
SanDisk Confidential 1

Bart Van Assche, Ph.D.

Using the DLM as a Distributed In-Memory Database

August 21, 2015

2

Overview
 Introduction
 Initiator-side Clustering
 Persistent Reservation Support for HA Arrays
 Distributed Lock Manager (DLM)
 Using the DLM to Implement PR Support

3

Introduction
 SCSI specs require that all nodes in a multi-node array

report the same state information.
 Many people build a H.A. storage array with iSCSI target

software + H.A. software + data replication software.
 Complies to most SCSI requirements except:

– Persistent reservations (PR).
– Mode pages.

 Proper PR support is required for initiator-side clustering.

4

Initiator-side Clustering
 Redundant initiator and storage systems.
 Witness disk is used to decide initiator server master role.
 Witness disk ownership via SCSI persistent reservations.

Initiator
Server 1

Initiator
Server 2

LAN

SCSI Switch 1 SCSI Switch 2

Storage
Server A

Storage
Server BStorage Server

Network

SCSI Network

5

Persistent Reservation Support for HA Arrays
 Multiple storage servers but …
 Single persistent reservation state.
 Challenges:

– Implement single PR state efficiently.
– Handle node join, power cycle, split-brain etc. correctly.

6

Distributed Lock Manager (DLM)
 A distributed lock manager (DLM) provides distributed software

applications with a means to synchronize their accesses to shared
resources.

 Was added in 2006 to the Linux kernel as a kernel driver.
 Core component for GFS2, OCFS2, CLVM, ...
 Features

– Supports user space and kernel applications.
– Allows to serialize access to shared resources.
– Provides reader/writer lock objects.
– One lock value block per lock object.
– Supports remote procedure calls.

7

DLM Lock Objects
 Each lock object exists in a DLM lockspace.
 Maximum lockspace name length: 64.
 Maximum lock object name length: 32.
 Lock Value Block (LVB)

– Length must be a multiple of 8.
– Max. 32 bytes for user space applications.
– Kernel code can use larger LVB's.

8

DLM Lock Modes
Mode Requesting Process Other Processes

Null (NL) No access Read or write access

Concurrent Read (CR) Read access only Read or write access

Concurrent Write (CW) Read or write access Read or write access

Protected Read (PR) Read access only Read access only

Protected Write (PW) Read or write access Read access only

Exclusive (EX) Read or write access No access

9

DLM API
 dlm_lock()

– Asynchronously convert to a higher or lower lock mode.
– Optionally invoke a callback function on each other node that holds a lock

that blocks this conversion (BAST = blocking AST).
– Optionally invoke a callback function on the local node when the new lock

mode is granted (AST = asynchronous system trap).
– After the new mode has been granted, reports whether or not the LVB is

valid (DLM_SBF_VALNOTVALID flag).
 dlm_cancel(): cancel a conversion requested via dlm_lock().
 dlm_unlock(): discard a DLM lock object and also its LVB.
 The LVB is invalidated:

– If a node holding a lock object in EX or PW mode fails.
– If a node joins the cluster as master and only NL/CR locks are left.

10

Lock Value Block (LVB) Propagation
 Converting to a higher mode returns the LVB to the caller (e.g. CR → EX).
 Converting to a lower mode updates the LVB on all nodes (e.g. EX → CR).
 Using the DLM as a distributed in-memory database is possible:

– By using the namespace + lock object name as key.
– By using the LVB as value.
– By using e.g. the CR → EX conversion to read the LVB and the EX → CR

conversion to publish a modified LVB.

11

DLM and Read Access
 Two approaches are possible to obtain the latest contents

of the LVB:
– Obtain read access on the lock object associated with the LVB

(best for infrequent reads).
– Use the BAST mechanism to keep all LVB copies up-to-date all

the time (best for frequent reads).

12

DLM - Implementing Update Notifications
 Create pre.<n> and post.<n> notification lock objects where <n> is the node ID

assigned by the cluster management software.
 Initialize pre.<n> to EX and post.<n> to the NL state.
 Associate a BAST with each of these lock objects.
 Send a notification and wait until remote data copies have been updated by

converting lock object pre.<n> first to PR and next to NL. Subsequently convert
lock object post.<n> to PR and next to NL.

 In the pre.<n> BAST, convert the post.<n> lock object from NL to EX mode and
the pre.<n> lock object from EX to NL mode.

 In the post.<n> BAST, convert the pre.<n> lock object from NL to EX mode, make
a local copy of the updated data and convert the post.<n> lock object from EX to
NL mode.

 Advantage: cluster membership changes are handled transparently.
 Disadvantage: certain cluster membership changes result in data loss.

13

DLM - Implementing Update Notifications
Updater Every node i

Initialize pre.<i> to EX; post.<i> to NL

Update LVB

for i in (all other nodes):
request pre.<i> → PR

Convert post.<i> NL → EX

Convert pre.<i> EX → NL

pre.<i> PR → NL

request post.<i> → PR

Convert pre.<i> NL → EX

Make a local copy of the updated LVB

Convert post.<i> EX → NL

post.<i> PR → NL

14

Implementing Persistent Reservations (1/2)
 One DLM lockspace per LUN.
 One lock object per LUN for which the LVB contains:

 Number of registrants
 Whether or not the device has been reserved persistently.
 Persistent reservation type.
 Persistent reservation scope.
 Value of APTPL (activate persistence through power loss).

 One lock object per LUN and per reservation key containing:
 Reservation key.
 Relative target ID.
 Transport ID (up to 228 bytes for iSCSI).

15

Implementing Persistent Reservations (2/2)
 A lock object per LUN that serializes PR data changes.
 Propagating PR data changes via notifications.
 Each node persists APTPL reservations locally and

reapplies these during boot.
 Result: an efficient and resilient SCSI PR implementation

for clusters.

16

Cluster Node ID Discovery
 Notification mechanism needs to know node IDs of other

cluster nodes.
 Node IDs are discovered by reading contents of

/sys/kernel/config/dlm/cluster/comms directory.
 Node IDs are read during initialization, after an update

has been published and also after an update notification
has been received.

17

Handling Cluster Membership Changes
 If a node leaves the cluster

 DLM handles this transparently.

 If a node joins the cluster
 New node copies PR state from LVB's into local state.
 If one or more of the LVB's were invalid, trigger an LVB

update.
 LVB update

 Send an LVB update notification to other nodes.
 Each node that receives this notification copies its PR state to

LVB's.
 These LVB updates are serialized – last update takes effect.

18

Handling Split-Brain
 Cluster manager must stop one of the two partitions
 After the split-brain has been resolved, the same procedure is applied as

when a node joins the cluster.
 If a node joins the cluster

 New node copies PR state from LVB's into local state.
 If one or more of the LVB's were invalid, trigger an LVB update.

 LVB update
 Send an LVB update notification to other nodes.
 Each node that receives this notification copies its PR state to LVB's.
 These LVB updates are serialized – last update takes effect.

19

Possible Alternatives for the DLM
 Google's Chubby Lock Service

● Userspace only
● userspace / kernel barrier would have to be crossed twice for

each distributed lock operation.
● Strict ordering of updates is not needed for PR.
● design emphasis is on availability and reliability, as opposed

to high performance [Bu06].
 Zookeeper

● Closely related to Chubby according to [Vi11].

20

References
 Wikipedia, Distributed Lock Manager

(https://en.wikipedia.org/wiki/Distributed_lock_manager).
 ANSI T10, SCSI Primary Commands – 5 (SPC-5), 2015 (http://www.t10.org/).
 [Th01] Kristin Thomas, Programming Locking Applications, 2001

(http://opendlm.sourceforge.net/cvsmirror/opendlm/docs/dlmbook_final.pdf).
 [Bu06] Mike Burrows, The Chubby lock service for loosely-coupled distributed

systems, Proceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006
(http://static.googleusercontent.com/media/research.google.com/en/us/archiv
e/chubby-osdi06.pdf).

 [Vi11] Vilobh Meshram, Distributed Metadata Management for Parallel
Filesystems, Masters Thesis, Ohio State University, 2011
(https://etd.ohiolink.edu/!etd.send_file?accession=osu1313493741).

SanDisk Confidential 21

Any questions or comments ?

22

Legal Notice

©2015 SanDisk Corporation. All rights reserved. SanDisk is a trademark of
SanDisk Corporation, registered in the US and other countries.

	Slide 1
	Slide 2
	Slide 3
	Sample Headline Text
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

