch as ‘‘o<r>’’ selects all activity indication characters in the string, de-selecting all
others. DTPC will print each selected activity indication character tostdout ev ery time a processing
ev ent of the associated type occurs:

o new aggregator created for profile and destination endpoint

\< newADU aggregation initiated

r application data item added to aggregation

\> aggregation complete, outboundADU created

− outboundADU sent viaBP

l ADU end-to-end acknowledgment sent

m ADU deleted due toTTL expiration

n ADU queued for retransmission

i inboundADU collector created

u inboundADU received

v ADU sequence gap detected

? inboundADU discarded

* ADU sequence gap deleted due to impendingADU TTL expiration

$ inboundADU collector reset

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

EXAMPLES
a profile 5 6 1000000 5 3600 0.1 dtn:none

Notes the definition ofDTPC transmission profile 5: transport services are enabled, with an end-to-end
retransmission limit of 5; transmission optimization service is enabled, initiating bundle transmission
whenever the aggregation of data items queued for transmission subject to this profile exceeds one
million bytes or is more than five seconds old; the transmitted bundles will have one-hour lifetime,
will not be subject to custody transfer, will be sent at ‘‘standard’’ priority, and will not be tracked by
any bundle status report production.

SEE ALSO
dtpcadmin(1), bptrace(1)

perl v5.18.2 2016-09-07 2

IONCONFIG(5) ICIconfiguration files IONCONFIG(5)

NAME
ionconfig − ION node configuration parameters file

DESCRIPTION
ION node configuration parameters are passed toionadmin in a file of parameter name/value pairs:

parameter_name parameter_value

Any line of the file that begins with a ’#’ character is considered a comment and is ignored.

ionadmin supplies default values for any parameters for which no value is provided in the node
configuration parameters file.

The applicable parameters are as follows:

sdrName
This is the character string by which thisION node’sSDR database will be identified. (Note that the
SDR database infrastructure enables multiple databases to be constructed on a single host computer.)
The default value is ‘‘ion’’.

sdrWmSize
This is the size of the block of dynamic memory that will be reserved as private working memory for
the SDR system itself.A block of system memory of this size will be allocated (e.g., bymalloc()) at
the time theSDR system is initialized on the host computer. The default value is 1000000 (1 million
bytes).

configFlags
This is the bitwise ‘‘OR’’ (i.e., the sum) of the flag values that characterize theSDRdatabase to use for
this ION node. The default value is 13 (that is,SDR_IN_DRAM | SDR_REVERSIBLE |
SDR_BOUNDED). TheSDRconfiguration flags are documented in detail insdr(3). To recap:

SDR_IN_DRAMs0(1)
TheSDR is implemented in a region of shared memory. [Possibly with write-through to a file, for
fault tolerance.]

SDR_IN_FILEs0(2)
TheSDR is implemented as a file. [Possibly cached in a region of shared memory, for faster data
retrieval.]

SDR_REVERSIBLEs0(4)
Transactions in theSDRare written ahead to a log, making them reversible.

SDR_BOUNDEDs0(8)
SDRheap updates are not allowed to cross object boundaries.

heapKey
This is the shared-memory key by which the pre-allocated block of shared dynamic memory to be
used as heap space for thisSDR can be located, if applicable. The default value is −1, i.e., not
specified and not applicable.

pathName
This is the fully qualified path name of the directory in which are located (a) the file to be used as heap
space for thisSDR(which will be created, if it doesn’t already exist), in the event that theSDR is to be
implemented in a file, and (b) the file to be used to log the database updates of eachSDR transaction,
in the event that transactions in thisSDRare to be reversible. Thedefault value is/tmp.

heapWords
This is the number of words (of 32 bits each on a 32−bit machine, 64 bits each on a 64−bit machine)
of nominally non-volatile storage to use forION’s SDR database. Ifthe SDR is to be implemented in
shared memory and noheapKey is specified, a block of shared memory of this size will be allocated
(e.g., bymalloc()) at the time the node is created. If theSDR is to be implemented in a file and no file
namedion.sdr exists in the directory identified bypathName, then a file of this name and size will be
created in this directory and initialized to all binary zeroes.The default value is 250000 words (1

perl v5.18.2 2016-09-07 1

IONCONFIG(5) ICIconfiguration files IONCONFIG(5)

million bytes on a 32−bit computer).

logSize
This is the number of bytes of shared memory to use forION’s SDR transaction log. If zero (the
default), the transaction log is written to a file rather than to memory. If the log is to be implemented
in shared memory and nologKey is specified, a block of shared memory of this size will be allocated
(e.g., bymalloc()) at the time the node is created.

logKey
This is the shared-memory key by which the pre-allocated block of shared dynamic memory to be
used for the transaction log for thisSDRcan be located, if applicable. The default value is −1, i.e., not
specified and not applicable.

wmKey
This is the shared-memory key by which this ION node’s working memory will be identified.The
default value is 65281.

wmAddress
This is the address of the block of dynamic memory— volatile storage, which is not expected to
persist across a system reboot— to use for thisION node’s working memory. If zero, the working
memory block will be allocated from system memory (e.g., bymalloc()) at the time the localION node
is created. The default value is zero.

wmSize
This is the size of the block of dynamic memory that will be used for thisION node’s working
memory. If wmAddressis zero, a block of system memory of this size will be allocated (e.g., by
malloc()) at the time the node is created. The default value is 5000000 (5 million bytes).

EXAMPLE
configFlags 1

heapWords 2500000

heapKey −1

pathName /usr/ion

wmSize 5000000

wmAddress 0

SEE ALSO
ionadmin(1)

perl v5.18.2 2016-09-07 2

IONRC(5) ICIconfiguration files IONRC(5)

NAME
ionrc − ION node management commands file

DESCRIPTION
ION node management commands are passed toionadmin either in a file of text lines or interactively at
ionadmin’s command prompt (:).Commands are interpreted line-by line, with exactly one command per
line. Theformats and effects of theION node management commands are described below.

TIME REPRESENTATION
For many ION node management commands, time values must be passed as arguments. Every time value
may be represented in either of two formats. Absolutetime is expressed as:

yyyy/mm/dd−hh:mm:ss

Relative time (a number of seconds following the currentreference time, which defaults to the current time
at the momentionadminbegan execution but which can be overridden by theat command described below)
is expressed as:

+ss

COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by ionadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

1 node_number[{ ion_config_filename| ’.’ | ’’ }]
The initialize command. Untilthis command is executed, the localION node does not exist and most
ionadmincommands will fail.

The command configures the local node to be identified bynode_number, aCBHE node number which
uniquely identifies the node in the delay-tolerant network. It also configuresION’s data space (SDR)
and shared working-memory region. For this purpose it uses a set of default settings if no argument
follows node_numberor if the argument following node_numberis ’’; otherwise it uses the
configuration settings found in a configuration file. If configuration file name ’.’ is provided, then the
configuration file’s name is implicitly "hostname.ionconfig"; otherwise,ion_config_filenameis taken
to be the explicit configuration file name.Please seeionconfig(5) for details of the configuration
settings.

For example:

1 19 ' '

would initialize ION on the local computer, assigning the localION node the node number 19 and
using default values to configure the data space and shared working-memory region.

@ time
Theat command. Thisis used to set the reference time that will be used for interpreting relative time
values from now until the next revision of reference time. Note that the new reference time can be a
relative time, i.e., an offset beyond the current reference time.

a contact start_time stop_time source_node dest_node xmit_data_rate[confidence]
Theadd contactcommand. Thiscommand schedules a period of data transmission fromsource_node
to dest_node. The period of transmission will begin atstart_timeand end atstop_time, and the rate of
data transmission will bexmit_data_ratebytes/second. Ourconfidence in the contact defaults to 1.0,
indicating that the contact is scheduled − not that non-occurrence of the contact is impossible, just that

perl v5.18.2 2016-09-07 1

IONRC(5) ICIconfiguration files IONRC(5)

occurrence of the contact is planned and scheduled rather than merely imputed from past node
behavior. In the latter case,confidenceindicates our estimation of the likelihood of this potential
contact.

d contact start_time source_node dest_node
Thedelete contactcommand. Thiscommand deletes the scheduled period of data transmission from
source_nodeto dest_nodestarting atstart_time. To delete all contacts between some pair of nodes,
use ’*’ asstart_time.

i contact start_time source_node dest_node
This command will print information (the stop time and data rate) about the scheduled period of
transmission fromsource_nodeto dest_nodethat starts atstart_time.

l contact
This command lists all scheduled periods of data transmission.

a rangestart_time stop_time one_node the_other_node distance
The add range command. Thiscommand predicts a period of time during which the distance from
one_nodeto the_other_nodewill be constant to within one light second. The period will begin at
start_timeand end atstop_time, and the distance between the nodes during that time will bedistance
light seconds.

NOTE that the ranges declared by these commands are directional.ION does not automatically
assume that the distance from node A to node B is the same as the distance from node B to node A.
While this symmetry is certainly true of geographic distance, the range that concernsION is the
latency in propagating a signal from one node to the other; this latency may be different in different
directions because (for example) the signal from B to A might need to be forwarded along a different
convergence-layer network path from the one used for the signal from A to B.

As a convenience,ION interprets a range command in which the node number of the first cited node is
numerically less than that of the second cited node as implicitly declaring the same distance in the
reverse directionUNLESS a second range command is present that cites the same two nodes in the
opposite order, which overrides the implicit declaration.A range command in which the node number
of the first cited node is numerically greater than that of the second cited node impliesABSOLUTELY
NOTHING about the distance in the reverse direction.

d rangestart_time one_node the_other_node
Thedelete rangecommand. Thiscommand deletes the predicted period of constant distance between
one_nodeandthe_other_nodestarting atstart_time. To delete all ranges between some pair of nodes,
use ’*’ asstart_time.

i r angestart_time one_node the_other_node
This command will print information (the stop time and range) about the predicted period of constant
distance betweenone_nodeandthe_other_nodethat starts atstart_time.

l r ange
This command lists all predicted periods of constant distance.

m utcdelta local_time_sec_after_UTC
This management command setsION’s understanding of the current difference between correctUTC
time and the time values reported by the clock for the localION node’s computer. This delta is
automatically applied to locally obtained time values whenever ION needs to know the current time.
For machines that useUTC natively and are synchronized byNTP, the value of this delta should be 0,
the default.

m clockerr known_maximum_clock_error
This management command setsION’s understanding of the accuracy of the scheduled start and stop
times of planned contacts, in seconds. The default value is 1.When revising local data transmission
and reception rates,ionadminwill adjust contact start and stop times by this interval to be sure not to
send bundles that arrive before the neighbor expects data arrival or to discard bundles that arrive
slightly before they were expected.

perl v5.18.2 2016-09-07 2

IONRC(5) ICIconfiguration files IONRC(5)

m clocksync[{ 1 | 0 }]
This management command reports whether or not the computer on which the localION node is
running has a synchronized clock, as discussed in the description of theionClockIsSynchronized()
function (ion (3)).

If a Boolean argument is provided when the command is executed, the characterization of the
machine’s clock is revised to conform with the asserted value. Thedefault value is 1.

m production planned_data_production_rate
This management command setsION’s expectation of the mean rate of continuous data origination by
local BP applications throughout the period of time over which congestion forecasts are computed.
For nodes that function only as routers this variable will normally be zero.A value of −1, which is the
default, indicates that the rate of local data production is unknown; in that case local data production is
not considered in the computation of congestion forecasts.

m consumptionplanned_data_consumption_rate
This management command setsION’s expectation of the mean rate of continuous data delivery to
local BP applications throughout the period of time over which congestion forecasts are computed.
For nodes that function only as routers this variable will normally be zero.A value of −1, which is the
default, indicates that the rate of local data consumption is unknown; in that case local data
consumption is not considered in the computation of congestion forecasts.

m inbound heap_occupancy_limit[file_system_occupancy_limit]
This management command sets the maximum number of megabytes of storage space inION’s SDR
non-volatile heap, and/or in the local file system, that can be used for the storage of inbound zero-copy
objects. Avalue of −1 for either limit signifies ‘‘leave unchanged’’. The default heap limit is 30% of
theSDRdata space’s total heap size. The default file system limit is 1 Terabyte.

m outbound heap_occupancy_limit[file_system_occupancy_limit]
This management command sets the maximum number of megabytes of storage space inION’s SDR
non-volatile heap, and/or in the local file system, that can be used for the storage of outbound zero-
copy objects. Avalue of −1 for either limit signifies ‘‘leave unchanged’’. The default heap limit is
30% of theSDRdata space’s total heap size. The default file system limit is 1 Terabyte.

m horizon { 0 | end_time_for_congestion_forecasts}
This management command sets the end time for computed congestion forecasts.Setting congestion
forecast horizon to zero sets the congestion forecast end time to infinite time in the future: if there is
any predicted net growth in bundle storage space occupancy at all, following the end of the last
scheduled contact, then eventual congestion will be predicted.The default value is zero, i.e., no end
time.

m alarm ’congestion_alarm_command’
This management command establishes a command which will automatically be executed whenever
ionadminpredicts that the node will become congested at some future time. By default, there is no
alarm command.

m usage
This management command simply printsION’s current data space occupancy (the number of
megabytes of space in theSDR non-volatile heap and file system that are occupied by inbound and
outbound zero-copy objects), the total zero-copy-object space occupancy ceiling, and the maximum
level of occupancy predicted by the most recentionadmincongestion forecast computation.

r ’command_text’
The run command. Thiscommand will executecommand_textas if it had been typed at a console
prompt. Itis used to, for example, run another administrative program.

s Thestart command. Thiscommand starts therfxclocktask on the localION node.

x Thestopcommand. Thiscommand stops therfxclocktask on the localION node.

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

perl v5.18.2 2016-09-07 3

IONRC(5) ICIconfiguration files IONRC(5)

EXAMPLES
@ 2008/10/05−11:30:00

Sets the reference time to 1130 (UTC) on 5 October 2008.

a range +1 2009/01/01−00:00:00 1 2 12
Predicts that the distance between nodes 1 and 2 (endpoint IDs ipn:1.0 and ipn:2.0) will remain
constant at 12 light seconds over the interval that begins 1 second after the reference time and ends at
the end of calendar year 2009.

a contact +60 +7260 1 2 10000
Schedules a period of transmission at 10,000 bytes/second from node 1 to node 2, starting 60 seconds
after the reference time and ending exactly two hours (7200 seconds) after it starts.

SEE ALSO
ionadmin(1), rfxclock(1), ion (3)

perl v5.18.2 2016-09-07 4

IONSECRC(5) ICIconfiguration files IONSECRC(5)

NAME
ionsecrc − ION security policy management commands file

DESCRIPTION
ION security policy management commands are passed toionsecadmineither in a file of text lines or
interactively at ionsecadmin’s command prompt (:).Commands are interpreted line-by line, with exactly
one command per line. The formats and effects of theION security policy management commands are
described below.

A parameter identifed as aneid_expris an ‘‘endpointID expression.’’ For all commands, whenever the last
character of an endpointID expression is the wild-card character ’*’, an applicable endpointID ‘‘ matches’’
this EID expression if all characters of the endpointID expression prior to the last one are equal to the
corresponding characters of that endpointID. Otherwise an applicable endpointID ‘‘ matches’’ the EID
expression only when all characters of theEID andEID expression are identical.

ION’s security policy management encompasses bothBP security andLTP authentication.ION has begun
supporting the proposed ‘‘streamlined’’ Bundle Security Protocol (Internet Draft
draft−birrane−dtn−sbsp−00) in place of standard Bundle Security Protocol (RFC 6257). SinceSBSPis not
yet a publishedRFC, ION’s Bundle Protocol security mechanisms will not necessarily interoperate with
those of otherBP implementations. Thisis unfortunate but (we hope) temporary, as SBSP represents a
major improvement in bundle security. It is possible that theSBSPspecification will change somewhat
between now and the timeSBSPis published as anRFC,andION will be revised as necessary to conform to
those changes, but in the meantime we believe that the advantages ofSBSPmake it more suitable thanRFC
6257as a foundation for the development and deployment of secureDTN applications.

COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control. Setting echo to 1 causes all output printed by ionsecadmin to be logged as well as sent
to stdout. Setting echo to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

1 The initialize command. Untilthis command is executed, the localION node has no security policy
database and mostionsecadmincommands will fail.

a keykey_name file_name
Theadd key command. Thiscommand adds a named key value to the security policy database. The
content offile_nameis taken as the value of the key. Named keys can be referenced by other elements
of the security policy database.

c keykey_name file_name
Thechange key command. Thiscommand changes the value of the named key, obtaining the new key
value from the content offile_name.

d keykey_name
Thedelete keycommand. Thiscommand deletes the key identified byname.

i keykey_name
This command will print information about the named key, i.e., the length of its current value.

l key
This command lists all keys in the security policy database.

a bspbabrulesender_eid_expr receiver_eid_expr { ’’ | ciphersuite_name key_name }
The add bspbabrulecommand. Thiscommand adds a rule specifying the manner in which Bundle
Authentication Block (BAB) validation will be applied to all bundles sent from any node whose
endpoints’ IDs matchsender_eid_exprand received at any node whose endpoints’ IDs match

perl v5.18.2 2016-09-07 1

IONSECRC(5) ICIconfiguration files IONSECRC(5)

receiver_eid_expr. Both sender_eid_exprand receiver_eid_exprshould terminate in wild-card
characters, because both the security source and security destination of aBAB are actually nodes rather
than individual endpoints.

If a zero-length string (’’) is indicated instead of aciphersuite_namethenBAB validation is disabled
for this sender/receiver EID expression pair: all bundles sent from nodes with matching administrative
endpoint IDs to nodes with matching administrative endpoint IDs will be immediately deemed
authentic. Otherwise,a bundle from a node with matching administrative endpoint ID to a node with
matching administrative endpointID will only be deemed authentic if it contains aBAB computed via
the ciphersuite named byciphersuite_nameusing a key value that is identical to the current value of
the key namedkey_namein the local security policy database.

NOTE: if the security policy database contains noBAB rules at all, thenBAB authentication is
disabled; all bundles received from all neighboring nodes are considered authentic.Otherwise,BAB
rulesmust be defined for all nodes from which bundles are to be received; all bundles received from
any node for which noBAB rule is defined are considered inauthentic and are discarded.

c bspbabrulesender_eid_expr receiver_eid_expr { ’’ | ciphersuite_name key_name }
Thechange bspbabrulecommand. Thiscommand changes the ciphersuite name and/or key name for
the BAB rule pertaining to the sender/receiver EID expression pair identified bysender_eid_exprand
receiver_eid_expr. Note that theeid_exprs must exactly match those of the rule that is to be modified,
including any terminating wild-card character.

d bspbabrulesender_eid_expr receiver_eid_expr
The delete bspbabrule command. Thiscommand deletes theBAB rule pertaining to the
sender/receiver EID expression pair identified bysender_eid_exprand receiver_eid_expr. Note that
the eid_exprs must exactly match those of the rule that is to be deleted, including any terminating
wild-card character.

i bspbabrulesender_eid_expr receiver_eid_expr
This command will print information (the ciphersuite and key names) about theBAB rule pertaining to
sender_eid_exprandreceiver_eid_expr.

l bspbabrule
This command lists allBAB rules in the security policy database.

a bspbibrule source_eid_expr destination_eid_expr block_type_number { ’’ | ciphersuite_name key_name }
The add bspbibrule command. Thiscommand adds a rule specifying the manner in which Block
Integrity Block (BIB) validation will be applied to blocks of typeblock_type_numberfor all bundles
sourced at any node whose administrative endpoint ID matchessource_eid_exprand destined for any
node whose administrative endpointID ID matchesdestination_eid_expr.

If a zero-length string (’’) is indicated instead of aciphersuite_namethenBIB validation is disabled for
this source/destinationEID expression pair: blocks of the type indicated byblock_type_numberin all
bundles sourced at nodes with matching administrative endpoint IDs and destined for nodes with
matching administrative endpoint IDs will be immediately deemed valid. Otherwise,a block of the
indicated type that is attached to a bundle sourced at a node with matching administrative endpointID
and destined for a node with matching administrative endpoint ID will only be deemed valid if the
bundle contains a correspondingBIB computed via the ciphersuite named byciphersuite_nameusing a
key value that is identical to the current value of the key namedkey_namein the local security policy
database.

c bspbibrule source_eid_expr destination_eid_expr block_type_number { ’’ | ciphersuite_name key_name }
Thechange bspbibrulecommand. Thiscommand changes the ciphersuite name and/or key name for
theBIB rule pertaining to the source/destinationEID expression pair identified bysource_eid_exprand
destination_eid_exprand the block identified byblock_type_number. Note that theeid_exprs must
exactly match those of the rule that is to be modified, including any terminating wild-card character.

perl v5.18.2 2016-09-07 2

IONSECRC(5) ICIconfiguration files IONSECRC(5)

d bspbibrule source_eid_expr destination_eid_expr block_type_number
The delete bspbibrule command. This command deletes theBIB rule pertaining to the
source/destinationEID expression pair identified bysender_eid_exprand receiver_eid_exprand the
block identified byblock_type_number. Note that theeid_exprs must exactly match those of the rule
that is to be deleted, including any terminating wild-card character.

i bspbibrule source_eid_expr destination_eid_expr block_type_number
This command will print information (the ciphersuite and key names) about theBIB rule pertaining to
source_eid_expr, destination_eid_expr, andblock_type_number.

l bspbibrule
This command lists allBIB rules in the security policy database.

a bspbcbrule source_eid_expr destination_eid_expr block_type_number { ’’ | ciphersuite_name key_name
}

The add bspbcbrule command. Thiscommand adds a rule specifying the manner in which Block
Confidentiality Block (BCB) encryption will be applied to blocks of typeblock_type_numberfor all
bundles sourced at any node whose administrative endpointID matchessource_eid_exprand destined
for any node whose administrative endpointID ID matchesdestination_eid_expr.

If a zero-length string (’’) is indicated instead of aciphersuite_namethenBCB encryption is disabled
for this source/destinationEID expression pair: blocks of the type indicated byblock_type_numberin
all bundles sourced at nodes with matching administrative endpoint IDs and destined for nodes with
matching administrative endpoint IDs will be sent in plain text. Otherwise,a block of the indicated
type that is attached to a bundle sourced at a node with matching administrative endpoint ID and
destined for a node with matching administrative endpoint ID can only be deemed decrypted if the
bundle contains a correspondingBCB computed via the ciphersuite named byciphersuite_nameusing
a key value that is identical to the current value of the key namedkey_namein the local security policy
database.

c bspbcbrule source_eid_expr destination_eid_expr block_type_number { ’’ | ciphersuite_name key_name
}

Thechange bspbcbrulecommand. Thiscommand changes the ciphersuite name and/or key name for
the BCB rule pertaining to the source/destinationEID expression pair identified bysource_eid_expr
and destination_eid_exprand the block identified byblock_type_number. Note that theeid_exprs
must exactly match those of the rule that is to be modified, including any terminating wild-card
character.

d bspbcbrulesource_eid_expr destination_eid_expr block_type_number
The delete bspbcbrule command. Thiscommand deletes theBCB rule pertaining to the
source/destinationEID expression pair identified bysender_eid_exprand receiver_eid_exprand the
block identified byblock_type_number. Note that theeid_exprs must exactly match those of the rule
that is to be deleted, including any terminating wild-card character.

i bspbcbrulesource_eid_expr destination_eid_expr block_type_number
This command will print information (the ciphersuite and key names) about theBCB rule pertaining to
source_eid_expr, destination_eid_expr, andblock_type_number.

l bspbcbrule
This command lists allBCB rules in the security policy database.

a ltprecvauthrule ltp_engine_id ciphersuite_nbr [key_name]
Theadd ltprecvauthrule command. Thiscommand adds a rule specifying the manner in whichLTP
segment authentication will be applied toLTP segments received from the indicatedLTP engine.

A segment from the indicatedLTP engine will only be deemed authentic if it contains an
authentication extension computed via the ciphersuite identified byciphersuite_nbr using the
applicable key value. Ifciphersuite_nbris 255 then the applicable key value is a hard-coded constant
and key_namemust be omitted; otherwisekey_nameis required and the applicable key value is the
current value of the key namedkey_namein the local security policy database.

perl v5.18.2 2016-09-07 3

IONSECRC(5) ICIconfiguration files IONSECRC(5)

Valid values ofciphersuite_nbrare:

0: HMAC−SHA1−80 1: RSA−SHA256 255: NULL

c ltprecvauthrule ltp_engine_id ciphersuite_nbr [key_name]
The change ltprecvauthrule command. Thiscommand changes the parameters of theLTP segment
authentication rule for the indicatedLTP engine.

d ltprecvauthrule ltp_engine_id
Thedelete ltprecvauthrule command. Thiscommand deletes theLTP segment authentication rule for
the indicatedLTP engine.

i l tprecvauthrule ltp_engine_id
This command will print information (theLTP engine id, ciphersuite number, and key name) about the
LTP segment authentication rule for the indicatedLTP engine.

l l tprecvauthrule
This command lists allLTP segment authentication rules in the security policy database.

a ltpxmitauthrule ltp_engine_id ciphersuite_nbr [key_name]
Theadd ltpxmitauthrule command. Thiscommand adds a rule specifying the manner in whichLTP
segments transmitted to the indicatedLTP engine must be signed.

Signing a segment destined for the indicatedLTP engine entails computing an authentication extension
via the ciphersuite identified byciphersuite_nbrusing the applicable key value. If ciphersuite_nbris
255 then the applicable key value is a hard-coded constant andkey_namemust be omitted; otherwise
key_nameis required and the applicable key value is the current value of the key namedkey_namein
the local security policy database.

Valid values ofciphersuite_nbrare:

0: HMAC_SHA1−80 1: RSA_SHA256 255: NULL

c ltpxmitauthrule ltp_engine_id ciphersuite_nbr [key_name]
The change ltpxmitauthrule command. Thiscommand changes the parameters of theLTP segment
signing rule for the indicatedLTP engine.

d ltpxmitauthrule ltp_engine_id
The delete ltpxmitauthrule command. Thiscommand deletes theLTP segment signing rule for the
indicatedLTP engine.

i l tpxmitauthrule ltp_engine_id
This command will print information (theLTP engine id, ciphersuite number, and key name) about the
LTP segment signing rule for the indicatedLTP engine.

l l tpxmitauthrule
This command lists allLTP segment signing rules in the security policy database.

x [{ ˜ | sender_eid_expr } [{ ˜ | receiver_eid_expr} [{ ˜ | bab | pib | pcb | esb }]]]
This command will clear all rules for the indicated type of bundle security block between the indicated
security source and security destination. If block type is omitted it defaults to˜ signifying ‘‘all BSP
blocks’’. If both block type and security destination are omitted, security destination defaults to˜
signifying ‘‘all BSP security destinations’’. If all three command-line parameters are omitted, then
security source defaults to˜ signifying ‘‘all BSPsecurity sources’’.

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

EXAMPLES
a key BABKEY ./babkey.txt

Adds a new key named ‘‘BABKEY’’ whose value is the content of the file ‘‘./babkey.txt’’.

perl v5.18.2 2016-09-07 4

IONSECRC(5) ICIconfiguration files IONSECRC(5)

a bspbabrule ipn:19.* ipn:11.*HMAC_SHA1 BABKEY
Adds aBAB rule requiring that all bundles sent from node number 19 to node number 11 contain
Bundle Authentication Blocks computed via theHMAC_SHA1 ciphersuite using a key value that is
identical to the current value of the key named ‘‘BABKEY’’ in the local security policy database.

c bspbabrule ipn:19.* ipn:11.* ’’
Changes theBAB rule pertaining to all bundles sent from node number 19 to node number 11.BAB
checking is disabled; these bundles will be automatically deemed authentic.

SEE ALSO
ionsecadmin(1)

perl v5.18.2 2016-09-07 5

LTPRC(5) LTP configuration files LTPRC(5)

NAME
ltprc − Licklider Transmission Protocol management commands file

DESCRIPTION
LTP management commands are passed toltpadmin either in a file of text lines or interactively at
ltpadmin ’s command prompt (:). Commands are interpreted line-by line, with exactly one command per
line. Theformats and effects of theLTP management commands are described below.

COMMANDS
? The help command. Thiswill display a listing of the commands and their formats. It is the same as

theh command.

Comment line. Lines beginning with# are not interpreted.

e { 1 | 0 }
Echo control.Setting echo to 1 causes all output printed by ltpadmin to be logged as well as sent to
stdout. Settingecho to 0 disables this behavior.

v Version number. Prints out the version ofION currently installed.HINT: combine withe 1command
to log the version number at startup.

1 est_max_export_sessions
The initialize command. Untilthis command is executed,LTP is not in operation on the localION
node and mostltpadmincommands will fail.

The command usesest_max_export_sessionsto configure the hashtable it will use to manage access to
export transmission sessions that are currently in progress.For optimum performance,
est_max_export_sessionsshould normally equal or exceed the summation ofmax_export_sessions
over all spans as discussed below.

Appropriate values for the parameters configuring each ‘‘span’’ of potential LTP data exchange
between the localLTP and neighboring engines are non-trivial to determine.See theION LTP
configuration spreadsheet and accompanying documentation for details.

a span peer_engine_nbr max_export_sessions max_import_sessions max_segment_size
aggregation_size_limit aggregation_time_limit’LSO_command’ [queuing_latency]

Theadd spancommand. Thiscommand declares that aspanof potentialLTP data interchange exists
between the localLTP engine and the indicated (neighboring)LTP engine.

The max_segment_sizeand aggregation_size_limitare expressed as numbers of bytes of data.
max_segment_sizelimits the size of each of the segments into which each outbound datablockwill be
divided; typically this limit will be the maximum number of bytes that can be encapsulated within a
single transmission frame of the underlyinglink service.

aggregation_size_limit limits the number ofLTP service data units (e.g., bundles) that can be
aggregated into a single block: when the sum of the sizes of all service data units aggregated into a
block exceeds this limit, aggregation into this block must cease and the block must be segmented and
transmitted.

aggregation_time_limitalternatively limits the number of seconds that any single export session block
for this span will await aggregation before it is segmented and transmitted regardless of size.The
aggregation time limit prevents undue delay before the transmission of data during periods of low
activity.

max_export_sessionsconstitutes, in effect, the localLTP engine’s retransmission ‘‘window’’ f or this
span. Theretransmission windows of the spans impose flow control onLTP transmission, reducing the
chance of allocation of all available space in theION node’s data store toLTP transmission sessions.

max_import_sessionsis simply the neighoring engine’s own value for the corresponding export
session parameter; it is the neighboring engine’s retransmission window size for this span. It reduces
the chance of allocation of all available space in theION node’s data store toLTP reception sessions.

LSO_commandis script text that will be executed whenLTP is started on this node, to initiate

perl v5.18.2 2016-09-07 1

LTPRC(5) LTP configuration files LTPRC(5)

operation of a link service output task for this span.Note that "peer_engine_nbr" will automatically
be appended toLSO_commandby ltpadmin before the command is executed, so only the link-
service-specific portion of the command should be provided in theLSO_commandstring itself.

queuing_latencyis the estimated number of seconds that we expect to lapse between reception of a
segment at this node and transmission of an acknowledging segment, due to processing delay in the
node. (Seethe ’m ownqtime’ command below.) The default value is 1.

If queuing latencya neg ative number, the absolute value of this number is used as the actual queuing
latency and session purging is enabled; otherwise session purging is disabled. If session purging is
enabled for a span then at the end of any period of transmission over this span all of the span’s export
sessions that are currently in progress are automatically canceled. Notionally this forces re-forwarding
of theDTN bundles in each session’s block, to avoid having to wait for the restart of transmission on
this span before those bundles can be successfully transmitted.

c span peer_engine_nbr max_export_sessions max_import_sessions max_segment_size
aggregation_size_limit aggregation_time_limit’LSO_command’ [queuing_latency]

Thechange spancommand. Thiscommand sets the indicated span’s configuration parameters to the
values provided as arguments.

d span peer_engine_nbr
The delete spancommand. Thiscommand deletes the span identified bypeer_engine_nbr. The
command will fail if any outbound segments for this span are pending transmission or any inbound
blocks from the peer engine are incomplete.

i span peer_engine_nbr
This command will print information (all configuration parameters) about the span identified by
peer_engine_nbr.

l span
This command lists all declaredLTP data interchange spans.

s ’LSI command’
The start command. Thiscommand starts link service output tasks for allLTP spans (to remote
engines) from the localLTP engine, and it starts the link service input task for the local engine.

m heapmaxmax_database_heap_per_block
Themanage heap for block acquisitioncommand. Thiscommand declares the maximum number of
bytes ofSDR heap space that will be occupied by the acquisition of any single LTP block. All data
acquired in excess of this limit will be written to a temporary file pending extraction and dispatching
of the acquired block.Default is the minimum allowed value (560 bytes), which is the approximate
size of aZCO file reference object; this is the minimumSDRheap space occupancy in the event that all
acquisition is into a file.

m screening{ y | n }
The manage screeningcommand. Thiscommand enables or disables the screening of received LTP
segments per the periods of scheduled reception in the node’s contact graph. By default, screening is
disabled — thatis, LTP segments from a given remoteLTP engine (ION node) may be accepted even
when they arrive during an interval when the contact graph says the data rate from that engine to the
local LTP engine is zero. When screening is enabled, such segments are silently discarded. Note that
when screening is enabled the ranges declared in the contact graph must be accurate and clocks must
be synchronized; otherwise, segments will be arriving at times other than the scheduled contact
intervals and will be discarded.

m ownqtime own_queuing_latency
The manage own queuing time command. Thiscommand sets the number of seconds of predicted
additional latency attributable to processing delay within the local engine itself that should be included
whenever LTP computes the nominal round-trip time for an exchange of data with any remote engine.
The default value is 1.

perl v5.18.2 2016-09-07 2

LTPRC(5) LTP configuration files LTPRC(5)

m maxber max_expected_bit_error_rate
Themanage max bit error ratecommand. Thiscommand sets the expected maximum bit error rate
that LTP should provide for in computing the maximum number of transmission efforts to initiate in
the transmission of a given block. (Notethat this computation is also sensitive to data segment size
and to the size of the block that is to be transmitted.) The default value is .000001 (10ˆ−6).

x The stop command. Thiscommand stops all link service input and output tasks for the localLTP
engine.

w { 0 | 1 | <activity_spec> }
TheLT P watch command. Thiscommand enables and disables production of a continuous stream of
user-selectedLTP activity indication characters.A watch parameter of ‘‘1’ ’ selects allLTP activity
indication characters; ‘‘0’ ’ de-selects allLTP activity indication characters; any other activity_spec
such as ‘‘df{]’ ’ selects all activity indication characters in the string, de-selecting all others.LTP will
print each selected activity indication character tostdout ev ery time a processing event of the
associated type occurs:

d bundle appended to block for next session

e segment of block is queued for transmission

f block has been fully segmented for transmission

g segment popped from transmission queue

h positive ACK received for block, session ended

s segment received

t block has been fully received

@ negative ACK received for block, segments retransmitted

= unacknowledged checkpoint was retransmitted

+ unacknowledged report segment was retransmitted

{ export session canceled locally (by sender)

} import session canceled by remote sender

[import session canceled locally (by receiver)

] export session canceled by remote receiver

h The help command. Thiswill display a listing of the commands and their formats. It is the same as
the? command.

EXAMPLES
a span 19 20 5 1024 32768 2 ’udplso node19.ohio.edu:5001’

Declares a data interchange span between the localLTP engine and the remote engine (ION node)
numbered 19. There can be at most 20 concurrent sessions of export activity to this node.Conversely,
node 19 can have at most 5 concurrent sessions of export activity to the local node.Maximum
segment size for this span is set to 1024 bytes, aggregation size limit is 32768 bytes, aggregation time
limit is 2 seconds, and the link service output task that is initiated whenLTP is started on the localION
node will execute theudplsoprogram as indicated.

m screening n
Disables strict enforcement of the contact schedule.

SEE ALSO
ltpadmin(1), udplsi(1), udplso(1)

perl v5.18.2 2016-09-07 3

